磁流变弹性体的研制及其力学行为的表征
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
磁流变弹性体是一类智能材料。它是由高分子聚合物和软磁性颗粒组成,在外加磁场的作用下,其模量和阻尼等性能会发生变化。目前已有不少研究者利用磁流变弹性体的变刚度特性,设计了调频式动力吸振器和汽车悬挂轴衬等器件。因此,磁流变弹性体在振动控制等工程领域具有良好的应用前景。
     磁流变弹性体要实现工程化,一方而需要具备显著的磁流变效应(一般指模量在磁场下的可控范围),另一方面需要具备优异的综合性能。而目前磁流变弹性体的磁流变效应仍不够大,同时多数研究者仅考虑了其模量,忽略了同样重要的阻尼特性和机械性能。在磁流变弹性体机理研究方面,现有模型往往存在过多的假设,影响了结果的可靠性。
     为解决上述存在问题,本文建立了一套适合于高弹高韧类材料为基体的磁流变掸性体的研制系统,并对磁流变弹性体进行了初步制备;研究了多种制备和测试参数下磁流变弹性体的磁流变效应等力磁耦合性能与机械性能,同时分别通过动态实验和数值模拟的方法研究了磁流变弹性体的阻尼特性;基于观测到的微观结构建立了两种磁流变弹性体的磁致模型;最后根据上述研究成果对材料进行了进一步优化发计,得到了综合性能良好的磁流变弹性体。
     本文首先概述了磁流变材料的历史、分类和应用,着重介绍了磁流变弹性体的最新研究进展以及存在的科学和应用问题。
     建立了一套适用于以天然橡胶为代表的高弹高韧类材料为基体的磁流变弹性体的研制系统。在制备基体/颗粒的粘塑态磁性混合物时,分别通过了溶剂法和混炼法两种途径。从性能、工艺、效率和可行性等方面,比较了两种方案的优劣,并最终采用了混炼法。组建了热磁耦合预结构化和固化系统,探索出了基于高弹高韧基体材料的磁流变弹性体的研制方案,并进行了初步制备。
     实验研究了包括预结构磁场强度、温度、增塑剂和铁粉含量的制备参数和包括动态应变和激励频率的测试参数对磁流变弹性体动态力学性能的影响。此外,搭建了准静态力磁耦合剪切装置,实验研究了不同铁粉含量的磁流变弹性体在有无外场下的准静态应力—应变关系;评估了磁流变弹性体的拉伸强度、撕裂强度、硬度、回弹性、抗热氧老化和耐磨耗性能等基本机械性能。
     通过扫描电镜观测了不同磁感应强度下制备的磁流变弹性体中磁性颗粒形成的微观结构。发现在预结构过程中施加磁场后,颗粒逐渐团聚成柱状结构。随着施加的磁感应强度的增大,颗粒柱状结构的宽度和长度也随之增大。
     基于观测到的微观结构,舍弃了袭用于磁流变液的颗粒贯穿模型,建立了适用于磁流变弹性体的力学模型。首先建立了有限柱长模型。在有限柱长模型中,假设磁流变弹性体内包含若干段宽度相同长度随机分布的柱状结构。通过等效磁导率的方法推导出了磁流变弹性体的磁致应力和磁致模量的表达式。接着对磁流变弹性体结构与性能这一问题作了进一步深入的研究。发现对于任何一块磁流变弹性体,其中包含的柱状颗粒结构的长度呈高斯分布。据此建立了一种普遍性更高的磁流变弹性体高斯分布模型。通过该模型研究了颗粒柱结构长度、宽度、外加磁场强度以及应变对磁流变弹性体磁致性能的影响。与传统的Jolly和Davis模型相比,高斯分布模型具有更好的精度和更广的使用范围。
     分别通过动态实验和数值模拟的方法研究了磁流变弹性体的阻尼特性。相关实验研究结果表明,除刚度可控外,磁流变弹性体也是一种阻尼可控的材料。据此提出了与外加磁场相关的新界面滑移假设。通过对磁流变弹性体取三维代表体积单元,使用有限元软件计算其在受到周期动态剪切应变时的响应。计算结果显示,应力应变的曲线最终收敛于一个迟滞回线。由此计算出了磁流变弹性体的不加磁场时的阻尼比,且比较接近于实验结果。
     最后基于以上的理论和实验结果,结合应用需求,对磁流变弹性体进行了进一步优化设计。特别是在制备磁流变弹性体时,通过添加适量的炭黑来改性基体性能,可以同时增强磁流变效应,降低损耗因子,以及提高拉伸强度。这对于解决磁流变效应、损耗因子以及机械强度之间的矛盾提供了一种理想方案,对于基于磁流变弹性体设计的调频式动力吸振器有着十分重要的意义。
Magnetorheological(MR) elastomers are a class of smart materials.They consist of polymer and soft magnetic particles.Their properties such as modulus and damping can be controlled by an applied magnetic field.MR elastomers have been applied in adaptive tuned vibration absorbers and vehicle suspension bushings because of their controllable stiffness.They will play an important role in the vibration control and other application areas.
