Hedgehog/Gli1信号通路在胶质瘤化疗耐受及血管新生过程中作用的试验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
第一部分
     Hedgehog/Gli1信号通路在胶质瘤化疗耐受中作用的实验研究
     目的:研究Hedgehog/Gli1信号通路在胶质瘤复发过程中的作用,并就其影响胶质瘤化疗效果的机制进行初步的探讨。
     方法:
     (1)收集来自30例胶质瘤病人第一次手术及复发后第一次手术切除的肿瘤组织标本60份,采用免疫组化法分析SHH及Glil蛋白的表达。
     (2)通过Western Blot,分析U87、SHG4、U251及A172四个胶质瘤细胞系中Hedgehog/Gli1信号通路的活化程度。
     (3)以胞外配体SHH活化Hedgehog/Gli1信号通路,采用克隆生存试验,检测这一信号通路活化程度提高后,VCR、VP16、CDDP及ACNU对A172及U251细胞杀伤作用的变化。
     (4)以胞外抑制剂Cyclopamine下调Hedgehog/Gli1信号通路的活化程度,观察这一信号通路的活化程度下调后,VCR、VP16、CDDP,及ACNU对U87、SHG44、U251及A172细胞生存率及早期凋亡的影响。
     (5)构建以Glil基因为靶向的LV-shGlil,同时构建LV-control作为阴性对照,LV-shGlil及LV-control分别转染U87、SHG44及U251细胞,采用FACS及Western Blot分析Hedgehog/Gli1信号通路活化程度的变化。
     (6)使用Cyclopamine及Glil水平的RNAi,下调U87、SHG44及U251细胞Hedgehog/Gli1信号通路的活化程度后,检测MDR1、MRP1、LRP、MGMT, Bcl-2、Survivin等耐药相关基因mRNA表达的变化。
     (7)统计学分析:使用SPSS16.0对实验数据进行统计学分析,两组间均数的比较采用t检验,多组间均数的比较采用方差分析,样本率间的差别采用卡方检验,以P<0.05表示差异有统计学意义。
     结果:
     (1)30例胶质瘤病人中,23例病人的组织样本具有Glil的表达,7例病人的组织样本无Glil的表达。具有Glil表达的这23例胶质瘤病人中,复发的组织样本(n=23)均具有Glil的表达,而相应的原发组织样本中3份无Glil的表达,其余的20份样本具有Glil的表达,复发组(n=23)Gli1的阳性细胞百分比为48.9±20.3%,相应原发组(n=23)的Glil阳性细胞百分比为34.4%±19.8%,二者相比具有显著的统计学意义(P<0.01)。以SHH染色对上述60份组织样本进行分组,SHH阳性组含42份组织样本,38/42(90.5%)的标本伴有Glil的阳性;而SHH阴性组含18份组织样本,仅有5/18(27.8%)的标本中有Glil的表达,统计学分析两组间Glil阳性的样本数也有显著的统计学意义(P<0.01)。
     (2)Western Blot结果显示,U87、SHG44、U251及A172四个胶质瘤细胞系均具有Hedgehog/Glil信号通路的活化,在U87及SHG44中这一信号通路活化的程度较高,U251中这一信号通路的活化程度中等,而A172中这一信号通路的活化程度最低。
     (3)以胞外配体SHH活化U251及A 172细胞中Hedgehog/Gli1信号通路,随着该信号通路活化程度的提高,SHH组肿瘤细胞较对照组肿瘤细胞,对VCR、VP16、CDDP及ACNU的耐受性明显增强,SHH组肿瘤细胞的克隆存活率显著增加(P<0.01)。
     (4)Cyclopamine以浓度依赖性的方式,下调U87、SHG44及U251细胞中Hedgehog/Gli1信号通路的活化程度,而且随着这一信号通路活化程度的降低,Cyclopamine组,VCR、VP16、CDDP及ACNU引起的肿瘤细胞生长抑制及早期凋亡,较对照组明显增加(P<0.01或P<0.05),但在A172细胞中却没有上述现象发现。
     (5)U87、SHG44、U251细胞中,Smo水平Cyclopamine的抑制及Glil水平的RNAi均可引起Hedgehog/Gli1信号通路的活化程度显著地降低,而且随着这一信号通路活化程度的下降,MDR1、MRP1、LRP、MGMT、Bcl-2、Survivin等耐药相关基因表达的也明显的下调。
     结论:
     (1)在部分胶质瘤中存在着异常活化的]Hedgehog/Gli1信号通路,这一信号通路的过度活化与胶质瘤的复发密切相关,SHH在这一信号通路的活化过程中发挥了重要作用。
     (2)Hedgehog/Gli1信号通路活化程度增加,促进了胶质瘤细胞对化疗药物的耐受,而该信号通路活化程度的抑制则导致肿瘤细胞对化疗药物敏感性的增加。
     (3)胶质瘤中Hedgehog/Gli1信号通路与MDR1、MRP1、LRP、MGMT、Bcl-2、Survivin等一系列耐药相关基因的表达存在一定的相关性。抑制Hedgehog/Gli1信号通路的活性,可相应的下调MDR1、MRP1、LRP、MGMT、Bcl-2、Survivin等耐药相关基因的表达。
     (4)干预胶质瘤中Hedgehog/Gli1信号通路的活性,可能代表了一种化疗增敏、提高疗效的治疗措施。
     Hedgehog/Gli1信号通路调节胶质瘤血管新生相关基因表达的实验研究
     目的:探讨胶质瘤中异常活化的Hedgehog/Gli1信号通路与血管新生的相关性,以及这一信号通路对VEGF、MMP2及MMP9表达的调控作用。
     方法:
     (1)采用第一部分的组织样本60份,通过免疫组化分析CD34的表达,探讨Glil的表达与MVD计数的相关性。
     (2)采用SHH活化Hedgehog/Gli1信号通路,观察该信号通路活化后对VEGF、MMP2及MMP9表达的影响。
     (3)采用Cyclopamine抑制Hedgehog/Gli1信号通路,观察这一信号通路的活化程度的下调后,是否伴有VEGF、MMP2及MMP9表达的降低。
     (4)在Glil的水平进行RNAi,观察Hedgehog/Gli1信号通路被阻断后,VEGF、MMP2及MMP9表达的变化。
     结果:
     (1)Glil阳性组(n=43)MVD为27.4±4.6,显著高于Glil阴性组(n=17)的20.9±3.5,组间的MVD差异具有显著的统计学意义(P<0.01)。
     (2)Glil低表达组的MVD为23.7±3.5,中度表达组的MVD为27.3±3.4,高度表达组的MVD为33.2±2.9,各组间MVD具有显著的差异(P<0.01),而且Glil的阳性程度与MVD呈正相关(r=0.756,P<0.01)。
     (3)Hedgehog/Gli1信号通路活化程度上调后,活化组VEGF、MMP2及MMP9mRNA及蛋白的表达较对照组明显增高。
     (4)Cyclopamine抑制Hedgehog/Gli1信号通路后,抑制组VEGF、MMP2及MMP9mRNA及蛋白的表达较对照组明显降低,同时Cyclopamine的抑制作用还具有浓度依赖的特性。
     (5)Glil水平的RNAi证实,阻断Hedgehog/Gli1信号通路,对VEGF、MMP2及MMP 9 mRNA及蛋白的表达具有明显的下调作用。
     结论:
     (1)Hedgehog/Gli1信号通路与胶质瘤的血管新生存在着一定的相关性。
     (2)Hedgehog/Gli1信号通路活化程度的提高,可上调VEGF、MMP2及MMP9表达;反之,则导致VEGF、MMP2及MMP9表达的降低。
     (3)抑制Hedgehog/Gli1信号通路的活化程度,进而下调VEGF、MMP2、MMP9的表达,可能代表了一种全新的抑制胶质瘤血管新生的治疗策略。
Chapter One
     A study of the Hedgehog/Gli1 pathway in chemotherapy resistance of gliomas
     Objectives:
     This study aimed at investigating roles of the Hedgehog/Gli1 pathway in human primitive and recurrent gliomas and preliminarily exploring mechanisms which affected chemotherapy.
