河南某地HIV-1耐药毒株的流行状况及新型耐药相关突变位点研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
HIV-1毒株的耐药性是艾滋病抗病毒治疗的主要障碍,阐明耐药毒株的流行状况及分子进化规律,对于认识HIV耐药的机制、指导抗病毒治疗具有重要的意义。本研究首先对国内使用的in-house HIV基因型耐药性检测方法进行了评价,然后利用经过评价的in-house耐药检测方法对2009年河南省某地的艾滋病患者进行了耐药毒株流行状况的横断面研究,分析了耐药发生情况及对治疗的影响,为改进治疗方案提供依据。引入并改进了HIV准种的单基因组扩增法(Single-Genome Amplification,SGA),并用这种方法分析了一名接受蛋白酶抑制剂治疗的艾滋病患者体内印地那韦耐药准种的发生、发展过程,确定了新型印地那韦耐药突变模式。最后,根据在河南HIV耐药分子流行病学研究的结果,对筛选出来的与抗病毒治疗失败相关的新型突变位点进行了鉴定,通过构建突变病毒及表型耐药性研究,分析这些突变位点对耐药的作用。
     第一部分In-house HIV-1基因型耐药性检测方法的评价
     目的:评价国内建立并广泛使用的in-house HIV-1基因型耐药检测方法的准确性与敏感性。方法:以美国FDA批准的HIV-1基因型耐药性检测系统(ViroSeq? v2.0,雅培)为参比,两种方法平行检测130份艾滋病患者的血浆样本,比较二者在耐药突变位点检测以及耐药性解释方面的一致性。结果:两种方法均得到耐药结果的样本有110例。在已知的14850个HIV-1耐药突变位点中,两种方法可同时检出99.34%(14752/14850)的耐药突变位点(kappa值为0.9488,P值<0.00001)。在对不同类型的突变位点检测中,两种方法对蛋白酶抑制剂耐药突变位点、逆转录酶抑制剂耐药突变位点检测的一致率分别为99.70%和99.01%(kappa值分别为0.9099和0.9521,P值均<0.00001)。两种方法出具耐药检测报告结果的一致率为94.55%(kappa值为0.6374,P值<0.0001),表明两种方法在药物敏感性评价方面具有高度一致性。两种方法共检测到34个ViroSeq?数据库(ViroSeq?软件v2.7)未收录的位点,这些突变位点在SHDB数据库中对耐药性有一定影响。其中2个突变位点(逆转录酶区的V179F和K238T)对耐药的影响较大,提示in-house方法的数据库(SHDB)与ViroSeq?相比具有一定优势。结论:In-house基因型耐药性检测方法与ViroSeq?基因型耐药性检测系统在耐药突变位点检测以及药物敏感性评价上具有高度一致性,是一种快速准确、性价比高的HIV-1基因型耐药检测方法。
     第二部分河南省某地HIV-1耐药毒株流行状况的横断面研究
     目的:了解我国河南省某县艾滋病患者的抗逆转录病毒治疗的效果、免疫重建的情况和耐药性发生情况,为改进抗病毒治疗方案、提高疗效提供依据。方法:对某县120名2003年或2004年开始接受抗病毒治疗的艾滋病患者进行横断面研究。对每一名患者进行了面对面访谈,了解患者的临床表现、服药依从性等情况。经患者知情同意,采集10ml抗凝血。通过测定患者的病毒载量和CD4+T计数评价抗病毒治疗效果和免疫恢复情况,采用in house方法对治疗失败的患者进行了基因型耐药性检测。结果:120名艾滋病患者使用了三种抗病毒治疗方案,分别为AZT/DDI/NVP组(n=102);AZT/3TC/NVP组(n=12);D4T/3TC/NVP组(n=6)。患者的CD4+T细胞计数平均值为377±218 cells/ml,中位数为367 cells/ml,其中CD4+T细胞计数大于350 cells/ml的患者有64例(53.3%)。33例患者的HIV-1病毒载量小于检测限,其余患者病毒载量平均值为4.09±1.10 lg拷贝/毫升(中位数为3.87 lg拷贝/毫升)。在114例具有病毒载量数据的患者中,67例(58.77%)患者治疗失败(病毒载量大于1000拷贝/毫升)。经Fisher精确检验,三种治疗方案治疗效果之间没有显著性差异(P=0.53)。对治疗失败的患者(病毒载量大于1000拷贝/毫升)进行基因型耐药性检测,共67份标本,得到58份(86.6%)基因型耐药结果。其中40份产生了逆转录酶抑制剂耐药性,治疗失败患者中的耐药发生率为69.0%(40/58);蛋白酶抑制剂耐药发生率为0.0%(0/58)。治疗失败患者中核苷类逆转录酶抑制剂的耐药发生率为53.4%(31/58);非核苷类逆转录酶抑制剂耐药发生率为67.2%(39/58)。核苷类逆转录酶抑制剂中,AZT的耐药发生率最高(39.66%,23/58),非核苷类逆转录酶抑制剂中,NVP的耐药发生率最高(67.24%,39/58)。分析耐药患者的耐药水平,发现患者产生的耐药性基本上为中高度耐药,并且具有交叉耐药性。M41L、T215Y是耐药发生率最高的NRTIs类突变; K103N、Y181C是耐药发生率最高的NNRTIs类突变。结论:河南某县目前艾滋病患者的抗病毒治疗效果和免疫恢复均不理想,耐药毒株流行严重,目前的治疗方案已不适用,建议改变治疗方案,换用蛋白酶抑制剂。
     第三部分新型HIV-1耐药相关突变位点的鉴定
     由于HIV-1的流行毒株亚型不同、抗病毒治疗模式不同及长期的病毒/宿主/药物相互作用,新型HIV耐药相关突变位点不断被发现。逆转录酶是抗病毒药物最重要的靶点,已经鉴定了很多对药物敏感性影响非常大的突变位点,但这些突变位点主要位于具有催化活性的聚合酶区,连接区的耐药突变位点近几年才被发现。目的:鉴定前期研究筛选出来的新型逆转录酶基因突变位点对于耐药的作用。方法:利用定点突变和质粒转染技术,构建含有相关突变的HIV-1 pNL4.3病毒株。通过测定3种药物(AZT、EFV和NVP)对突变型和野生型病毒株对的50%抑制浓度(50% inhibitory concentration,IC50),确定突变位点对药物敏感性的影响。结果:成功构建7个突变病毒株,分别含有HIV-1逆转录酶基因的D123E、V292I、K366R、T369A、T369V、A371V和I375V突变。(1)A371V和T369V可使病毒对AZT的IC50分别增加3.60和2.83倍,其它5个突变却在一定程度上提高病毒对AZT的敏感性,特别是T369A,使病毒对AZT的IC50值降低35.67倍。(2)T369V和A371V可以导致EFV的低度耐药,IC50分别增加4.55和2.87倍数,其它5个突变可提高病毒对EFV的敏感性,特别是I375V,单独出现时可使病毒的IC50由8.11nM降低到1.23nM,降低了6.7倍。(3)突变T369V可导致病毒对NVP的耐药性,IC50增加11.55倍。其它突变对NVP耐药性的影响很小。结论:A371V可以导致低度AZT耐药(FC = 3.60),T369V分别可以导致EFV、NVP的低度和中度耐药(FC = 4.55,11.55)。首次证实HIV-1连接区的T369位点对AZT、EFV和NVP耐药性的影响均较大,T369A突变可提高病毒对AZT和EFV的敏感性,而T369V突变却导致对AZT、EFV和NVP的耐药性。
     第四部分单基因组扩增法分析HIV-1印地那韦耐药准种的分子进化
     HIV-1在感染者体内以准种形式存在,耐药毒株与野生毒株共存,在不同的药物压力下,呈动态的进化和发展过程。认识HIV-1耐药准种在体内的进化路径是阐明耐药机制的基础。目的:利用单基因组扩增法(Single-Genome Amplification,SGA)分析一名长期服用逆转录酶抑制剂、刚刚将奈韦拉平(Nevirapine,NVP)改为印地那韦(Indinavir,IDV)的艾滋病患者(XLF)体内IDV耐药准种的产生及发展情况。方法:对患者进行连续随访,采集6份系列血浆标本,包括服用IDV之前的1次样本(XLF1)和服用IDV之后的5次(XLF2至XLF6)样本。利用SGA法得到病毒聚合酶区(包括逆转录酶和蛋白酶全长)的准种序列,将得到的序列提交斯坦福大学HIV-1耐药数据库,得到耐药信息。结果:从6份系列样本中共得到了149条蛋白酶全长和171条逆转录酶全长序列,所有序列均为B亚型。患者服用IDV之前,病毒的蛋白酶区只含一些多态性突变位点。服用IDV之后,含蛋白酶区多态性位点的病毒比例下降,而含有次级突变位点G73S的病毒开始上升,并成为优势毒株。随着治疗时间延长,G73S与M46I/L90M组成一个连锁的耐药突变模式——M46I/G73S/L90M,并逐渐取代G73S成为优势毒株。在第6次随访的样本中,97.9%的病毒含有M46I/G73S/L90M突变模式。由于一直服用逆转录酶抑制剂,患者体内存在高比例的对逆转录酶抑制剂高度耐药的病毒株,并没有随着IDV耐药株的出现和发展产生大的变化。结论:引入并改进了SGA的方法,利用SGA方法确定了一种相对稀有的IDV耐药突变模式,即在突变G73S的基础上加入突变M46I和L90M,形成M46I/G73S/L90M突变模式。
Drug resistance of HIV-1 is the main obstacle for antiretroviral therapy (ART). The information about the prevalence and molecular evolution of HIV-1 drug resistance is significant for understanding drug resistance mechanism and the supervision of ART. At the beginning, in-house genotyping method was evaluated. Then this method was used in the cross-sectional monitoring of drug resistance in Henan province. The prevalence of drug resistance and its impact on ART were analyzed and some advices about ART were provided. Combined with the information about the HIV-1 drug resistance epidemiology in Henan province, some new mutations associated with ART failure were screened and viruses with these mutations were constructed by site-directed mutagenesis and transfection strategies. And the impacts of these mutated viruses on antiretroviral drugs were measured by phenotypic resistance test. At last, a new method for the analysis of quasispecies drug resistance was successfully constructed. Single-Genome Amplification (SGA) was used to analyze the molecular evolution of Indinavir (IDV) drug resistance in one patient, and the new IDV resistance mutation pattern was identified.