     For engineering application,MR elastomers must own high MR effect(often evaluated by the change of modulus),and other mechanical properties.However,until now,the reported MR effect was not large enough and little research foused on other properties,such as the damping and the mechanical performance.Moreover,current therectical models had too many assumptions to obtain the high accuracy.
     This dissertation aims to solve the above problems.A fabrication system was established to prepare MR elastomers based on the high-elastic and high-toughness materials.The effects of several basic factors in fabrication and measurement on the properties of MR elastomers were experimentally investigated.Two theoretical models were established according to the microstructure of the MR elastomers. Finally,the MR elastomers were optimized,and high properties were obtained.
     In the segment of Introduction,the history,classification and application of the MR materials were firstly introduced,and then the recent progresses in MR elastomers were detailed.Besides,the main scientific and applied problems were also pointed out.
     A fabrication system for MR elastomers based on matrix of the high-elastic and high-toughness materials such as natural rubber was established.To prepare the matrix/particle visco-plastic mixtures,the organic solvent and machine mixing methods were used respectively.By comparing the two options in technology, efficiency and feasibility,the machine mixing method was ultimately perferred. Furthermore,the thermal-magnetic coupled pre-configuration and vulcanization systems were set up,and the scheme for developing MR elastomers based on high-elastic and high-toughness materials was explored.
     The effects of several basic factors,such as the pre-configuration magnetic flux density and temperature,content of plasticizers and iron particles used in the fabrication and strain amplitude and driving frequency set in the test,on the dynamic properties of MR elastomers were experimentally investigated.In addition,a mechanical-magnetic coupled quasi-static shear mode load device was established. The shear stress-strain relationship of the MR elastomers with different contents of iron particles was obtained under an adjustable magnetic field.The basic mechanical properties concluding tensile and tear strength,hardness,elasticity,thermal-oxidative aging and anti-abrasion performance of MR elastomers were also evaluated according to rubber testing criterion.
     The microstructure of the MR elastomers prepared under different magnetic flux densities was observed by the scanning electron microscopy.The results indicated that the iron particles gradually aggregated into the cylindrical structure after application of the magnetic field in preparation.As the increment of the magnetic flux density,the length and breadth of the cylindrical structure were both raised.
     Based on above observed microstructure,a finite-column model which assumed MR elastomers containing several column structures with random length and the same breadth was proposed.Through the effective permeability approach,MR elastomers' field-induced modulus was derived.Further research on the microstructures and properties of MR elastomers showed that the length of column structures in MR elastomers obeyed the Gaussian distribution.So a Gaussian distribution model was established to study the effects of particle column size,external magnetic field density and shear strain on the field-induced properties of the MR elastomers.The simulation results of the Gaussian distribution model were also compared with other conventional models(such as model respectively proposed by Jolly and Davis) and the relevant published data.Results showed that this model agreed well with the experimental evidence and indeed improved the accuracy on predicting the behavior of the MR elastomers.
     The damping properties of MR elastomers were studied by the dynamic experiments and the numerical simulations.The experimental results indicated that the MR elastomers were also a kind of controllable damping materials.A method of magnetic field dependent interfacial slipping was proposed to explain the experimental phenomena.After picking the three-dimensional representative volume as a unit model,the stress-strain response was simulated in a dynamic periodic load by using the finite element analysis software ANSYS.The results of stress-strain relationship presented a hysteresis loop.The damping ratio was calcutated from the loop and approached to the previous experimental results.