     Methods:
     (1)Received 60 primary and recurrent glioma samples from the 30 patients, analyzed expression of SHH and Gli1 protein using immunohistochemistry and explored relationship between the Hedgehog/Gli1 pathway and glioma recurrence.
     (2)Received the four glioma cell lines including U87, U251, SHG44, A172 and analyzed the active level of their Hedgehog/Gli1 pathway.
     (3)Using extracellular active ligand SHH to activate the Hedgehog/Gli1 pathway in U251 and A172 cells, explored whether overactivation of this pathway could promote resistance of tumor cells to chemotherapeutic agents.
     (4) Using extracellular inhibiting ligand Cyclopamine to repress the Hedgehog/Gli1 pathway in U87, SHG44, U251, and A172 cells, explored whether this pathway repressed could promote sensitivity of tumor cells to chemotherapeutic agents.
     (5)Explored roles of the Hedgehog/Gli1 pathway regulating MDR-related genes including MDR1 and MRP1 etc.
     (6)To confirm that effects of Cyclopamine was achieved through Hedgehog/Glil pathway regulating MDR-related genes, we performed LV-shGlil conduction in Glil level in U87, SHG44, and U251.
     Results:
     (1)In the primary glioma group,20 samples had Glil expression, and 23 samples had Glil expression in the in recurrent glioma group. These 43 samples belonged to 23 patients, every patient had Glil expression in the recurrent glioma group, and 3 didn't have Glil expression in the primary glioma group. Glil-positive rate in the recurrent group (n=23) was 48.9±20.3%, and also Glil-positive rate in the primary group (n=23) was 34.4±19.8%. There was significant difference between these two groups (P<0.01). Moreover, there was significant difference of Glil expression between the SHH-positive and the SHH-negative group (P<0.01).
     (2)Among the four lines, Glil was more highly expressed in U87 and SHG44 cells. In U251 lines, Glil expression was modest. Glil expression in A172 cells was quite low. Baseline levels of Glil expression in A172 and U251 were relatively low.
     (3) Activation of the Hedgehog/Gli1 pathway supported resistance of U251 and A172 cells to chemotherapeutic agents.
     (4)Repression of Glil expression promoted the response of U87, SHG44, and U251 cells to chemotherapeutic agents and contributed to a further increase in cell apoptosis.
     (5)The effects of LV-shGli1 and Cyclopamine on the expression of downstream MDR-related genes in glioma cells with the Hedgehog/Glil pathway activity
     Conclusions:
     (1)There is the existence of Hedgehog/Glil pathway activated in a subset of gliomas, and overactivation of the Hedgehog/Gli1 pathway correlates with glioma recurrence.
     (2)Elevated active levels of the Hedgehog/Gli1 pathway promote resistance of glioma cells to chemotherapeutic agents. Conversely, inhibiting this pathway may enhance the effects of chemotherapeutic agents on glioma cell death.
     (3)There is certain correlation between activation of the Hedgehog/Gli1 pathway and expression of MDR-related genes including MDR1、MRP1、LRP、MGMT、Bcl-2、Survivin in gliomas. Blockade of the Hedgehog/Glil pathway can downregulate the expressions of MDR1, MRP1, LRP, MGMT, Bcl-2 and Survivin genes.
     (4)Interfering the Hedgehog/Gli1 pathway in combination with current chemotherapy regimens may provide a promising approach to improving chemotherapeutic response.
     Chapter Two
     A study of the Hedgehog/Glil pathway regulating expression of the angiogenesis-related genes in gliomas
     Objectives:
     This study aimed at investigating relationship between the aberrant active Hedgehog/Glil pathway in glioma recurrence and angiogensis, and roles of this pathway regulating VEGF, MMP2 and MMP9.