     PartⅠEvaluation of an in-house method for HIV-1 genotyping resistance test used in China
     Objective: Evaluating the sensitivity and accuracy characteristics of an in-house genotypic resistance system widely used in China. Methods: This in-house method was evaluated by comparing with an US FDA-approved genotyping system, ViroSeq? v2.0 (Abbott, Switzerland). The characteristics of the detection and interpretation of drug resistance mutations were validated through drawing a parallel between these two tests in 130 plasma samples. Results: Out of the 14850 mutations detected, 14752 (99.34%) mutations was concordant between these two methods (kappa value was 0.9488; P value was less than 0.00001). Through the comparison between these two methods, the rates of concordance in protease inhibitors-, reverse transcriptase inhibitors-resistance mutations were 99.70% and 99.01% respectively, and kappa values were 0.9099 and 0.9521 respectively (P values were all less than 0.00001). The comparison of drug resistance reports showed similar results (Kappa value was 0.6374, P value was less than 0.0001), suggesting there was high concordance between these two tests in drug resistance mutation interpretation. There were 34 mutations excluded from ViroSeq? drug resistance mutation database (ViroSeq? software v2.7) which were detected by one or both tests. Two mutations, V179F and K238T in RT region, had significance in drug resistance, indicating the database used by in-house assay was superior to ViroSeq?. Conclusions: The in-house genotyping system is an accurate, cost-effective method and had high concordance with commercial ViroSeq? genotyping system in the detection and interpretation of drug resistance mutations.
     PartⅡCross-sectional monitoring of the prevalence of drug resistance in Henan province
     Objective: The impact of current treatment regimens were investigated through this cross-sectional monitoring of drug resistance in Henan province, such as the treatment efficacy, immune system rebuilding and the prevalence of drug resistance variants, which could provide evidence to improve treatment regimen. Methods: This cross-sectional study included 120 HIV-1 infected patients who began to ART from 2003 or 2004. The information of patients’clinical manifestation and drug adherence was obtained through face to face review. All patients’CD4+ T cells counts and HIV-1 viral loads were measured to evalutate the ART efficacy and immune rebuilding, and in-house drug resistance test was performed in treatment-failure patients. Results: There were three ART regimens used in these patients, AZT/DDI/NVP group (n=102), AZT/3TC/NVP group (n=12), D4T/3TC/NVP group (n=6). The average of CD4+ T cell counts was 377±218 cells/ml and the median was 367 cells/ml, and 64 (53.3%) patients’CD4+ T cell counts were higher than 350 cells/ml. Out of 114 patients with viral load data, 33 patients’viral loads were less than 50 copies/ml, and the remaining patients’viral loads had an average of 4.09±1.10 lg copies/ml (the median was 3.87 lg copies/ml). Effective viral inhibition (viral load is less than 1000 copies/ml) was found in 47 patients (41.23%). No statistics significance was found among these three ART regimens’efficacies (P=0.53) through Fisher Exact test. In treatment failure patients, the ratio of reverse transcriptase inhibitors (RTIs) resistance was 69.0% (40/58), and there was no protease inhibitors (PIs) resistance variants. The ratio of nucleoside reverse transcriptase inhibitors (NRTIs) resistance and non-nucleoside reverse transcriptase inhibitors (NNRTIs) resistance were 53.4% (31/58) and 67.2% (39/58), respectively. NVP had the highest drug resistance ratio (67.24%, 39/58) in these NNRTIs used in these patients, and AZT was the highest in NRTIs (53.4%, 31/58). In the patients who had drug resistant variants, variants which showed high- and intermediate-level resistance were much more than those with low-level resistance, indicating variants existed in treatment failure patients were mostly high- and intermediate-level and had cross-drug resistance. M41L and T215Y in RT region were the most prevalence NRTIs mutations; K103N and Y181C were the most prevalence NNRTIs mutations. Conclusions: The treatment regimens currently used in these patients were not suitable, because these regimens did not gain realistic antiretroviral efficacy. Drug resistance variants existed in most treatment failure patients, suggesting protease inhibitors should be involved in new regimens.
     PartⅢIdentification of new drug resistance associated HIV-1 mutations
     Because of the prevalence of different HIV-1 subtypes, ART and the interaction among virus, host and drugs, more and more drug resistance mutations were identified. Reverse transcriptase (RT) is the most important target for ART, and many mutations which had significance in drug resistance had been reported and applied for drug resistance detection and monitoring. But almost all of mutations are located in the polymerase domain of RT; the mutations in ligation domain are rare. Objective: Some new selected RT mutations’impact on drug resistance was analyzed. Methods: The mutated pNL4.3 viruses were constructed by site-directed mutagenesis and transfection strategies. The 50% inhibitory concentration (IC50) change folds of each mutated virus were measured through the comparison of the wild and mutated viruses. Results: All 7 mutated pNL4.3 viruses were constructed successfully, and the mutations were D123E, V292I, K366R, T369A, T369V, A371V and I375V in RT region respectively. (1) Mutations A371V and T369V in RT could confer resistance to AZT, and the IC50 change folds of variants were 3.60 and 2.83 respectively. But the other 5 mutations decreased the IC50 of AZT, especially mutation T369A which decreased the IC50 by 35.67 times. (2) Mutation A371V and T369V could increase the EFV IC50, and the change folds were 4.55 and 2.87 respectively. The other 5 mutated viruses increased the susceptibility of virus to EFV, especially the I375V mutation. When I375V mutation occurred alone, the IC50 of EFV decreased to 1.23 nM while wild virus was 8.11 nM. (3) Mutation T369V conferred resistance to NVP by increasing IC50 by 11.55 times, while other 6 mutations had no impact on NVP susceptibility. Conclusions: Mutation A371V in RT region could cause low-level resistance to AZT (IC50 change fold was 3.60). T369V could cause low- and intermidiate-level resistance to EFV and NVP respectively (IC50 change fold were 4.55 and 11.55 respectively). The impact of mutations at codon 369 in RT ligation domain on AZT, EFV and NVP susceptibility was confirmed for the first time. T369A mutation could increase the susceptibility to AZT and EFV, while T369V resulted in the resistance to AZT, EFV and NVP.
     PartⅣAnalysis of HIV-1 quasispecies evolution of Indinavir resistance by Single-Genome Amplification
     HIV-1 exists in vivo as quasispecies, and wild variants and resistanct variants coexist. And their proportion exhibit dynamic evolution and development during the selection pressure of drugs. Understanding the molecular evolution process is fundamental to analyzing the mechanism of drug resistance. Objective: The molecular evolution of drug resistance in one patient was analyzed. This patient had received reverse transcriptase inhibitors (RTIs) for a long time and recently replaced Nevirapine (NVP) with Indinavir (IDV). Methods: The patient, XLF, was followed-up six times successively. The viral populations were amplified and sequenced by single-genome amplification (SGA). All the sequences were submitted to Stanford HIV Drug Resistance Database (SHDB) for the analysis of genotypic drug resistance. Results: 149 entire protease and 171 entire reverse transcriptase sequences were obtained from these samples, and all sequences were identified as subtype B. Before the patient received Indinavir, the viral population only had some polymorphisms in the protease sequences. After the patient began Indinavir treatment, the variants carrying polymorphisms declined while variants carrying the secondary mutation G73S gained an advantage. As therapy was prolonged, G73S was combined with M46I/L90M to form a resistance pattern M46I/G73S/L90M, which then became the dominant population. 97.9% of variants had the M46I/G73S/L90M pattern at XLF6. During the emergence of protease inhibitors resistance, reverse transcriptase inhibitors resistance always maintained at high levels. Conclusion: Indinavir-resistance evolution was observed by single-genome amplification. During the course of changing the regimen to incorporate Indinavir, the G73S mutation occurred and was combined with M46I/L90M.