     Based on above theoretical and experimental results and combined with the application requirements,the MR elastomers were optimized.It was noted that addition of the carbon black into the matrix resulted in high MR effect,low damping ratio and strong tensile strength.These results were hopeful to solve the extinct shortcoming existing in conventional MR elastomers,and helpful for application in adaptive tuned vibration absorber.
引文
[1]杜善义,冷劲松,王殿富.智能材料系统和结构[M].北京:科学出版,2001.
    [2]H.Yanagida.Intellignt materials-an new frontier[J].Angewandte Chemie,1998,100(10):1443-1446.
    [3]J.Rabinow.Magnetic Fluid Clutch[J].Technical News Bulletin,1948,32(4)54-60.
    [4]J.Rabinow.The Magnetic Fluid Clutch[J].AIEE Transactions,1948,67,1308-1315.
    [5]J.D.Carlson.What Makes a Good MR Fluid[J].Journal of Intelligent Material Systems and Structures,2002,13(7-8):431-435.
    [6]C.W.Macosko.Rheology:Principles,Measurements,and Applications[M].1994,New York:VCH Publishers.
    [7]M.R.Jolly,J.W.Bender,J.D.Carlson.Properties and Applications of Commercial Magnetorheological Fluids.Journal of Intelligent Material Systems and Structures,1999,10(1):5-13.
    [8]J.D.Carlson,D.M.Catanzarite,K.A.StClair.Commercial Magneto-rheological Fluid Devices[J].International Journal of Modern Physics B,1996,10(23-24):2857-2865.
    [9]P.P.Phule,J.M.Ginder.Synthesis and Properties of Novel Magnetorheological Fluids Having Improved Stability and Redispersibility[J].International Journal of Modern Physics B,1999,13(14-16):2019-2027.
    [10]J.M.Ginder.Behavior of Magnetorheological Fluids[J].MRS BULLETIN,1998,23(8):26-29.
    [11]J.M.Ginder,L.C.Davis,L.D.Elie.Rheology of Magnetorheological Fluids:Models and Measurements[J].International Journal of Modern Physics B,1996,10(23-24):3293-3303.
    [12]R.Tao,Q.Jiang.Structural Transitions of an Electrorheological and Magnetorheological Fluid[J].Physical Review E,1998,57(5):5761-5765.
    [13]R.Tao.Super-strong Magnetorheological Fluids[J].Journal of Physics-Condensed Material,2001,13(50):979-999.
    [14]H.J.Jung,B.F.Spencer,I.W.Lee.Control of Seismically Excited Cable-stayed Bridge Employing Magnetorheological Fluid Dampers[J].Journal of Structural Engineering-ASCE,2003,129(7):873-883.
    [15]S.J.Dyke,B.F.Spencer,M.K.Sain,J.D.Carlson.An Experimental Study of MR Dampers for Seismic Protection[J].Smart Materials & Structures,1998,7(5):693-703.
    [16]Y.M.Shkel,D.J.Klingenberg.Magnetorheology and Magnetostriction of Isolated Chains of Nonlinear Magnetizable Spheres[J].Journal of Rheology,2001,45(2):351-368.
    [17]G.Bossis,P.Khuzir,S.Lacis,et al.Yield Behavior of Magnetorheological Suspensions[J].Journal of Magnetism and Magnetic Materials,2003,258:456-458.
    [18]E.Lemaire,G.Bossis.Yield Stress and Wall Effects in Magnetic Colloidal Suspensions[J].Journal of Physics D-Applied Physics,1991,24(8):1473-1477.
    [19]M.Mohebi,N Jamasbi,J.Liu.Simulation of the Formation of Non-equilibrium Structures in Magnetorheological Fluids Subject to an External Magnetic Field[J].Physical Review E,1996,54(5):5407-5413.
    [20]V.Pfeil,M.D.Graham,D.J.Klingenberg,J.F.Morris.Structure Evolution in Electrorheological and Magnetorheological Suspensions from a Continuum Perspective[J].Journal of Applied Physics,2003,93(9):5769-5779.