     Methods:
     (1) Received 60 primary and recurrent glioma samples from the 30 patients, analyzed expression of CD34 and Glil protein using immunohistochemistry and explored relationship between the Hedgehog/Gli 1 pathway and MVD.
     (2)Using extracellular active ligand SHH to activate the Hedgehog/Gli1 pathway in U251 and A172 cells, explored whether overactivation of this pathway could upregulate expression of VEGF, MMP2 and MMP9.
     (3) Using extracellular inhibiting ligand Cyclopamine to repress the Hedgehog/Glil pathway in U87 and SHG44 cells, explored whether this pathway repressed could downregulate expression of VEGF, MMP2 and MMP9.
     (5)At the Gli1 level, using RNAi further confirmed that expression of VEGF, MMP2 and MMP9 downregulated was achieved through Hedgehog/Gli1 pathway inhibited.
     Results:
     (1)MVD in gliomas with Hedgehog/Glil activaton (n=43) was 27.4±4.6, and MVD in gliomas without Hedgehog/Gli1 activaton (n=17) was 20.9±3.5, there was significant difference between these two groups (P<0.01).
     (2)MVD in gliomas with high level expression of Gli1 was 23.7±3.5, MVD in gliomas with moderate level expression of Glil was 27.3±3.4, and MVD in gliomas with low level expression of Gli1 was 33.2±2.9. There was significant difference in these three groups. What’more, Glil expression was positively related with MVD (r=0.756, P<0.01).
     (3)Overactivation of the Hedgehog/Glil pathway effectively upregulated VEGF, MMP 2 and MMP 9 expression.
     (4)Repression of the Hedgehog/Glil pathway activity promoted downregulating expression of VEGF, MMP 2 and MMP 9.
     (5)In order to make our results more reliable, we performed RNAi at direct GLi1 level in U87 and SHG44. The data showed that downregulation of Gli1 can indeed inhibit mRNA and protein expression of VEGF, MMP2 and MMP9.
     Conclusions:
     (1)We show for the first time that status of the Hedgehog/Glil pathway activated is correlated with angiogenesis in gliomas.
     (2)The Hedgehog/Glil pathway can effectively regulate expression of VEGF, MMP2 and MMP9.
     (3)Inhibiting Hedgehog/Glil pathway, and further downregulating expression of VEGF, MMP2, MMP9 may be a valid therapeutic strategy which represses angiogenesis of gliomas.
引文
1. Mrugala MM, Kesari S, Ramakrishna N, Wen PY. Therapy for recurrent malignant glioma in adults. Expert Rev Anticancer Ther,2004,4(5):759-782.
    2. Scheda A, Finjap JK, Tuettenberg J, Brockmann MA, Hochhaus A, Hofheinz R, Lohr F, Wenz F. Efficacy of different regemens of adjuvant readiochemotherapy for treatment of glioblastoma. Tumori,2007,93:31-36.
    3. Lu C, Shervington A. Chemoresistance in gliomas. Mol Cell Biochem,2008, 312(1-2):71-80.
    4. Tews DS, Nissen A, Kulgen C, Gaumann AK. Drug resistance-associated factors in primary and secondary glioblastomas and their precursor tumors. J Neurooncol,2000, 50(3):227-237.
    5. Norden AD, Young GS, Setayesh K, Muzikansky A, Klufas R, Ross GL, Ciampa AS, Ebbeling LG, Levy B, Drappatz J, Kesari S, Wen PY. Bevacizumab for recurrent malignant gliomas - Efficacy, toxicity, and patterns of recurrence. Neurology,2008, 70:779-787.
    6. Zolota V, Tsamandas AC, Aroukatos P, Panagiotopoulos V, Maraziotis T, Poulos C, Scopa CD. Expression of cell cycle inhibitors p21, p27, p14 and p16 in gliomas. Correlation with classic prognostic factors and patients'outcome. Neuropathology, 2008,28:35-42.
    7. Bazzoli E, Omuro AMP. Antiangiogenic Strategies for the treatment of gliomas. Glioblastoma: Molecular Mechanisms of Pathogenesis and Current Therapeutic Strategies 2010:243-263.
    8. Rabik CA, Njoku MC, Dolan ME. Inactivation of O6-alkylguanine DNA alkyltransferase as a means to enhance chemotherapy. Cancer Treat Rev.2006, 32(4):261-276.
    9. Griscelli F, Li H, Cheong C, Opolon P, Bennaceur-Griscelli A, Vassal G, Soria J, Soria C, Lu H, Perricaudet M, Yeh P. Combined effects of radiotherapy and angiostatin gene therapy in glioma tumor model. PNAS,2000,97(12):6698-6703.
    10. Varjosalo M, Taipale J. Hedgehog:functions and mechanisms. Genes Dev,2008, 22(18):2454-2472.
    11. Evangelista M, Tian H, de Sauvage FJ. The hedgehog signaling pathway in cancer. Clin Cancer Res,2006,12(20 Pt 1):5924-5928.
    12. Pasca di Magliano M, Hebrok M. Hedgehog signaling in cancer formation and maintenance. Nat Rev Cancer,2003,3(12):903-911.
    13. Sims-Mourtada J, Izzo JG, Apisarnthanarax S, Wu T, Malhotra U, Luthra R, Liao Z, Komaki R, der kogel AV, Ajani J, Chao KS. Hedgehog:an attribute to tumor regrowth after chemoradiaotherapy and target to improve radiation response. Clin Cancer Res 2006; 12(21):6565-6572.
    14. Liao X, Siu MK, Au CW, Wong ES, Chan HY, Ip PP, Ngan HY, Cheung AN. Aberrant activation of hedgehog signaling pathway in ovarian cancers: effect on prognosis, cell invasion and differentiation. Carcinogenesis,2009,30(1):131-140.
    15. Shahi MH, Lorente A, Castresana JS. Hedgehog signalling in medulloblastoma, glioblastoma and neuroblastoma. Oncol Rep,2008,19(3):681-688.