引文
[1] Prusiner SB. Discovering the Cause of AIDS. Science 2002;298(29):1726.
    [2] AIDS epidemic update : November 2009. [cited; Available from: http://www.unaids.org/
    [3] Siliciano RF. Scientific rationale for antiretroviral therapy in 2005: viral reservoirs and resistance evolution. Topics in HIV Medicine 2005;13(3):96-100.
    [4] Mansky LM, Temin HM. Lower in vivo mutation rate of Human Immunodeficiency Virus type 1 than that predicted from the fidelity of purified reverse transcriptase. J Virol 1995;69(8):5087-94.
    [5] Larder BA, Kemp SD. Multiple mutations in HIV-1 reverse transcriptase confer high-level resistance to zidovudine (AZT). Science 1989;246(4934):1155-8.
    [6] Hsu M, Inouye P, Rezende L, et al. Higher fidelity of RNA-dependent DNA mispair extension by M184V drug-resistant than wild-type reverse transcriptase of human immunodeficiency virus type 1. Nucleic Acids Res 1997;25(22):4532-6.
    [7] Rezende LF, Drosopoulos WC, Prasad VR. The influence of 3TC resistance mutation M184I on the fidelity and error specificity of human immunodeficiency virus type 1 reverse transcriptase. Nucleic Acids Res 1998;26(12):3066-72.
    [8] Quan Y, Gu Z, Li X, Liang C, Parniak MA, Wainberg MA. Endogenous reverse transcriptase assays reveal synergy between combinations of the M184V and other drug resistance-conferring mutations in interactions with nucleoside analog triphosphates. J Mol Biol 1998;277:237-47.
    [9] Wilson JE, Aulabaughi A, Caligani B, et al. Human Immunodeficiency Virus type-1 reverse transcriptase. The Journal of Biological Chemistry 1996;271(23):13656-62.
    [10] Quan Y, Gu Z, Li X, Li Z, Morrow CD, Wainberg MA. Endogenous reverse transcription assays reveal high-level resistance to the triphosphate of (2)29-dideoxy-39-thiacytidine by mutated M184V Human Immunodeficiency Virus type 1. J Virol 1996;70(8):5642-5.
    [11] Zaccarelli M, Perno CF, Forbici F, et al. Q151M-mediated multinucleoside resistance: prevalence, risk factors, and response to salvage therapy. Clin Infect Dis 2004;38:433-7.
    [12] Domaoal RA, Demeter LM. Structural and biochemical effects of human immunodeficiency virus mutants resistant to non-nucleoside reverse transcriptase inhibitors. The International Journal of Biochemistry & Cell Biology 2004;36:1735-51.
    [13] Shafer RW, Jung DR, Betts BJ. Human immunodeficiency virus type 1 reverse transcriptase and protease mutation search engine for queries. Nat Med 2000;6(11):1290-2.
    [14] Miller V. Resistance to protease inhibitors. J Acquir Immune Defic Syndr 2001;26:S34-S50.
    [15] Bally F, Martinez R, Peters S, Sudre P, Telenti A. Polymorphism of HIV type 1 Gag p7/p1 and p1/p6 cleavage sites: clinical significance and implications for resistance to protease inhibitors. AIDS Res Hum Retroviruses 2000;16(13):1209-13.
    [16] Maguire MF, Guinea R, Griffin P, et al. Changes in Human Immunodeficiency Virus type 1 Gag at positions L449 and P453 are linked to I50V protease mutants in vivo and cause reduction of sensitivity to amprenavir and improved viral fitness in vitro. J Virol 2002;76(15):7398-406.
    [17] Mink M, Mosier SM, Janumpalli S, et al. Impact of Human Immunodeficiency Virus type 1 gp41 amino acid substitutions selected during Enfuvirtide treatment on gp41 binding and antiviral potency of Enfuvirtide in vitro. J Virol 2005;79(19):12447-54.
    [18] Reeves JD, Lee F-H, Miamidian JL, Jabara CB, Juntilla MM, Doms RW. Efuvirtide resistance mutations: impact on Human Immunodeficiency Virus envelope function, entry inhibitor sensitivity, and virus neutralization. J Virol 2005;79(8):4991-9.
    [19] Melby T, Sista P, Demasi R, et al. Characterization of envelope glycoprotein gp41 genotype and phenotypic susceptibility to Enfuvirtide at baseline and on treatment in the phase III clinical trials TORO-1 and TORO-2. AIDS Res Hum Retroviruses 2006;22(5):375-85.
    [20] Sayana S, Khanlou H. Maraviroc: a new CCR5 antagonist. Expert review of anti-infective therapy 2008;7(1):9-19.
    [21] Westby M, Smith-Burchnell C, Mori J, et al. Reduced maximal inhibition in phenotypic susceptibility assays indicates that viral strains resistant to the CCR5 antagonist Maraviroc utilize inhibitor-bound receptor for entry. J Virol 2007;81(5):2359-71.
    [22] Richman DD, Morton SC, Wrin T, et al. The prevalence of antiretroviral drug resistance in the United States. AIDS 2004;18(10):1393-401.
    [23] Zhang M, Han X-x, Cui W-g, et al. The impacts of current antiretroviral therapy regimens on Chinese AIDS patients and their implications for HIV-1 drug resistance mutation. Jpn J Infect Dis 2008;61:361-5.
    [24] Kinai E, Hanabusa H, Kato S. Prediction of the efficacy of antiviral therapy for Hepatitis C Virus infection by an ultrasensitive RT-PCR assay. J Med Virol 2007;79:1113-9.
    [25] Kondo M, Sudo K, Tanaka R, et al. Quantitation of HIV-1 group M proviral DNA using TaqMan MGB real-time PCR. J Virol Methods 2009;157:141-6.
    [26] Alexander DC. A rapid method for determining clone frequency in complex populations using PCR and the Poisson distribution. Nucleic Acids Res 1990;18(24):7453-4.
    [27] Simmonds P, Balfe P, Peutherer JF, Ludlam CA, Bishop JO, Brown AJ. Human immunodeficiency virus-infected individuals contain provirus in small numbers of peripheral mononuclear cells and at low copy numbers. J Virol 1990 1990 February;64(2):864-72.
    [28] Sykes PJ, Neoh SH, Brisco MJ, Hughes E, Condon J, Morley AA. Quantitation of targets for PCR by use of limiting dilution. Biotechniques 1992 1992 Sep;13(3):444-9.
    [29] Nissley DV, Boyer PL, Garfinkel DJ, Hughes SH, Strathern JN. Hybrid Ty1/HIV-1 elements used to detect inhibitors and monitor the activity of HIV-1 reverse transcriptase. Proceedings of the National Academy Sciences of the United States of America 1998;95:13901-10.
    [30] Nissley DV, Halvas EK, Hoppman NL, Garfinkel DJ, Mellors JW, Strathern JN. Sensitive phenotypic detection of minor drug-resistant Human Immunodeficiency Virus type 1 reverse transcriptase variants. J Clin Microbiol 2005;43(11):5696-704.
    [31] García-Lerma JG, Heneine W. Rapid biochemical assays for phenotypic drug resistance testing of HIV-1. J Antimicrob Chemother 2002;50:771-4.
    [32] Qari SH, Respess R, Weinstock H, et al. Comparative analysis of two commercial phenotypic assays for drug susceptibility testing of Human Immunodeficiency Virus type 1. J Clin Microbiol 2002;40(1):31-5.
    [33] Nikolenko GN, Palmer S, Maldarelli F, Mellors JW, Coffin JM, Pathak VK. Mechanism for nucleoside analog-mediated abrogation of HIV-1 replication: Balance between RNase H activity and nucleotide excision. Proc Natl Acad Sci U S A 2005 February 8, 2005;102(6):2093-8.
    [34] Meyer PR, Matsuura SE, Mian AM, So AG, Scott WA. A mechanism of AZT resistance: an increase in nucleotide-dependent primer unblocking by mutant HIV-1 reverse transcriptase. Mol Cell 1999;4:35-43.