    [21]方生,张培强,旋转磁场作用下磁流变液颗粒运动及结构演化的模拟[J],化学物理学报,2001,14(5):562-566
    [22]J.Promislow,A.Gast.Magnetorheological Fluid Structure in a Pulsed Magnetic Field[J].Langmuir,1996,12:4095-4102.
    [23]J.Promislow,A.Gast.Low-energy suspension structure of a magnetorheological fluid[J].1997,56(1):643-652.
    [24]W.I.Kordonsky.Elements and Devices Based on Magnetorheological Effect[J].Journal of intelligent Material Systems and Structures,1993,4(1):65-69.
    [25]www.lord.com
    [26]W.I.Kordonsky.Magnetorheological Effect as a Base of New Devices and Technologies[J].Journal of Magnetism and Magnetic Materials,1993,122(3):395-398.
    [27]W.I.Kordonsky.Magnetorheological Fluids and Their Applications[J].Materials Technology,1993,8(11):240-242.
    [28]W.I.Kordonsky.Magnetorheological Valve and Devices Incorporating Magnetorheological Elements.US Patent 5,353,839,1994.
    [29]W.I.Kordonsky,S.R.Gorodkin.Magnetorheological Valve and Devices Incorporating Magnetorheological Elements.US Patent.5,452,745,1995.
    [30]W.I.Kordonsky,S.A.Demchuk.Additional Magnetic Dispersed Phase improves the Properties[C].Proceeding of the 5th International Conference on ER and MR Fluids,1995,613-619.
    [31]温洪昌,廖昌荣,严小锐.磁流变液阻尼器的电流驱动器设讣与实验测试[J].电子测量技术,2008,31(7):52-55.
    [32]易成建,彭向和,李海涛.静磁场下磁流变液微结构形态稳定性分析[J].功能材料,2008,12(39):1961-1964.
    [33]仇中军,张飞虎,董申.光学玻璃研抛用磁流变液的研究光学技术[J].2002,28(6):497-499.
    [34]李金海,关新春,刘敏等.斜拉索磁流变液阻尼器半主动振动控制系统的设计与应用[J],功能材料,2006,5(37):827-830.
    [35]黄橙,周岱,马骏.基于磁流变液阻尼杆件的空间网壳风振半主动控制[J].上海交通大学学报,2008,42(6):961-965.
    [36]唐欣,凌虹,胡克鳌.磁流变液沉降稳定性研究现状与趋势[J].磁性材料及器件,2004,35(3):5-10.
    [37]程海斌,王金铭,马会茹等.有机分子修饰铁粒子表面改善水基磁流变液的抗氧化性和稳定性[J],物理化学学报,2008,24(10):1869-1874.
    [38]瞿伟廉,樊友川.磁流变液阻尼器的磁路有限元分析与优化设计方法[J].华中科技大学学报(城市科学版),2006,23(3):1-4.
    [39]金昀,张培强,汪小华,吴卅建.磁流变液剪切屈服应力的数值计算[J].中国科学技术大学学报,2001,31(2):168-173.
    [40]周刚毅,金昀,向勇,张培强.磁场作用下磁流变液结构演化的实验研究[J].实验力学,2000,15(2):233-239.
    [41]J.D.Carlson,M.R.Jolly.MR Fluid,Foam and Elastomer Devices[J].Mechatronics,2000,10(4-5):555-569.
    [42]I.A.Brigadnov,A.Dorfmann.Mathematical modelling of magneto-sensitive elastomers[J].International Journal of Solids and Structures,2003,40(18):4659-4674.
    [43]G.Bossis,E.Coquelle,C.Noel,et al.Monitoring Interparticle Distance in Magnetorheological Composites[J].International Journal of Modern Physics B,2007,21(28-29):4868-4874.
    [44]L.V.Nikitin,D.G.Korolev,G.V.Stepanov,et al.Experimental study of magnetoelastics[J].Journal of Magnetism and Magnetic Materials,2006,300(1):234-238.