    16. Kinzler KW, Bigner SH, Bigner DD, Trent JM, Law ML, O'Brien SJ, et al. Identification of an amplified, highly expressed gene in a human glioma. Science, 1987,236(4797):70-73.
    1. Ingham PW, McMahon AP. Hedgehog signaling in animal development: paradigms and principles. Genes Dev,2001,15(23):3059-3087.
    2. Varjosalo M, Taipale J. Hedgehog:functions and mechanisms. Genes Dev,2008, 22(18):2454-2472.
    3. Evangelista M, Tian H, de Sauvage FJ. The hedgehog signaling pathway in cancer. Clin Cancer Res,2006,12(20 Pt 1):5924-5928.
    4. Pasca di Magliano M, Hebrok M. Hedgehog signaling pathway in cancer formation and maintenance. Nat Rev Cancer 2003; 3(12):903-911.
    5. Duman-Scheel M, Weng L, Xin S, Du W. Hedgehog regulates cell growth and proliferation by inducing Cyclin D and Cyclin E. Nature 2002;417(6886):299-304.
    6. Yoon JW, Kita Y, Frank DJ, Majewski RR, Konica BA, Noriega MA, Jacob H, Walter house D, Iannaccone P. Gene expression profiling leads to identification of GLI1-binding elements in target genes and a role for multiple downstream pathways in GLI1-induced cell transformation. J Biol Chem 2002; 277(7):5548-5555.
    7. Yoshikawa R, Nakano Y, Tao L, Koishi K, Matsumoto T, Sasako M, Tsujimura T, Hashimoto-Tamaoki T, Fujiwara Y. Hedgehog signal activation in oesophageal cancer patients undergoing neoadjuvant chemoradiotherapy. British Journal of Cancer 2008,98:1670-1674.
    8. Yanai k, Nagai S, Wada J, Yamanaka N, Nakamura M, Torata N, Noshiro H, Teuneyoshi M, Tanaka M, Katano M. Hedgehog signaling pathway is a possible therapeutic target for gastric cancer. Journal of Surgical oncology,2007,95:55-62.
    9. Sims-Mourtada J, Izzo JG, Ajani J, Chao KS. Sonic Hedgehog promotes multiple drug resistance by regulation of drug transport. Oncogene 2007; 26(38):5674-5679.
    10. Kobune M, Takimoto R, Murase K, Iyama S, Sato T, Kikuchi S, Kawano Y, Miyanishi K, Sato Y, Niitsu Y, Kato J. Drug resistance is dramatically restored by hedgehog inhibitors in CD34(+) leukemic cells. Cancer Sci 2009; 100(5):948-955.
    11. Lu C, Shervington A. Chemoresistance in gliomas. Mol Cell Biochem 2008; 312(1-2):71-80.
    12. Tews DS, Nissen A, Kulgen C, Andreas AK. Gaumann D. Drug resistance-associated factors in primary and secondary gliomblastomas and their precursor tumors. J Neurooncol 2000; 50(3):227-237.
    13. Berger W, Spiegl-Kreinecker S, Buchroithner J, Elbling L, Pirker C, Fischer J, Michael M. Overexpression Of The Human Major Vault Protein In Astrocytic Brain Tumor Cells. Int J Cancer 2001; 94(3):377-382.
    14. Kaina B, Christmann M, Naumann S, Roos WP. MGMT:key node in the battle against genotoxicity, carcinogenicity and apoptosis induced by alkylating agents. DNA Repair (Amst) 2007; 6(8):1079-1099.
    15. Hetschko H, Voss V, Horn S, Seifert V, Prehn JH, Kogel D. Pharmacological inhibition of Bcl-2 family members reactivates TRAIL-induced apoptosis in malignant glioma. J Neurooncol 2008; 86(3):265-272.
    16. Kang DW, Choi CH, Park JY, Kang SK, Kim YK. Ciglitazone Induces Caspase-Independent Apoptosis through Down-Regulation of XIAP and Survivin in Human Glioma Cells. Neurochem Res 2008; 33(3):551-561.
    17. Sanchez P, Hernandez AM, Stecca B, Kahler AJ, DeGueme AM, Barrett A, Beyna M, Datta MW, Datta S, Altaba ARI. Inhibition of prostate cancer proliferation by interference with SONICHEDGEHOG-GLI1 signaling. Proc Natl Acad Sci USA 2004,101:12561-12566.
    18. Liao X, Siu MK, Au CW, Wong ES, Chan HY, Ip PP, Ngan HY, Cheung AN. Aberrant activation of hedgehog signaling pathway in ovarian cancers:effect on prognosis, cell invasion and differentiation. Carcinogenesis 2009; 30(1):131-140.
    19. Naldini L, Blomer U, Gallay P, Ory D, Mulligan R, Gage FH, Verma IM, Trono D. In vivo gene delivery and stable transduction of nondividing cells by a lentiviral Vector. Science 1996; 272(5259):263-267.
    20. Sims-Mourtada J, Izzo JG, Apisarnthanarax S, Wu T, Malhotra U, Luthra R, Liao Z, Komaki R, der kogel AV, Ajani J, Chao KS. Hedgehog:an attribute to tumor regrowth after chemoradiaotherapy and target to improve radiation response. Clin Cancer Res 2006; 12(21):6565-6572.
    21. Mrugala MM, Kesari S, Ramakrishna N, Wen PY. Therapy for recurrent malignant glioma in adults. Expert Rev Anticancer Ther,2004,4(5):759-782.
    22. Yoshikawa R, Nakano Y, Tao L, Koishi K, Matsumoto T, Sasako M, Tsujimura T, Hashimoto-Tamaoki T, Fujiwara Y. Hedgehog signal activation in oesophageal cancer patients undergoing neoadjuvant chemoradiotherapy. British Journal of Cancer 2008,98:1670-1674.