    [35] Bochner R, Duvshani A, Adir N, Hizi A. Mutagenesis of Gln294 of the reverse transcriptase of human immunodeficiency virus type-2 and its effects on the ribonuclease H activity. FEBS Lett 2008;582:2799-805.
    [36] Sevilya Z, Loya S, Adir N, Hizi A. The ribonuclease H activity of the reverse transcriptases of human immunodeficiency viruses type 1 and type 2 is modulated by residue 294 of the small subunit. Nucleic Acids Res 2003;31(5):1481-7.
    [37] Cen S, Niu M, Kleiman L. The connection domain in reverse transcriptase facilitates the in vivo annealing of tRNALys3 to HIV-1 genomic RNA. Retrovirology 2004;1(33):6.
    [38] Abram ME, Sarafianos SG, Parniak MA. The mutation T477A in HIV-1 reverse transcriptase (RT) restores normal proteolytic processing of RT in virus with Gag-Pol mutated in the p51-RNH cleavage site. Retrovirology 2010;7(6):9.
    [39] Eshleman SH, Crutcher G, Petrauskene O, et al. Sensitivity and specificity of the ViroSeq HumanImmunodeficiency Virus type 1 (HIV-1) genotyping system for detection of HIV-1 drug resistance mutations by use of an ABI PRISM 3100 genetic analyzer. Jounal of Clinical Microbiology 2005 Feb. 2005;43(2):813-7.
    [40] Eshleman SH, Hackett J, Swanson P, et al. Performance of the Celera Diagnostics ViroSeq HIV-1 genotyping system for sequence-based analysis of diverse Human Immunodeficiency Virus type 1 strains. J Clin Microbiol 2004 June 2004;42(6):2711-7.
    [41] Hallack R, Doherty LE, Wethers JA, Parker MM. Evaluation of dried blood spot specimens for HIV-1 drug-resistance testing using the Trugene? HIV-1 genotyping assay. J Clin Virol 2008;41:283-7.
    [42] Ribas SG, Heyndrickx L, Ondoa P, Fransen K. Performance evaluation of the two protease sequencing primers of the Trugene HIV-1 genotyping kit. J Virol Methods 2006;135:137-42.
    [43] Jordan MR, Bennett DE, Bertagnolio S, Gilks CF, Sutherland D. World Health Organization surveys to monitor HIV drug resistance prevention and associated factors in sentinel antiretroviral treatment sites. Antiviral Therapy 2008;13(sup12):15-23.
    [44] Chen JHK, Wong KH, Chan K, et al. Evaluation of an in-house genotyping resistance test for HIV-1 drug resistance interpretation and genotyping. J Clin Virol 2007;39:125-31.
    [45] Saravanan S, Vidya M, Balakrishanan P, et al. Evaluation of two human immunodeficiency virus-1 genotyping systems: ViroSeqTM 2.0 and an in-house method. J Virol Methods 2009;159:211-6.
    [46]胡良平,刘惠刚,李子建,毛家都.检验医学科研设计与统计分析.人民军医出版社, 2004,第一版:1-409.
    [47]胡良平.口腔医学科研设计与统计分析.人民军医出版社, 2007,第一版:1-342.
    [48] Kuritzkes DR. Preventing and managing antiretroviral drug resistance. Aids Patient Care STDS 2004 May 2004;18(5):259-73.
    [49] Hirsch MS, Günthard HF, Schapiro JM, et al. Antiretroviral drug resistance testing in adult HIV-1 infection: 2008 recommendations of an International AIDS Society-USA panel. Topics in HIV Medicine 2008;16(3):266-75.
    [50] The EuroGuidelines Group for HIV Resistance. Clinical and laboratory guidelines for the use of HIV-1 drug resistance testing as part of treatment management: recommendations for the European setting. AIDS 2001;15(3):309-20.
    [51] Feng LG, Wang MJ, Han HM, XB D, Y. J. Drug resistance among recent HIV-1 infected men who have sex with men in Chongqing municipality of China. Zhonghua Liu Xing Bing Xue Za Zhi 2008;29(5):455-8.
    [52] Department of Health and Human Services. Panel on antiretroviral guidelines for adults and adolescents. Guidelines for the use of antiretroviral agents in HIV-1-infected adults and adolescents. 2009 December 1, 2009 [cited; 161]. Available from: http://www.aidsinfo.nih.gov/ContentFiles/AdultandAdolescentGL.pdf
    [53]刘德纯.艾滋病临床病理学.安徽科学技术出版社, 2002,第一版:1-479.
    [54] Riddler SA, Haubrich R, DiRienzo AG, et al. Class-sparing regimens for initial treatment of HIV-1 infection. The New England Journal of Medicine 2008;358(20):2095-106.
    [55] Han XX, Zhang M, Cui WG, et al. Efficacy of anti-HIV treatment and drug-resistance mutations in some parts of China. Zhonghua Yi Xue Za Zhi 2005;85(111):760-4.
    [56] Han X, Zhang M, Dai D, et al. Genotypic resistance mutations to antiretroviral drugs in treatment-naive HIV/AIDS patients living in Liaoning Province, China: baseline prevalence and subtype-specific difference. AIDS Res Hum Retroviruses 2007;23(3):357-64.
    [57] Liao L, Xing H, Li X, et al. Genotypic analysis of the protease and reverse transcriptase of HIV type 1 isolates from recently infected injecting drug users in western China. AIDS Res Hum Retroviruses 2007;23(8):1062-5.
    [58] Chen X, Xing H, He JM, et al. Study on the threshold of HIV-1 drug resistance in Hunan province. Zhonghua Liu Xing Bing Xue Za Zhi 2008;29(8):787-9.
    [59] Lan Y-C, Elbeik T, Dileanis J, et al. Molecular epidemiology of HIV-1 subtypes and drug resistant strainsin Taiwan. J Med Virol 2008;80:183-91.
    [60] Li J-y, Li H-p, Li L, et al. Prevalence and evolution of drug resistance HIV-1 variants in Henan, China. Cell Res 2005;15(11-12):843-9.
    [61] Zhong P, Pan Q, Ning Z, et al. Genetic diversity and drug resistance of human immunodeficiency virus type 1 (HIV-1) strains circulating in Shanghai. AIDS Res Hum Retroviruses 2007;23(7):847-56.
    [62] Liu J, Yue J, Wu S, Yan Y-s. Polymorphisms and drug resistance analysis of HIV-1 CRF01_AE strains circulating in Fujian province, China. Archieves of Virology 2007;152:1799-805.
    [63] Luo M, Liu H, Zhuang K, et al. Prevalence of drug-resistant HIV-1 in rural areas of Hubei province in the People’s Republic of China. Journal of Acquired Immunodeficiency Syndrome 2009;50(1):1-8.
    [64] Liu L, Lu H-z, Henry M, Tamale C. Polymorphism and drug selected mutations of reverse transcriptase gene in 102 HIV-1 infected patients living in China. J Med Virol 2007;79:1593-9.
    [65] Zelina S, Sheen C-W, Radzio J, Mellors JW, Sluis-Cremer N. Mechanisms by which the G333D mutation in Human Immunodeficiency Virus type 1 reverse transcriptase facilitates dual resistance to zidovudine and lamivudine. Antimicrob Agents Chemother 2008;52(1):157-63.
    [66] Yap S-H, Sheen C-W, Fahey J, et al. N348I in the connection domain of HIV-1 reverse transcriptase confers zidovudine and nevirapine resistance. Plos Medicine 2007;4(12):1887-99.
    [67] Hachiya A, Kodama EN, Sarafianos SG, et al. Amino acid mutation N348I in the connection subdomain of Human Immunodeficiency Virus type 1 reverse transcriptase confers multiclass resistance to nucleoside and nonnucleoside reverse transcriptase inhibitors. J Virol 2008;82(7):3261-70.
    [68] Radzio J, Yap S-H, Tachedjian G, Sluis-Cremer N. N348I in reverse transcriptase provides a genetic pathway for HIV-1 to select thymidine analogue mutations and mutations antagonistic to thymidine analogue mutations. AIDS 2010;24(5):659-67.
    [69] Ehteshami M, Beilhartz GL, Scarth BJ, et al. Connection domain mutations N348I and A360V in HIV-1 reverse transcriptase enhance resistance to 3'-azido-3'-deoxythymidine through both RNase H-dependent and -independent mechanisms. The Journal of Biological Chemistry 2008 August 8, 2008;283(32):22222-32.
    [70] Brehm JH, Koontz D, Meteer JD, Pathak V, Sluis-Cremer N, Mellors JW. Selection of mutations in the connection and RNase H domains of Human Immunodeficiency Virus type 1 reverse transcriptase that increase resistance to 3'-azido-3'-dideoxythymidine. J Virol 2007;81(15):7852-9.