    [45]T.Shiga,A.Okada,T Kurauchi.Magnetro-viscoelastic Behavior of Composite Gels[J],Journal of Applied Polymer Science,1995,58(4):787-792.
    [46]M.R.Jolly,J.D.Carlson,B.C.Munoz,et al.The Magnetoviscoelastic Response of Elastomer Composites Consisting of Ferrous Particles Embedded in a Polymer Matrix[J],Journal of Intelligent Material Systems and Structures,1996,7(6):613-622.
    [47]J.M.Ginder,M.E.Nichols,L.D.Eiie,et al.Magnetorheological Elastomers:Properties and Applications[C].Proceedings of SPIE,1999,3675:131-138.
    [48]L.C.Davis.Model of Magnetorheological Elastomers[J],Journal of Applied Physics,1999,85(6):3348-3351.
    [49]J.M.Ginder,M.E.Nichols,L.D.Elie.Controllable-Stiffness Components Based on Magnetorheological Elastomers[C].Proceedings of SPIE,2000,3985:418-425.
    [50]J.M.Ginder,W.E Schlotter,M.E.Nichols.Magnetorheological Elastomers in Tunable Vibration Absorbers[C].Proceedings of SPIE,2001,4331:103-110.
    [51]L.D.Elie,J.M.Ginder,W.M.Stewart,et al.Variable stiffness bushing using magnetorheological elastomers,EP0784163,1996.
    [52]G.Bossis,C.Abbo,S.Cutillas,et al.Electroactive and Electrostructured Elastomers.International Journal of Modern Physics B,2001,15(6&7):564-573.
    [53]S.Bednarek.The Giant Magnetostriction in Ferromagnetic Composites within an Elastomer Matrix[J].Appl.Phys.A,1999,68(1):63-67.
    [54]S.A.Demchuk,V.A.Kuz'min.Viscoelastic Properties of Magnetorheological Elastomers in the Regime of Dynamic Deformation[J].Journal of Engineering Physics and Thermophysics,2002,75(2):396-400.
    [55]M.Lokander,B.Stenberg.Performance of Isotropic Magnetorheological Rubber Materials[J].Polymer Testing,2003,22:245-251.
    [56]M.Lokander,B.Stenberg.Improving the Magnetorheological Effect in Isotropic Magnetorheoligcal Rubber Materials[J].Polymer Testing,2003,22:677-680.
    [57]A.Dorfmann,LA.Brigadnov.Constitutive Modeling of Magneto-sensitive Cauchy-elastic Solids[J].Computational Materials Science,2004,29(X):270-282.
    [58]A.Dorfmann,R.W.Ogden.Magnetoelastic Modeling of Elastomers[J]. European Journal of Mechanics A/Solids,2003,22:495-507.
    [59]L.Borcea,O.Bruno.On the Mgneto-elastic Poperties of Elastomer-ferromagnet Composites[J].Journal of the Mechanics and Physics of Solids,2001,49(12):2877-2919.
    [60]T.Mitsumata,K.Furukawa,E.Juliac,et al.Compressive Modulus of Ferrite Containning Polymer Gels[J],International Journal of Modern Physics B,2002,16(17-18):2419-2425.
    [61]M.J.Wilson,A.Fuchs,F.Gordannejad.Development and Characterization of Magnetorheological Polymer Gels[J],Journal of Applied Polymer Science,2002,84(14),2733-2742.
    [62]A.M.Albanese,K.A.Cunefare.Properties of Magnetorheological Semiactive Vibration Absorber[C],Smart Structures and Materials 2003:Damping and Isolation,Proceedings of SPIE,2003,5052:36-43.
    [63]Y.Shen,M.F.Gordannejad,G.R.Heppler.Experimental Research and Modeling of Magnetorheological Elastomers[J],Journal of Intelligent Material Systems and Structures,2004,15(1):27-35.
    [64]M.Lokander,T.Reitberger,B.Stenberg.Oxidation of natural rubber-based magnetorheological elastomers[J],Polymer Degradation and Stability,2004,86(3):467-471.
    [65]周刚毅.博士毕业论文:MR Elastomer的力学性能研究以及平面旋转场下MRF的结构分析[D].2002,合肥:中国科学技术大学.