    23. Bar EE, Chaudhry A, Farah MH, and Eberhart CG. Hedgehog Signaling Promotes Medulloblastoma Survival via Bcl-II. Am J Pathol 2007; 170(1):347-355.
    24. Chen X, Horiuchi A, Kikuchi N, Osada R, Yoshida J, Shiozawa T, Konishi I. Hedgehog signal pathway is activated in ovarian carcinomas, correlating with cell proliferation:its inhibition leads to growth suppression and apoptosis. Cancer Sci, 2007,98(1):68-76.
    25. Yoon JW, Gilbertson R, Iannaccone S, Iannaccone P, Walterhouse D. Defining a role for Sonic hedgehog pathway activation in desmoplastic medulloblastoma by identifying GLI1 target genes. Int J Cancer,2009,124(1):109-119.
    26. Kinzler KW, Bigner SH, Bigner DD, Trent JM, Law ML, O'Brien SJ, et al. Identification of an amplified, highly expressed gene in a human glioma. Science, 1987,236(4797):70-73.
    27. Pritchard JI, Olson JM. Methylation of PTCH1, the Patched-1 gene, in a panel of primary medulloblastoma. Cancer Genetics and Cytogenetics,2008,180:47-50.
    28. Watkins DN, Berman DM, Burkholder SG, Wang B, Beachy PA, Baylin SB. Hedgehog signaling within airway epithelial progenitors and in small-cell lung cancer. Nature,2003,422(6929):313-3177.
    29. Sanchez P, Hernandez AM, Stecca B, Stecca B, Kahler AJ, Degueme AM, Barrett A, Beyna M, Datta MW, Datta S, Altaba AR. Inhibition of prostate cancer proliferation by interference with SONIC HEDGEHOG/GLI1 signaling. Proc Natl Acad Sci USA,2004,101(34):12561-12566.
    30. Karhadkar SS, Bova GS, Abdallah N, Dhara S, Gardner D, Maitra A, Isaacs JT, Berman DM, Beachy PA, USDA ARS. Hedgehog signalling in prostate regeneration, neoplasia and metastasis. Nature,2004,431(7009):707-712.
    31. Zhang X, Harrington N, Moraes RC, Wu MF, Hilsenbeck SG, Lewis MT. Cyclopamine inhibition of human breast cancer cell growth independent of Smoothened (Smo). Breast Cancer Res Treat,2009,115:505-521.
    32. Decleves X, Fajac A, Lehmann-Che J, Tardy M, Mercier C, Hurbain I, et al. Molecular and functional MDR1-Pgp and MRPs expression in human glioblastoma multiforme cell lines. Int J Cancer,2002,98(2):173-180.
    33. Slesina M, Inman EM, Rome LH, Volknandt W. Nuclear localization of the major vault protein in U373 cells. Cell Tissue Res,2005,321(1):97-104.
    34. Hegi ME, Diserens AC, Gorlia T, Hamou MF, de Tribolet N, Weller M, et al. MGMT gene silencing and benefit from temozolomide in glioblastoma. N Engl J Med, 2005,352(10):997-1003.
    35. Reed JC. Bcl-2 family proteins:regulators of apoptosis and chemoresistance in hematologic malignancies. Semin Hematol,1997,34(4 suppl 5):9-19.
    36. Son YG, Kim EH, Kim JY, Kim SU, Kwon TK, Yoon AR, Yun CO, Choi KS. Silibinin sensitizes human glioma cells to TRAIL-mediated apoptosis via DR5 up-regulation and down-regulation of c-FLIP and survivin. Cancer Res,2007, 67(17):8274-84.
    37. Gianani R, Jarboe E, Orlicky D, FrostM, Bobak J, Lehner R, Shroyer KR. Expression of survivin in normal, hyperplastic, and neoplastic colonic mucosa. Hum Pathol,2001,32(1):119-25.
    38. Ponnelle T, Chapusot C, Martin L, Bouvier AM, Plenchette S, Faivre J, Solary E, Piard F. Cellular localization of survivin:impact on the prognosis in colorectal cancer. J Cancer Res Clin Oncol,2005,131(8):504-10.
    39. Yoon JM, Gilbertson R, Lannaccone S, Lannaccone P, Walterhouse D. Defining a role for Sonic hedgehog pathway activation in desmoplastic medulloblastoma by identifying GLI1 target genes. International Journal of cancer,2009,124(1):109-119.
    40. Zhang Y, Laterra J, Pomper MG. Hedgehog pathway inhibitor Hhantag691 is a potent inhibitor of BRCP and Pgp. Neoplasia,2009,11(1):96-101.
    41. Kasper M, Regl GM, Frischauf AM, Aberger F.G1I transcription factors: Mediators of oncogenic Hedgehog signaling. European Journal of Cancer 2006,42(4): 437-445.
    1.崔大明,车晓明。血管内皮生长因子与抗肿瘤研究进展.复旦学报(医学版),2006,33(4):566-568.
    2. Folkman J. Tumor angiogenesis theraperutic implications. N Engl J Med.1971, 285(21):1182-1186.
    3. Nishida N, Yano H, Nishida T, Batchelor TT. Angiogenesis in cancer. Vascular Health and Risk Management,2006,2(3):213-219.
    4. John A, Tuszynski G. The role of matrix metalloproteinases in tumor angiogenesis and tumor metastasis. Pathology & Oncology Research,2001,7(1):1219-4956.
    5. Gerstner ER, Sorensen AG, Jain RK, Batchelor TT. Anti-Vascular Endothelial Growth Factor Therapy for Malignant Glioma. Current Neurology and Neuroscience Reports,2009,9(3):254-262.
    6. Koutroulis L, Zarros A, Thecharis S. The role of matrix metalloproteinases in the pathophysiology and progression of human nervous system malignancies:a chance for the development of targeted therapeutic approaches? Expert opinion on therapeutic targets,2008,12(12):1577-1586.