    [71] Roquebert B, Marcelin A-G. The involvement of HIV-1 RNase H in resistance to nucleoside analogues. J Antimicrob Chemother 2008;61:973-5.
    [72] Delviks-Frankenberry KA, Nikolenko GN, Maldarelli F, Hase S, Takebe Y, Pathak VK. Subtype-specific differences in the Human Immunodeficiency Virus type 1 reverse transcriptase connection subdomain of CRF01_AE are associated with higher levels of resistance to 3'-azido-3'-deoxythymidine. J Virol 2009;83(17):8502-13.
    [73] Rhee S-Y, Kantor R, Katzenstein DA, et al. HIV-1 pol mutation frequency by subtype and treatment experience: extension of the HIVseq program to seven non-B subtypes. AIDS 2006;20(5):643-51.
    [74] Nikolenko GN, Delviks-Frankenberry KA, Palmer S, et al. Mutations in the connection domain of HIV-1 reverse transcriptase increase 3'-azido-3'-deoxythymidine resistance. Proc Natl Acad Sci U S A 2007;104(1):317-22.
    [75] Roquebert B, Wirden M, Simon A, et al. Relationship between mutations in HIV-1 RNase H domain and nucleoside reverse transcriptase inhibitors resistance mutations in na?ve and pre-treated HIV infected patients. J Med Virol 2007;79:207-11.
    [76] Cane PA, Green H, Fearnhill E, Dunn D. Identification of accessory mutations associated with high-level resistance in HIV-1 reverse transcriptase. AIDS 2007;21(4):447-55.
    [77] Garriga C, Pérez-Elías MJ, Delgado R, et al. HIV-1 reverse transcriptase thumb subdomain polymorphisms associated with virological failure to nucleoside drug combinations. J Antimicrob Chemother2009;64:251-8.
    [78] Ntemgwa M, Wainberg MA, Oliveira M, et al. Variations in reverse transcriptase and RNase H domain mutations in Human Immunodeficiency Virus type 1 clinical isolates are associated with divergent phenotypic resistance to zidovudine. Antimicrob Agents Chemother 2007;51(11):3861-9.
    [79] Delviks-Frankenberry KA, Nikolenko GN, Barr R, Pathak VK. Mutations in Human Immunodeficiency Virus type 1 RNase H primer grip enhance 3'-azido-3'-deoxythymidine resistance. J Virol 2007;81(13):6837-45.
    [80] Ehteshami M, G?tte M. Effects of mutations in the connection and RNase H domains of HIV-1 reverse transcriptase on drug susceptibility. AIDS Reviews 2008;10:224-35.
    [81] Perelson AS, Neumann AU, Markowitz M, Leonard JM, Ho DD. HIV-1 dynamics in vivo: viron clearance rate, infected cell life-span, and viral generation time. Science 1996 Mar 15 1996;271(5255):1582-6.
    [82] Preston BD, Poiesz BJ, Loeb LA. Fidelity of HIV-1 reverse transcriptase. Science 1988;242:1168-71.
    [83] Roberts JD, Bebenek K, Kunkel TA. The accuracy of reverse transcriptase from HIV-1. Science 1988;242:1171-3.
    [84] Coffin JM. HIV population dynamics in vivo: implications for genetic variation, pathogenesis, and therapy. Science 1995;267:483-9.
    [85] Chen Z, Li Y, Schock HB, Hall D, Chen E, Kuo LC. Three-dimensional structure of a mutant HIV-1 protease displaying cross-resistance to all protease inhibitors in clinical trials. The Journal of Biological Chemistry 1995;270(37):21433-6.
    [86] Ridky TW, Kikonyogo A, Leis J, et al. Drug-Resistant HIV-1 Proteases identify enzyme residues important for substrate selection and catalytic rate. Biochemistry (Mosc) 1998;37(39):13835-45.
    [87] Kaplan AH, Michael SF, Wehbie RS, et al. Selection of multiple human immunodeficiency virus type 1 variants that encode viral proteases with decreased sensitivity to an inhibitor of the viral protease. Proc Natl Acad Sci U S A 1994 June 1994;91:5597-601.
    [88] Gunthard HF, Wong JK, Ignacio CC, Havlir DV, Richman DD. Comparative performance of high-density oligonucleotide sequencing and dideoxynucleotide sequencing of HIV type 1 pol from clinical samples. AIDS Res Hum Retroviruses 1998;14:869-76.
    [89] Palmer S, Kearney M, Maldarelli F, et al. Multiple, linked Human Immunodeficiency Virus type 1 drug resistance mutations in treatment-experienced patients are missed by standard genotype analysis. J Clin Microbiol 2005 Jan. 2005;43(1):406-13.
    [90] Salazar-Gonzalez JF, Bailes E, Pham KT, et al. Deciphering Human Immunodeficiency Virus type 1 transmission and early envelope diversification by Single Genome Amplification and Sequencing. J Virol 2008 Apr. 2008;82(8):3952-70.
    [91] Schuurman R, Brambilla D, Groot Td, et al. Underestimation of HIV type 1 drug resistance mutations: results from the ENVA-2 genotyping proficiency program. AIDS Res Hum Retroviruses 2002;18:243-8.
    [92] Dybul M, Daucher M, Jensen MA, et al. Genetic characterization of rebounding Human Immunodeficiency Virus type 1 in plasma during multiple interruptions of highly active antiretroviral therapy. J Virol 2003;77(5):3229-37.
    [93] Rousseau CM, Birditt BA, McKay AR, et al. Large-scale amplification, cloning and sequencing of near full-length HIV-1 subtype C genomes. J Virol Methods 2006;136:118-25.
    [94] Clavel F, Hance AJ. HIV drug resistance. The New England Journal of Medicine 2004 march 4, 2004;350(10):1023-35.
    [95] Condra JH, Holder DJ, Schleif WA, et al. Genetic correlates of in vivo viral resistance to Indinavir, a Human Immunodeficiency Virus type 1 protease inhibitor. J Virol 1996 Dec 1996;70(12):8270-6.
    [96] Descamps D, Joly V, Flandre P, et al. Genotypic resistance analyses in nucleoside-pretreated patients failing an indinavir containing regimen: results from a randomized comparative trial: (Novavir ANRS 073). J Clin Virol 2005;33:99-103.
    [97] Bélec L, Piketty C, Si-Mohamed A, et al. High levels of drug-resistant human immunodeficiency virus variants in patients exhibiting increasing CD4+ T cell counts despite virologic failure of protease inhibitor-containing antiretroviral combination therapy. The Journal of Infectious Diseases 2000;181:1808-12.
    [98] Rhee SY, Taylor J, Wadhera G, Ben-Hur A, Brutlag DL, Shafer RW. Genotypic predictors of human immunodeficiency virus type 1 drug resistance. Proc Natl Acad Sci U S A 2006;103:17355-60.
    [99] Saah AJ, Haas DW, DiNubile MJ, et al. Treatment with Indinavir, Efavirenz, and Adefovir after failure of Nelfinavir therapy. The Journal of Infectious Diseases 2003;187(7):1157-62.
    [1] Coffin JM. HIV population dynamics in vivo: implications for genetic variation, pathogenesis, and therapy. Science 1995;267:483-9.
    [2] Mansky LM, Temin. HM. Lower in vivo mutation rate of human immunodeficiency virus type 1 than that predicted from the fidelity of purified reverse transcriptase. J Virol 1995;69:5087-94.
    [3] Preston BD, B. J. Poiesz, Loeb LA. Fidelity of HIV-1 reverse transcriptase. Science 1988;242:1168-71.
    [4] Roberts JD, Bebenek K, Kunkel TA. The accuracy of reverse transcriptase from HIV-1. Science 1988;242:1171-3.
    [5] Clavel F, Hance AJ. HIV drug resistance. The New England Journal of Medicine 2004;350(10):1023-35.
    [6] Zhang F, Haberer J, Wei H, et al. Drug resistance in the Chinese national pediatric highly active antiretroviral therapy cohort: implications for paediatric treatment in the developing world. Int J STD AIDS 2009;20:406-9.
    [7] Liu L, Lu H-z, Henry M, Tamale C. Polymorphism and drug selected mutations of reverse transcriptase gene in 102 HIV-1 infected patients living in China. J Med Virol 2007;79:1593-9.
    [8] Zhang M, Han X-x, Cui W-g, et al. The impacts of current antiretroviral therapy regimens on Chinese AIDS patients and their implications for HIV-1 drug resistance mutation. Jpn J Infect Dis 2008;61:361-5.