    [66]G.Y.Zhou.Shear properties of a magnetorheological elastomer[J].Smart Materials & Structures,2003,12(1):139-146.
    [67]G.Y.Zhou,J.R.Li.Dynamic behavior of a magnetorheological elastomer under uniaxial deformation:Ⅰ.Experiment[J].Smart Materials & Structures,2003,12(6):859-872.
    [68]G.Y.Zhou,Z.Y.Jiang.Deformation in magnetorheological elastomer and elastomer- ferromagnet composite driven by a magnetic field[J].Smart Materials & Structures,2004,13(2):309-316.
    [69]G.Y.Zhou.Complex shear modulus of a magnetorheological elastomer.Smart Materials & Structures,2004,13(5):1203-1210.
    [70]G.Y.Zhou,Q.Wang.Design of a smart piezoelectric actuator based on a magnetorheological elastomer[J].Smart Materials & Structures,2005,14(4):504-510.
    [71]G.Y.Zhou,Q.Wang.Magnetorheological elastomer-based smart sandwich beams with nonconductive skins[J].Smart Materials & Structures,2005,14(5):1001-1009.
    [72]G.Y.Zhou,Q.Wang.A linear time-variant system for signal modulation by use of magnetorheological elastomer-suspended beams[J].Smart Materials &Structures,2005,14(6):1154-1162.
    [73]G.Y.Zhou,Q.Wang.Study on the adjustable rigidity of magnetorheological-elastomer-based sandwich beams[J].Smart Materials &Structures,2006,15(1):59-74.
    [74]M.Kallio,T.Lindroos,S.Aalto.Dynamic compression testing of a tunable spring element consisting of a magnetorheological elastomer[J],Smart Materials and Structures,2007,16(2):506-514.
    [75]Z.Varga,G.Filipcsei,M.Zrinyi.Magnetic field sensitive functional elastomers with tunable elastic modulus[J],Polymer,2006,47(1):227-233.
    [76]N.Kchit,G.Bossis.Piezoresistivity of magnetorheological elastomers[J],Journal of Physics Condensed Matter,2008,20(204136):1-5.
    [77]S.Abramchuk,E.Kramarenko,D.Grishin.Novel highly elastic magnetic materials for dampers and seals:part Ⅱ.Material behavior in a magnetic field[J],Polymers for Advanced Technologies,2007,18(7):513-518.
    [78]A.A Lerner,K.A.Cunefare.Performance of MRE-based Vibration Absorbers[J].Journal of Intelligent Material Systems and Structures.2008,19(5):551-563.
    [79]M.Farshad,M.Le Roux.A new active noise abatement barrier system[J],Polymer Testing,2004,23(7):855-860.
    [80]J.R.Watson.Method and Apparatus for varying the stiffness of a Suspension Bushing.U.S.Patent 5609353,1997.
    [81]L.D.Elie,J.M Ginder,J.S.Mark,et al.Method and apparatus for measuring displacement and force.US Patent 5814999,1997.
    [82]R.A.Ottaviani.Magnetorheological nanocomposite elastomer for releasable attachment applications.US Patent 20060168780,2006.
    [83]D.W.Anderson.Elastomer roll for papermaking machine.US Patent 6544156,2003.
    [84]方生,龚兴龙,张先舟,张培强.磁流变弹性体力学性能的测试与分析[J],中国科学技术大学学报,2004:34(4):456-463.
    [85]张先舟.博士毕业论文:磁流变弹性体的研制及其机理研究[D].2005,合肥: 中国科学技术大学.
    [86]Y.L.Wang,Y.Hu,H.X.Deng,et al.Magnetorheological elastomers based on isobutylene-isoprene rubber[J],Polymer Engineering and Science,2006,46(3):264-268.
    [87]Y.L.Wang,Y.Hu,L.Chen,et al.Effects of rubber/magnetic particle interactions on the performance of magnetorheological elastomers[J],Polymer Testing,2006,25(2):262-267.
    [88]X.L.Gong,X.Z.Zhang,P.Q.Zhang Study of mechanical behavior and microstructure of magnetorheological elastomers[J],International Journal of Modern Physics B,2005,19(7-9):1198-1204.