    7. Yamazaki M, Nakamura K, Mizukami Y, Li M, Sasajima J, Sugiyama Y, Nishikawa T, Nakano Y, Yanagawa N, Sato K, Maemoto A, Tanno S, Okumura T, Karasaki H, Kono T, Fujiya M, Ashida T, Hung DC, Kohgo Y. Sonic hedgehog derived from human pancreatic cancer cells augments angiogenic function of endothelial progenitor cells. Cancer Science,2008,99(6):1131-1138.
    8. Nagase T, Nagase M, Machida M, Fujita T. Hedgehog signallin in vascular development. Angiogenesis,2008,11:71-77.
    9. Pola R, Ling LE, Aprahamian TR, Barban E, Bosch-Marce M, Curry C, Corbley M, Kearney M, Isner JM, Losordo DW. Postantal recapitulation of embryonic hedgehog pathway in response to skeletal muscle ischemia. Circulation,2003,29:479-485.
    10. Sims-Mourtada J, Izzo JG, Apisarnthanarax S, Wu T, Malhotra U, Luthra R, Liao Z, Komaki R, der kogel AV, Ajani J, Chao KS. Hedgehog:an attribute to tumor regrowth after chemoradiaotherapy and target to improve radiation response. Clin Cancer Res 2006; 12(21):6565-6572.
    11. Yoshikawa R, Nakano Y, Tao L, Koishi K, Matsumoto T, Sasako M, Tsujimura T, Hashimoto-Tamaoki T, Fujiwara Y. Hedgehog signal activation in oesophageal cancer patients undergoing neoadjuvant chemoradiotherapy. British Journal of Cancer 2008,98:1670-1674.
    12. Nafase T, Nagase M, Machida M, Fujita T. Hedgehog signaling in vascular development. Angiogenesis 2008,11:71-77.
    13. Kusano KF, Allendoerfer KL, Munger W, Pola R, Bosch-marce M, Rudolf K, Yoon Y, Curry C, Silver M, Kearney M, Asahara T, Losordo DW. Sonic hedgehog induces arteriogenesis in diabetic vasa nervorum and restores function in diabetic neuropathy. Arterioscler Thromb Vasc Biol 2004,24:2102-2107.
    14. Liao X, Siu MK, Au CW, Wong ES, Chan HY, Ip PP, Ngan HY, Cheung AN. Aberrant activation of hedgehog signaling pathway in ovarian cancers:effect on prognosis, cell invasion and differentiation. Carcinogenesis,2009,30(1):131-140.
    15. Yamazaki M, Nakamura K, Mizukami Y, Ii M, Sasajima J, Sugiyama Y, Nishikawa T, Nakano Y, Yanagawa N, Sato K, Maemoto A, Tanno S, Okumura T, Karasaki H, Kono T, Fujiya M, Ashida T, Chung DC, Kohgo Y. Sonic hedgehog derived from human pancreatic cancer cells augments angiogenic function of endothelial progenitor cells. Cancer Sci 2008,99(6):1131-1138.
    16. Dormoy V, Danilin S, Lindner V, Thomas L, Rothhut S, Coquard C, Helwig JJ, Jacqmin D, Lang H, Massfelder T. The sonic hedgehog signaling pathway is reactivated in human renal cell carcinoma and plays orchestral role in tumor growth.Molecular Cancer,2009, doi:10.1186/1476-4598-8-123.
    17. Fina L, Molgaard HV, Robertson D, Bradley NJ, Monaghan P, Delia D, Sutherland DR, Baker MA, Greaves MF. Expression of the CD34 gene in vascular endothelial cells. Blood,1990,75(12):2417-2426.
    18. Kimura H, Nakajima T, Kagawa Z, Deguchi T, Kakusui M, Katagishi T, Okanoue T, Kashima K, Ashihara T. Angiogenesis in hepatocellular carcinoma as evaluated by CD34 immunohistochemistry. Liver,2008,18(1):14-19.
    19. Bazzoli E, Omuro AMP. Antiangiogenic Strategies for the treatment of gliomas. Glioblastoma: Molecular Mechanisms of Pathogenesis and Current Therapeutic Strategies 2010:243-263
    20. Samoto K, Ikezaki K, Ono M, Shono T, Kohno K, Kuwano M, Fukui M. Expression of Vascular endothelial factor and its possible relation with neovascularization in human brain tumors. Cancer Research,1995,55:1189-1193.
    21.罗国才,叶应湖.VEGF.MMP-2与人脑胶质瘤的病理分级和侵袭性的相关研究.卒中与神经疾病。2002,9(6):350-352.
    22.陈志琴,顾霞.脑星星细胞瘤MMP9表达与微血管密度的关系及意义.新疆医科大学学报,2008,31(9):1156-1158.
    23. Takahashi M, Fukami S, Iwata N, Inoue K, Itohara S, Itoh H, Haraoka J, Saido T. In vivo glioma growth requires host-derived matrix metalloproteinase 2 for maintenance of angioarchitecture. Pharmacol Res,2002,46(2):155-63.
    24. Bergers G, Benjamin LE. Tumorigenesis and the angiogenic switch. Nat Rev Cancer,2003,3(6):401-410.
    25. Kerbel RS. Inhibition of tumor angiogenesis as a strategy to circumvent acquired resistance to anti-cancer therapeutic agents. BioEssays,1991,13(1):31-36.
    26. Argyriou AA, Giannopoulou E, Kalofonos H. Angiogenesis and Anti-Angiogenic Molecularly Targeted Therapies in Mlignant Gliomas. Onology 2009,77:1-11.
    27. Norden AD, Drappatz J, Muzikansky A, David K, Gerard M, McNamara MB, Phan P, Ross A, Kesari S, wen PY. An exploratory survival analysis of anti-angiogenic therapy for recurrent malignant glioma. J Neurooncol 2009,92: 149-155.
    28. Tuettenberg J, Grobholz R, Seiz M, Brockmann MA, Lohr F, Wenz F, Vajkoczy P. Recurrence pattern in gliomblastoma multiforme patients treated with anti-angiogenic chemotherapy. J Cancer Res Clin Oncol,2009,135:1239-1244.