    [9] Zhong P, Pan Q, Ning Z, et al. Genetic diversity and drug resistance of human immunodeficiency virus type 1 (HIV-1) strains circulating in Shanghai. AIDS Res Hum Retroviruses 2007;23(7):847-56.
    [10] Han X, Zhang M, Dai D, et al. Genotypic resistance mutations to antiretroviral drugs in treatment-naive HIV/AIDS patients living in Liaoning province, China: baseline prevalence and subtype-specific difference. AIDS Res Hum Retroviruses 2007;23(3):357-64.
    [11] Little SJ, Holte S, Jean-Pierrerouty, et al. Antiretroviral-drug resistance among patients recently infectedwith HIV. The New England Journal of Medicine 2002;347(6):385-94.
    [12] Marconi VC, Sunpath H, Lu Z, et al. Prevalence of HIV-1 drug resistance after failure of a first highly active antiretroviral therapy regimen in KwaZulu Natal, South Africa. Clin Infect Dis 2008 15 May;46:1589-97.
    [13] Zhong P, Kang L-y, Pan Q-c, et al. Identification and distribution of HIV type 1 genetic diversity and protease inhibitor resistance–associated mutations in Shanghai, P. R. China. J Acquir Immune Defic Syndr 2003;34(1):91-101.
    [14] Hirsch MS, Günthard HF, Schapiro JM, et al. Antiretroviral drug resistance testing in adult HIV-1 infection: 2008 recommendations of an International AIDS Society-USA panel. Topics in HIV Medicine 2008;16(3):266-85.
    [15] The EuroGuidelines Group for HIV Resistance. Clinical and laboratory guidelines for the use of HIV-1 drug resistance testing as part of treatment management: recommendations for the European setting. AIDS 2001;15(3):309-20.
    [16] Caride E, Brindeiro R, Hertogs K, et al. Drug-resistant reverse transcriptase genotyping and phenotyping of B and non-B Subtypes (F and A) of Human Immunodeficiency Virus type 1 found in Brazilian patients failing HAART. Virology Journal 2000;275:107-15.
    [17] Bocket L, Yazdanpanah Y, Ajana F, et al. Thymidine analogue mutations in antiretroviral-naive HIV-1 patients on triple therapy including either zidovudine or stavudine. J Antimicrob Chemother 2004;53:89-94.
    [18] Nora T, Charpentier C, Tenaillon O, Hoede C, Clavel F, Hance AJ. Contribution of recombination to the evolution of Human Immunodeficiency Viruses expressing resistance to antiretroviral treatment. J Virol 2007;81(14):7620-8.
    [19] Hallack R, Doherty LE, Wethers JA, Parker MM. Evaluation of dried blood spot specimens for HIV-1 drug-resistance testing using the Trugene? HIV-1 genotyping assay. J Clin Virol 2008;41:283-7.
    [20] Hirigoyen DL, Cartwright CP. Use of sequence data generated in the Bayer TruGene genotyping assay to recognize and characterize non-subtype-B Human Immunodeficiency Virus type 1 strains. J Clin Microbiol 2005;43(10):5263-71.
    [21] Grant RM, Kuritzkes DR, Johnson VA, et al. Accuracy of the TRUGENE HIV-1 genotyping kit. J Clin Microbiol 2003;41(4):1586-93.
    [22] Kuritzkes DR, Grant RM, Feorino P, et al. Performance characteristics of the TRUGENE HIV-1 Genotyping Kit and the Opengene DNA sequencing system. J Clin Microbiol 2003;41(4):1594-9.
    [23] Gale HB, Kan VL, Shinol RC. Performance of the TruGene Human Immunodeficiency Virus type 1 genotyping kit and OpenGene DNA sequencing system on clinical samples diluted to approximately 100 copies per milliliter. Clinical and Vaccine Immunology 2006;13(2):235-8.
    [24] Church JD, Jones D, Flys T, et al. Sensitivity of the ViroSeq HIV-1 genotyping system for detection of the K103N resistance mutation in HIV-1 subtypes A, C, and D. Journal of Molecular Diagnostics 2006 September 2006;8(4):430-2.
    [25] Eshleman SH, Crutcher G, Petrauskene O, et al. Sensitivity and specificity of the ViroSeq Human Immunodeficiency Virus type 1 (HIV-1) genotyping system for detection of HIV-1 drug resistance mutations by use of an ABI PRISM 3100 Genetic analyzer. J Clin Microbiol 2005;43(2):813-7.
    [26] Chen JHK, Wong KH, Chan K, et al. Evaluation of an in-house genotyping resistance test for HIV-1 drug resistance interpretation and genotyping. J Clin Virol 2007;39:125-31.
    [27] Eshleman SH, Hackett J, Swanson P, et al. Performance of the Celera diagnostics ViroSeq HIV-1 genotyping system for sequence-based analysis of diverse Human Immunodeficiency Virus type 1 strains. J Clin Microbiol 2004 June 2004;42(6):2711-7.
    [28] Saravanan S, Vidya M, Balakrishanan P, et al. Evaluation of two human immunodeficiency virus-1 genotyping systems: ViroSeqTM 2.0 and an in-house method. J Virol Methods 2009;159:211-6.
    [29] Günthard HF, Wong JK, Ignacio CC, et al. Human Immunodeficiency Virus replication and genotypicresistance in blood and lymph nodes after a year of potent antiretroviral therapy. J Virol 1998;72(3):2422-8.
    [30] Gonzalez R, Masquelier B, Fleury H, et al. Detection of Human Immunodeficiency Virus type 1 antiretroviral resistance mutations by High-Density DNA probe arrays. J Clin Microbiol 2004;42(7):2907-12.
    [31] Vahey M, Nau ME, Cooley JD, et al. Performance of the Affymetrix GeneChip HIV PRT 440 platform for antiretroviral drug resistance genotyping of Human Immunodeficiency Virus Type 1 clades and viral Isolates with length polymorphisms. J Clin Microbiol 1999;37(8):2533-7.
    [32] Sulaiman IM, Liu X, Frace M, et al. Evaluation of Affymetrix Severe Acute Respiratory Syndrome resequencing GeneChips in characterization of the genomes of two strains of Coronavirus infecting humans. Appl Environ Microbiol 2006;72(1):207-11.
    [33] Sulaiman IM, Tang K, Osborne J, Sammons S, Wohlhueter RM. GeneChip resequencing of the Smallpox virus genome can identify novel strains: a biodefense application. J Clin Microbiol 2007;45(2):358-63.
    [34] Parkin NT, Hellmann NS, Whitcomb JM, Kiss L, Chappey C, Petropoulos CJ. Natural variation of drug susceptibility in wild-type Human Immunodeficiency Virus type 1. Antimicrob Agents Chemother 2004;48(2):437-43.
    [35] Demarest JF, Amrine-Madsen H, Irlbeck DM, Kitrinos KM. Virologic failure in first-line Human Immunodeficiency Virus therapy with a CCR5 entry inhibitor, Aplaviroc, plus a fixed-dose combination of Lamivudine-Zidovudine: nucleoside reverse transcriptase inhibitor resistance regardless of envelope tropism. Antimicrob Agents Chemother 2009;53(3):1116-23.
    [36] Little SJ, Frost SDW, Wong JK, et al. Persistence of transmitted drug resistance among subjects with primary Human Immunodeficiency Virus infection. J Virol 2008;82(11):5510-8.
    [37] Jesus ED, Gottlieb MS, Gathe JC, Greenberg ML, Guittari CJ, Zolopa AR. Safety and efficacy of enfuvirtide in combination with Darunavir-Ritonavir and an optimized background regimen in treatment-experienced Human Immunodeficiency Virus-infected patients: the below the level of quantification study. Antimicrob Agents Chemother 2008;52(12):4315-9.
    [38] Salazar-Gonzalez JF, Bailes E, Pham KT, et al. Deciphering Human Immunodeficiency Virus type 1 transmission and early envelope diversification by single genome amplification and sequencing. J Virol 2008 Apr. 2008;82(8):3952-70.
    [39] Palmer S, Kearney M, Maldarelli F, et al. Multiple, linked Human Immunodeficiency Virus type 1 drug resistance mutations in treatment-experienced patients are missed by standard genotype analysis. J Clin Microbiol 2005 Jan. 2005;43(1):406-13.
    [40] Torti C, Pozniak A, Nelson M, Hertogs K, Gazzard BG. Distribution of K103N and/or Y181C HIV-1 mutations by exposure to zidovudine and non-nucleoside reverse transcriptase inhibitors. J Antimicrob Chemother 2001;48:113-6.
    [41] Tang YW, Huong JT-J, Lloyd RM, Spearman P, Haas DW. Comparison of Human Immunodeficiency Virus type 1 RNA sequence heterogeneity in cerebrospinal fluid and plasma. J Clin Microbiol 2000;38(12):4637-9.