    [89]X.L.Gong,X.Z.Zhang,P.Q.Zhang.Fabrication and characterization of isotropic magnetorheological elastomers[J],Polymer Testing,2005,24(5):669-676.
    [90]T.L.Sun,X.L.Gong,W.Q.Jiang,et al.Study on the damping properties of magnetorheological elastomers based on cis-polybutadiene rubber[J],Polymer Testing,2008,27(4):520-526.
    [91]Y.S.Zhu,X.L.Gong,P.Q.Zhang.Numerical analysis on magnetic-induced shear modulus of magnetorheological elastomers based on multi-chain model[J],Chinese Journal of Chemical Physics,2006,19(2):126-130.
    [92]朱应顺,龚兴龙,张培强.磁流变弹性体若干物理量的数值分析[J],计算力学学报,2007,24(5):565-570.
    [93]朱应顺,龚兴龙,张培强.柱状和层状结构磁流变弹性体剪切模量的数值计算[J],功能材料,2006,37(5):720-722.
    [94]H.X.Deng,X.L.Gong.Adaptive tuned vibration absorber based on magnetorheological elastomer[J].Journal of Intelligent Material Systems and Structures,2007,18(12):1205-1210.
    [95]H.X.Deng,X.L.Gong.Application of magnetorheological elastomer to vibration control[J],Communications in Nonlinear Science and Numerical Simulation,2008,13(9):1938-1947.
    [96]H.X.Deng,X.L.Gong,L.H.Wang.Development of an adaptive tuned vibration absorber with magnetorheological elastomer[J],Smart Materials and Structures,2006 15(5):111-116.
    [97]X.C.Guan,X.F.Dong,J.P.Ou.Magnetostrictive effect of magnetorheological elastomer[J],Journal of Magnetism and Magnetic Materials,2008,320(3-4):158-163.
    [98]汪建晓,王世旺,孟光.磁流变弹性体阻尼器-转子系统的脉冲响应试验研究[J],佛山科学技术学院学报(自然科学版),2006,24(4):212-215.
    [99]M.R.Jolly,J.D.Carlson,B.C Munoz A model of the behaviour of magnetorheological materials[J].Smart Materials & Structures,1996,5(5):607-614.
    [100]C.Bellan,G.Bossis.Field dependence of viscoelastic properties of MR elastomers[J],International Journal of Modern Physics B,2002,16(17&18):2447-2453.
    [101]邓华夏.硕士毕业论文:磁流变弹性体半主动吸振技术的研究[D].2007,合肥:中国科学技术大学.
    [102]聂恒凯.橡胶材料与配方[M].北京:化学工业出版社,2004.
    [103]夏勇.博士毕业论文:轮胎胶料在较大变形范围内准静态力学性能的研究——测试、表征以及细删数值本构模型[D].2004,合肥:中国科学技术大学.
    [104]E.M.Arruda,M.C.Boyce.A three-dimensional constitutive model for the large stretch behavior of rubber elastic materials[J].Journal of the Mechanics and Physics of Solids,1993,41(2):389-412.
    [105]L.R.Treloar.The physics of rubber elasticity[M].Oxford:Clarendon Press,1975.
    [106]P.D.Wu,E.V.Giessen.On improved network models for rubber elasticity and their applications to orientation hardening in glassy polymers[J].Journal of the Mechanics and physics of Solids,1993,41(3):427-456.
    [107]O.H.Yeoh.Characterization of elastic properties of carbon-black-filled rubber vulcanizates[J].Rubber Chemistry and Technology,1990,63(5):792-805.
    [108]A.N.Gent.A new constitutive relation for rubber[J].Rubber Chemistry and Technology,1996,69(1):59-61.
    [109]黄克智,黄永刚.固体本构关系[M].北京:清华大学出版社,1999.
    [110]P.J.Flory.链状分子的统计力学(吴大诚等合译)[M].成都:四川科学技术出版社,1991.
    [111]S.Kawabata,Y.Yamashita,H.Ooyama,et al.Mechanism of carbon-black reinforcement of rubber vulcanizate[J].Rubber Chemistry and Technology,1995,68(2):311-329.