    29. Luci-Eterovic AK, Piao Y, de Groot JF. Mediators of glioblastoma resistance and invasion during anti-vascular endothelial growth factor therapy. Clinical Cancer Research,2009,15(14):4589-4599.
    30. Hotz HG, Hines OJ, Hotz B, Foitzik T, Buhr HJ, Reber HA. Evaluation of vascular endothelial growth factor blockade and matrix metalloproteinase inhibition as a combination therapy for experimental human pancreatic cancer. Journal of Gastrointestinal Surgery,2003,7(2):220-228.
    1. Stupp R, Mason WP, van den Bent MJ, et al. Radiotherapy plus con - comitant and adjuvant temozolomide for glioblastoma. N Engl J Med,2005,352(10):987-996.
    2. Spiegl-Kreinecker S, Buchroithner J, Elbling L, et al. Expression and functional activity of the ABC-transporter proteins P-glycoprotein and multidrug-resistance protein 1 in human brain tumor cells and astrocytes. J Neuro-Oncol 2002,57:27-36.
    3. Decleves X, Fajac A, Lehmann-Che J, Tardy M, et al. Molecular and functional MDR1-Pgp and MRPs expression in human glioblastoma multiforme cell lines. Int J Cancer,2002,98:173-180.
    4. Calatozzolo C, Gelati M, Ciusani E, et al. Expression of drug resistance proteins Pgp, MRP1, MRP3, MRP5 AND GST-p in human glioma. Journal of Neuro-Oncology,2005,74:113-121.
    5. Berger W, Spiegl-Kreinecker S, Buchroithner J, et al. Overexpression of the human major vault protein in astrocytic brain tumor cells. Int J Cancer,2001,94:377-382
    6. Ueda S, Mineta T, Nakahara Y, et al. Induction of the DNA repair gene O6-methylguanine-DNA methyltransferase by dexamethasone in glioblastomas. Neurosurg,2004,101(4):659-63
    7. Gil YG, Kang MK. Capsaicin induces apoptosis and terminal differentiation in human glioma A172 cells. Life Sciences,2008,82:997-1003
    8. Zarnescu O, Brehar FM, Chivu M, et al. Immunohistochemical localization of caspase-3, caspase-9 and Bax in U87 glioblastoma xenografts. J Mol Hist,2008
    9. Xia S, Li Y, Rosen EM, et al. Glioblastoma Cells to Death Receptor-Induced Apoptosis:Requirements for c-Jun NH2-Terminal Kinase and Bim. Mol Cancer Res, 2007,5(8):783-792.
    10. Hetschko H, Voss V, Horn S, et al. Pharmacological inhibition of Bcl-2 family members reactivates TRAIL-induced apoptosis in malignant glioma. J Neurooncol, 2008,86:265-272.
    11.崔大明,车晓明,汪洋,等.胶质母细胞瘤干细胞体外分离培养鉴定及生物学特性研究.中国临床神经科学,2007,15(6):561-569.
    12. Xiu-bao Chang. A molecular understanding of ATP-dependent solute transport by multidrug resistance-associated protein MRP1. Cancer Metastasis Rev,2007,26: 15-37.
    13. Dean M, Rzhetsky A, Allikmets R, et al. The human ATP-binding cassette (ABC) transporter superfamily. Genome Res,2001,11:1156-1166
    14. Gottesman MM, Fojo T, Bates SE, et al. Multidrug resistance in cancer: role of ATP-dependent transporters. Nat Rev Cancer,2002,2:48-58
    15. Cordon-Cardo C, O'Brien JP, Boccia J, et al. Expression of the multidrug resistance gene product (P-glycoprotein) in human normal and tumor tissues. J Histochem Cytochem,1990; 38:1277-87.
    16. Takara K, Sakaeda T, Okumura K. An update on overcoming MDR1-mediated multidrug resistance in cancer chemotherapy. Current Pharmaceutical Design,2006, 12:273-286.
    17. Tishler DM, Weinberg KI, Hinton DR, et al. MDR1 gene expression in brain of patients with medically intractable epilepsy. Epilepsia,1995,36:1-6.
    18. Spiegl-Kreinecker S. Expression and functional activity of the ABC-transporter proteins P-glycoprotein and multidrug-resistance Protein 1 in human brain tumor cells and astrocytes. J Neuro-Oncology,2002,57:27-36.
    19. Nagane M, Asai A, Shibui S, et al. Expression Pattern of Chemoresistance-related Genes in Human Malignant Brain Tumors:a Working Knowledge for Proper Selection of Anticancer Drugs. Japanese Journal of Clinical Oncology,1999,29(11): 527-534.
    20. Bahr O, Rieger J, Duffner F, et al. P-Glycoprotein and Multidrug Resistance-associated Protein Mediate Specific Patterns of Multidrug Resistance in Malignant Glioma Cell Lines, but not in Primary Glioma Cells. Brain pathology, 2003,13:482-494.
    21. Deeley RG, Cole SP. Substrate recognition and transport by multidrug resistance protein 1 (ABCC1). FEBS Lett,2006,580(4):1103-1111.
    22. Minich T, Riemer J, Schulz JB, et al. The multidrug resistance protein 1 (Mrpl), but not Mrp5, mediates export of glutathione and glutathione disulfide from brainastrocytes. J Neurochem,2006,97(2):337-384.
    23. Hipfner DR, Deeley RG, Cole S PC, et al. Structural mechanistic and clinical aspects of MRP1.BBA:Biomembrans,1999,1461(2):359-376.
    24. Faria GP, Oliveira JA, Oliveira JG, et al. Differences in the expression pattern of P-glycoprotein and MRP1 in low-grade and high-grade gliomas. Cancer Invest, 2008,26(9):883-889.