    [42] Peduzzi C, Pierotti P, Venturi G, Romano L, Mazzotta F, Zazzi M. Performance of an in-house genotypic antiretroviral resistance assay in patients pretreated with multiple human immunodeficiency virus type 1 protease and reverse transcriptase inhibitors. J Clin Virol 2002;25:57-62.
    [43] BiléEC, Adjé-TouréC, Borget M-Y, et al. Performance of drug-resistance genotypic assays among HIV-1 infected patients with predominantly CRF02 AG strains of HIV-1 in Abidjan, C?te d’Ivoire. J Clin Virol 2005;32:60-6.
    [44] Resch W, Parkin N, Stuelke EL, Watkins T, Swanstrom R. A multiple-site-specific heteroduplex tracking assay as a tool for the study of viral population dynamics. Proc Natl Acad Sci U S A 2001;98(1):176-81.
    [45] Delwart EL, Pan H, Neumann A, Markowitz M. Rapid, transient changes at the env locus of plasma Human Immunodeficiency Virus type 1 populations during the emergence of protease inhibitor resistance.J Virol 1998;72(3):2416-21.
    [46] Watkins T, Resch W, Irlbeck D, Swanstrom R. Selection of high-level resistance to Human Immunodeficiency Virus type 1 protease inhibitors. Antimicrob Agents Chemother 2003;47(2):759-69.
    [47] Kapoor A, Jones M, Shafer RW, Rhee S-Y, Kazanjian P, Delwart EL. Sequencing-Based detection of low-frequency Human Immunodeficiency Virus type 1 drug-resistant mutants by an RNA/DNA Heteroduplex Generator-Tracking assay. J Virol 2004;78(13):7112-23.
    [48] Qui?ones-Mateu ME, Gao Y, Ball SC, Marozsan AJ, Abraha A, Arts EJ. In vitro intersubtype recombinants of Human Immunodeficiency Virus type 1: comparison to recent and circulating in vivo recombinant forms. J Virol 2002;76(19):9600-13.
    [49] Doukhan L, Delwart E. Population genetic analysis of the protease locus of Human Immunodeficiency Virus type 1 quasispecies undergoing drug selection, using a denaturing gradient-Heteroduplex Tracking assay. J Virol 2001;75(14):6729-36.
    [50] Troyer RM, Collins KR, Abraha A, et al. Changes in Human Immunodeficiency Virus type 1 fitness and genetic diversity during disease progression. J Virol 2005;79(14):9006-28.
    [51] Riddle TM, Shire NJ, Sherman MS, Franco KF, Sheppard HW, Nelson JAE. Sequential turnover of Human Immunodeficiency Virus type 1 env throughout the course of infection. J Virol 2006;80(21):10591-9.
    [52] Ngrenngarmlert W, Kwiek JJ, Kamwendo DD, et al. Measuring allelic heterogeneity in Plasmodium falciparum by a Heteroduplex Tracking assay. Am J Trop Med Hyg 2005;72(6):694-701.
    [53] Juliano JJ, Trottman P, Mwapasa V, Meshnick SR. Detection of the dihydrofolate reductase–164L mutation in Plasmodium falciparum infections from malawi by Heteroduplex Tracking assay. Am J Trop Med Hyg 2008;78(6):892-4.
    [54] Stuyver L, Wyseur A, Rombout A, et al. Line Probe assay for rapid detection of drug-selected mutations in the Human Immunodeficiency Virus type 1 reverse transcriptase gene. Antimicrob Agents Chemother 1997;41(2):284-91.
    [55] Descamps D, Calvez V, Collin G, et al. Line Probe assay for detection of Human Immunodeficiency Virus type 1 mutations conferring resistance to nucleoside inhibitors of reverse transcriptase: comparison with sequence analysis. J Clin Microbiol 1998;36(7):2143-5.
    [56] Stürmer M, Morgenstern B, Staszewski S, Doerr HW. Evaluation of the LiPA HIV-1 RT assay version 1: comparison of sequence and hybridization based genotyping systems. J Clin Virol 2002;25:S65-S72.
    [57] Landegren U, Kaiser R, Sanders J, Hood L. A ligase-mediated gene detection technique Science 1988;241(4869):1077-80.
    [58] Landegren U, Kaiser R, Caskey CT, Hood L. DNA diagnostics--molecular techniques and automation. Science 1988;242(4876):229-37.
    [59] Nickerson DA, Kaiser R, Lappin S, Stewart J, Hood L, Landegren U. Automated DNA diagnostics using an ELISA-based oligonucleotide ligation assay. Proc Natl Acad Sci U S A 1990;87:8923-9.
    [60] Ellis GM, Mahalanabis M, Beck IA, et al. Comparison of Oligonucleotide Ligation assay and consensus sequencing for detection of drug-resistant mutants of Human Immunodeficiency Virus type 1 in peripheral blood mononuclear cells and plasma. J Clin Microbiol 2004;42(8):3670-4.
    [61] Edelstein RE, Nickerson DA, Tobe VO, Manns-Arcuino LA, Frenkel LM. Oligonucleotide Ligation Assay for detecting mutations in the Human Immunodeficiency Virus type 1 pol gene that are associated with resistance to Zidovudine, Didanosine, and Lamivudine. J Clin Microbiol 1998;36(2):569-72.
    [62] Beck IA, Mahalanabis M, Pepper G, et al. Rapid and sensitive Oligonucleotide Ligation Assay for detection of mutations in Human Immunodeficiency Virus type 1 associated with high-level resistance to protease inhibitors. J Clin Microbiol 2002;40(4):1413-9.
    [63] Wallis CL, Mahomed I, Morris L, et al. Evaluation of an oligonucleotide ligation assay for detection of mutations in HIV-1 subtype C individuals who have high level resistance to nucleoside reverse transcriptase inhibitors and non-nucleoside reverse transcriptase inhibitors. J Virol Methods2005;125:99-109.
    [64] Vega Y, Pérez-Alvárez L, Delgado E, et al. Oligonucleotide Ligation assay for detection of mutations associated with reverse transcriptase and protease inhibitor resistance in non-B subtypes and recombinant forms of Human Immunodeficiency Virus type 1. J Clin Microbiol 2005;43(10):5301-4.
    [65] Jallow S, Kaye S, Schutten M, et al. Development and evaluation of an Oligonucleotide Ligation assay for detection of drug resistance-associated mutations in the Human Immunodeficiency Virus type 2 pol gene J Clin Microbiol 2007;45(5):1565-71.
    [66] Lalonde MS, Troyer RM, Syed AR, et al. Sensitive Oligonucleotide Ligation assay for low-level detection of nevirapine resistance mutations in Human Immunodeficiency Virus type 1 quasispecies. J Clin Microbiol 2007;45(8):2604-15.
    [67] Wilson JW, Bean P, Robins T, Graziano F, Persing DH. Comparative evaluation of three Human Immunodeficiency Virus genotyping systems: the HIV-GenotypR method, the HIV PRT GeneChip assay, and the HIV-1 RT Line Probe assay. J Clin Microbiol 2000;38(8):3022-8.
    [68] Servais J, Lambert C, Fontaine E, et al. Comparison of DNA sequencing and a Line Probe assay for detection of Human Immunodeficiency Virus type 1 drug resistance mutations in patients failing highly active antiretroviral therapy. J Clin Microbiol 2001;39(2):454-9.
    [69] Jagodzinski LL, Cooley JD, Weber M, Michael NL. Performance characteristics of Human Immunodeficiency Virus type 1 (HIV-1) genotyping systems in sequence-based analysis of subtypes other than HIV-1 subtype B. J Clin Microbiol 2003;41(3):998-1003.
    [70] Erali M, Page S, Reimer LG, Hillyard DR. Human Immunodeficiency Virus type 1 drug resistance testing: a comparison of three sequence-based methods. J Clin Microbiol 2001;39(6):2157-65.
    [71] Korn K, Reil H, Walter H, Schmidt B. Quality control trial for Human Immunodeficiency Virus type 1 drug resistance testing using clinical samples reveals problems with detecting minority species and interpretation of test results. J Clin Microbiol 2003;41(8):3559-65.
    [72] Zazzi M, Romano L, Venturi G, et al. Comparative evaluation of three computerized algorithms for prediction of antiretroviral susceptibility from HIV type 1 genotype. J Antimicrob Chemother 2004;53:356-60.
    [73] Hertogs K, Bethune M-PD, Miller V, et al. A rapid method for simultaneous detection of phenotypic resistance to inhibitors of protease and reverse transcriptase in recombinant Human Immunodeficiency Virus type 1 isolates from patients treated with antiretroviral drugs. Antimicrob Agents Chemother 1998;42(2):269-76.