    [112]A.N.Gent.Engineering with rubber-How to design rubber components(2nd Edition)[M].Munich:Carl Hanser Verlag,2001.
    [113]D.J.Seibert,N.Schoche.Direct comparison of some recent rubber elasticity models[J].Rubber Chemistry and Technology,2000,73(2):366-384.
    [114]E.Lemaire,A.Meunier,G.Bossis,et al.Influence of the Particle Size on the Rheology of Magnetorheological Fluids[J].Journal of Rheology,1995:39(5):1011-1020.
    [115]P.P.Phule,M.P.Mihalsin,S.Genc.The Role of the Dispersed-phase Remnant Magnetization on the Redispersibility of Magnetorheological Fluids[J].Journal of Materials Research,1999,14(7):3037-3041.
    [116]J.Liu,G.A.Flores,R.Sheng.In-virtro Investigation of Blood Embolization in Cancer Treatment Using Magnetorheological Fluids[J].Journal of Magnetism and magnetic materials,2001,225(1-2):209-217.
    [117]J.M.Ginder,L.C.Davis.Shear Stresses in Magnetorheological Fluids:Role of Magnetic Saturation[J].Applied Physics Letters,1994,65(26):3410-3412.
    [118]J.de.Vicente,G.Bossis,S.Lacis,et al.Permeability Measurements in Cobalt Ferrite and Carbonyl Iron Powders and Suspensions[J].Journal of Magnetism and Magnetic Materials,2002,251:100-108.
    [119]S.Melle,J.E.Martin.Chain Model of a Magnetorheological Suspension in a Rotating Field[J].Journal of Chemistry Physics,2003,118(21):9875-9881.
    [120]G.Bossis,S.Lacis,A.Meunier,et al.Magnetorheological Fluids[J].Journal of Magnetism and Magnetic Materials.2002,252(1-3):224-228.
    [121]P.Carletto,G.Bossis.Field-Induced Structures and Rheology of a Magnetorheological Suspension Confined Between Two Walls[J].Journal of Physics:Condensed Material,2003,15:1437-1449.
    [122]E.Climent,M.R.Maxey,G.E.Karniadakis.Dynamics of Self-Assembled Chaining in Magnetorheological Fluids[J].Langmuir,2004,20(13):507-513.
    [123]S.Melle,G.G.Fuller,M.A.Rubio.Structure and Dynamics of Magnetorheological Fluids in Rotating Magnetic Fields[J].Physical Review E,2000,61(4):4111-4117.
    [124]傅政.橡胶材料性能与设计应用(M].北京:化学工业出版社,2003.
    [125]赵振华.橡胶硫化温度的模糊控制[J].武汉工程大学学报,2008,30(4):93-95.
    [126]过梅丽.高聚物与复合材料的动态热力学分析[M].北京:化学工业出版社,2002.
    [127]G.Bossis,E.Lemaire,O.Volkova.Yield Stress in Magnetorheological and Electrorheological Fluids:A Comparison between Microscopic and Macroscopic Structural Models[J].Journal of Rheology,1997,41(3):687-704.
    [128]R.E.Rosensweig.On Magnetorheology and Electrorheology as States of Unsymmetric Stress[J].Journal of Rheology,1995,39(1):179-192.
    [129]L.C.Davis.Polarization Forces and Conductivity Effects in Electrorheological Fluids[J].Journal of Applied Physics,1992,72(4):1334-1340.
    [130]O.Wiener.Die Theorie des Mischkorpers fur das Feld der stationaren Stromung[J]K1.K(o|¨)nigl.Saechs.Ges.1912,32:509-514.
    [131]K.K.Karkkainen,A.H.Sihvola,K.I.Nikoskinen.Effective permittivity of mixtures:Numerical validation by the FDTD method[J]IEEE T.Geosci.Remote,2000,38(3):1303-1308.
    [132]G.J.Maxwell.Colour in Metal Glasses and Metallic Films[J].Philos.Trans.Roy.Soc.1904,203:385-391.
    [133]L.Zhou,W.Wen,P.Sheng.Ground States of Magnetorheological Fluids[J].Physical Review Letters,1998,81(7):1509-1512.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700