    [74] Covens K, Dekeersmaeker N, Schrooten Y, et al. Novel recombinant virus assay for measuring susceptibility of Human Immunodeficiency Virus type 1 group M subtypes to clinically approved drugs. J Clin Microbiol 2009;47(7):2232-42.
    [75] Bacheler L, Jeffrey S, Hanna G, et al. Genotypic correlates of phenotypic resistance to Efavirenz in virus isolates from patients failing nonnucleoside reverse transcriptase inhibitor therapy. J Virol 2001;75(11):4999-5008.
    [76] Stürmer M, Staszewski S, Doerr H-W, Larder B, Bloor S, Hertogs K. Correlation of phenotypic Zidovudine resistance with mutational patterns in the reverse transcriptase of Human Immunodeficiency Virus type 1: interpretation of established mutations and characterization of new polymorphisms at codons 208, 211, and 214. Antimicrob Agents Chemother 2003;47(1):54-61.
    [77] García-Lerma JG, MacInnes H, Bennett D, Weinstock H, Heneine W. Transmitted Human Immunodeficiency Virus type 1 carrying the D67N or K219Q/E mutation evolves rapidly to Zidovudine resistance in vitro and shows a high replicative fitness in the presence of zidovudine. J Virol 2004;78(14):7545-52.
    [78] Gu Z, Allard B, Muys JMd, et al. In vitro antiretroviral activity and in vitro toxicity profile of SPD754, a new deoxycytidine nucleoside reverse transcriptase inhibitor for treatment of Human Immunodeficiency Virus infection. Antimicrob Agents Chemother 2006;50(2):625-31.
    [79] Fletcher P, Harman S, Azijn H, et al. Inhibition of Human Immunodeficiency Virus type 1 infection by the candidate microbicide Dapivirine, a nonnucleoside reverse transcriptase inhibitor. Antimicrob Agents Chemother 2009;53(2):487-95.
    [80] Santos AF, Abecasis AB, Vandamme A-M, Camacho RJ, Soares MA. Discordant genotypic interpretation and phenotypic role of protease mutations in HIV-1 subtypes B and G. J Antimicrob Chemother 2009;63:593-9.
    [81] Soares EA, Santos AF, Gonzalez LM, et al. Mutation T74S in HIV-1 subtype B and C proteases resensitizes them to ritonavir and indinavir and confers fitness advantage. J Antimicrob Chemother 2009;64:938-44.
    [82] Svicher V, Sing T, Santoro MM, et al. Involvement of novel Human Immunodeficiency Virus type 1 reverse transcriptase mutations in the regulation of resistance to nucleoside inhibitors. J Virol 2006;80(14):7186-98.
    [83] Kitrinos KM, Amrine-Madsen H, Irlbeck DM, Word JM, Demarest JF. Virologic failure in therapy-na?ve subjects on aplaviroc plus lopinavir-ritonavir: detection of aplaviroc resistance requires clonal analysis of envelope. Antimicrob Agents Chemother 2009;53(3):1124-31.
    [84] Little SJ, D’Aquila RT, Keiser PH, et al. Reduced antiretroviral drug susceptibility among patients with primary HIV infection. JAMA 1999;282(12):1142-9.
    [85] Havlir DV, Hellmann NS, Petropoulos CJ, et al. Drug susceptibility in HIV infection after viral rebound in patients receiving Indinavir-containing regimens. JAMA 2000;283(2):229-34.
    [86] Boden D, Hurley A, Zhang L, et al. HIV-1 drug resistance in newly infected individuals. JAMA 1999;282(12):1135-41.
    [87] Petropoulos CJ, Parkin NT, Limoli KL, et al. A novel phenotypic drug susceptibility assay for Human Immunodeficiency Virus type 1. Antimicrob Agents Chemother 2000;44(4):920-8.
    [88] Grant RM, Hecht FM, Warmerdam M, et al. Time trends in primary HIV-1 drug resistance among recently infected persons. JAMA 2002;288(2):181-8.
    [89] García-Lerma JG, Nidtha S, Blumoff K, Weinstock H, Heneine W. Increased ability for selection of zidovudine resistance in a distinct class of wild-type HIV-1 from drug-naive persons. Proc Natl Acad Sci U S A 2001;98(24):13907-12.
    [90] Johnston E, Winters MA, Rhee S-Y, Merigan TC, Schiffer CA, Shafer RW. Association of a novel Human Immunodeficiency Virus type 1 protease substrate cleft mutation, L23I, with protease inhibitor therapy and in vitro drug resistance. Antimicrob Agents Chemother 2004;48(12):4864-8.
    [91] García-Lerma JG, MacInnes H, Bennett D, et al. A novel genetic pathway of Human Immunodeficiency Virus type 1 resistance to Stavudine mediated by the K65R mutation. J Virol 2003;77(10):5685-93.
    [92] Gulick RM, Lalezari J, Goodrich J, et al. Maraviroc for previously treated patients with R5 HIV-1 infection. The New England Journal of Medicine 2008;359(14):1429-41.
    [93] Tsibris AMN, Sagar M, Gulick RM, et al. In vivo emergence of Vicriviroc resistance in a Human Immunodeficiency Virus type 1 subtype C-infected subject. J Virol 2008;82(16):8210-4.
    [94] Grossman Z, Paxinos EE, Averbuch D, et al. Mutation D30N is not preferentially selected by Human Immunodeficiency Virus type 1 subtype C in the development of resistance to Nelfinavir. Antimicrob Agents Chemother 2004;48(6):2159-65.
    [95] Nissley DV, Boyer PL, Garfinkel DJ, Hughes SH, Strathern JN. Hybrid Ty1/HIV-1 elements used to detect inhibitors and monitor the activity of HIV-1 reverse transcriptase. Proceedings of the National Academy Sciences of the United States of America 1998;95:13905-10.
    [96] Nissley DV, Halvas EK, Hoppman NL, Garfinkel DJ, Mellors JW, Strathern JN. Sensitive phenotypic detection of minor drug-resistant Human Immunodeficiency Virus type 1 reverse transcriptase variants. J Clin Microbiol 2005;43(11):5696-704.
    [97] Halvas EK, Aldrovandi GM, Balfe P, et al. Blinded, multicenter comparison of methods to detect a drug-resistant mutant of Human Immunodeficiency Virus type 1 at low frequency. J Clin Microbiol2006;44(7):2612-4.
    [98] Nissley DV, Radzio J, Ambrose Z, et al. Characterization of novel non-nucleoside reverse transcriptase (RT) inhibitor resistance mutations at residues 132 and 135 in the 51 kDa subunit of HIV-1 RT. Biochem J 2007;404:151-7.
    [99] Machado ES, Afonso AO, Nissley DV, et al. Emergency of primary NNRTI resistance mutations without antiretroviral selective pressure in a HAART treated child. PLoS ONE 2009;4(3):e4806-e11.
    [100] Heneine W, Yamamoto S, Switzer WM, Spira TJ, Folks TM. Detection of reverse transcriptase by a highly sensitive assay in sera from persons infected with Human Immunodeficiency Virus type 1. J Infect Dis 1995;171:1210-7.
    [101] Yamamoto S, Folks TM, Heneine W. Highly sensitive qualitative and quantitative detection of reverse transcriptase activity: optimization, validation, and comparative analysis with other detection systems. J Virol Methods 1996;61:135-43.
    [102] García-Lerma JG, Yamamoto S, Gómez-Cano M, Soriano V, Green TA, Busch MP. Measurement of Human Immunodeficiency Virus type 1 plasma virus load based on reverse transcriptase (RT) activity: evidence of variabilities in levels of virion-associated RT. J Infect Dis 1998;177:1221-9.
    [103] García-Lerma JG, Heneine W. Rapid biochemical assays for phenotypic drug resistance testing of HIV-1. J Antimicrob Chemother 2002;50:771-4.
    [104] Flys T, Nissley DV, Claasen CW, et al. Sensitive drug-resistance assays reveal long-term persistence of HIV-1 variants with the K103N Nevirapine (NVP) resistance mutation in some women and infants after the administration of single-dose NVP: HIVNET 012. Journal of Infectious Disease 2005;192:24-9.
    [105] Qari SH, Respess R, Weinstock H, et al. Comparative analysis of two commercial phenotypic assays for drug susceptibility testing of Human Immunodeficiency Virus type 1. J Clin Microbiol 2002;40(1):31-5.
    [106] Shafer RW. Genotypic testing for Human Immunodeficiency Virus type 1 drug resistance. Clin Microbiol Rev 2002;15(2):247-77.
    [107] Virco Lab Inc. HIV Resistance Learning System. 2009 [cited; Available from: http://www.vircolab.com/uploads/File/hiv_educational_forum/Edu_module2.pdf

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700