    25. Benyahia B, Huguet S, Decleves X, et al. Multidrug resistance-associated protein MRP1 expression in human gliomas:chemosensitization to vincristine and etoposide by indomechacin in human glioma cell lines overexpressing MRP1. Journal of Neuro-Oncology,2004,66:65-70.
    26. Wang XM, Xin H, Yang Z, et al. Clinical study on treatment of advanced stage non-small cell lung cancer by guben xiaoliu capsule. Zhongguo Zhong Xi Yi Jie He Za Zhi,2004,24:986-988.
    27. Ohsawa M, Ikura Y, Fukushima H, et al. Immunohistochemical expression of multidrug resistance proteins as a predictor of poor response to chemotherapy and prognosis in patients with nodal diffuse large B-cell lymphoma. Oncology,2005, 68:422-431.
    28. Rybarova S, Hajdukova M, Hodorova I, et al. Expression of the multidrug resistance associated protein 1(MRP1) and the lung resistance-related protein (LRP) in human lung cancer. Neoplasma,2004,51:169-174.
    29. Aronica E, Gorter JA, van Vliet EA, et al. Overexpression of the human major vault protein in gangliogliomas. Epilepsia,2003,44:1166-1175.
    30. Berger W, Spiegl-Kreinecker S, Buchroithner J, et al. Overexpression of the human major vault protein in astrocytic brain tumor cells. Int J Cancer,2001, 94:377-382.
    31.王运华,杨风海,吕明,等.肺阻蛋白在人脑胶质瘤中的表达和意义.山东医药,2001,41(15):30-31.
    32.杨转移,邓永文,方加胜,等.脑胶质瘤和正常脑组织中MGM1、LRP、 TopoⅡa的表达及其意义.医学临床研究,2008,25(3):393-396.
    33. Berger W, Spiegl-Kreinecker S, Buchroithner J, et al. Overexpression of the human major vault protein in astrocytic brain tumor cells. Int J Cancer,2001,94: 377-382.
    34. Hongeng S, Brent TP, Sanford RA, et al. Rapid O6-methylguanine-DNA Methytransferase protein levels in pediatric brain tumors. Cancer Res,1997, 3(12Ptl):278.
    35.徐洪升,张俊英,岳伟英,等.脑胶质瘤MGMT表达与体外药敏相关性及其临床意义.中华临床神经外科杂志,2007,12(5):263-266.
    36.王增光,杨学军,潘强,等.MGMT在恶性胶质瘤中的表达对替莫唑胺化疗预后的影响.中国神经精神疾病杂志,2009,35(6):327-330.
    37. Rhines LD, Sampath P, Dolan ME, Tyler BM, Brem H, Weingart J. O6-Benzylguanine Potentiates the Antitumor Effect of Locally Delivered Carmustine against an Intracranial Rat Glioma. Cancer research,2000,60:6307-6310.
    38.金澎,张庆林,刘福生,等.MGMT反义RNA对人脑胶质瘤耐药性逆转的研究.中华神经外科杂志,2003,19:93-98.
    39. Koda M, Reszec J, Sulkowska M, et al. Expression of the insulin-like growth factor-I receptor and proapoptotic Bax and Bak proteins in human colorectal cancer. Ann NY Acad Sci,2004,1030:377-383.
    40. Fels C, Schafer C, Huppe B, et al. Bcl-2 expression inhigher-grade human glioma: a clinical and experimental study.J Neuro-oncology,2001,48:207-216.
    41. Karmakar S, Weinberg MS, Banik NL, et al. Activation of multiple molecular mechanisms for apoptosis in human malignant glioblastoma T98G and U87MG cells treated with sulforaphane. Neuroscience,2006,141:1265-1280.
    42. Tyagi D, Sharma BS, Gupta SK, et al. Expression of Bcl2 proto-oncogene in primary tumors of the central nervous system. Neurol India,2002,50:290-294.
    43. Lu Z, Wu Z, Mo Y. Regulation of bcl-2 expression by Ubc9. Exp Cell Res,2006, 312:1865-1875.
    44.王天路,孙涛,陶轶.替莫唑胺和Bcl-2 siRNA对人胶质瘤U251细胞生长的影响.江苏医药,2008,34(10):1020-1022.
    45.李中东,齐振华,曹星玉,等.急性白血病患者Survivin基因表达与耐药的关系.临床内科杂志,2004,21(3):157-159.
    46.张春梅,胡成平,赵子文.Survivin反义寡核苷酸逆转顺铂诱导的人肺腺癌细胞凋亡耐受作用.中国现代医学杂志,2007,17(15):1793-1798.
    47. Sasaki T, Lopes MB, Hankins GR, et al. Expression of survivin, an inhibitor of apoptosis protein, in tumors of the nervous system. Acta Neuropathol(Berl),2002, 104(1):105-109.
    48. Chakravarti A, Noll E, Black PM, et al. Quantitatively determined survivin expression levels are of prognostic value in human gliomas. J Clin Oncol,2002,20(4): 1063-1068.
    49. Uchida H, Tanska T, Sasaki K, et al. Adenovirus-mediated transfer of siRNA against survivin induced apoptosis and attenduated tumor cell growth in vitro and in vivo. Mol Ther,2004,10(1):162-171.
    50.崔大明,车晓明.脑肿瘤干细胞研究进展.中国临床神经科学杂志.2006,14(6):662-665。
    51. Guzman ML, Upchurch D, Grimes B, et al. Nuclear factor-kappaB is constitutively activated in primitive human acute myelogenous leukemia celss. Blood, 2001,98:2301-2307.
    52. Terpstra W, Prins A, Ploemacher RE, et al. Long-term leukemia-initiating capability of a CD34- subpopulation of acute myeloid leukemia. Blood,1996; 87:2187-2194.
    53. Liu G, Yuan X, Zeng Z, et al. Analysis of gene expression and chemoresistance of CD133+ cancer stem cells in glioblastoma. Molecular Cancer,2006,5:67.
    54.杨转移,邓永文,方加胜,等.U251源性脑肿瘤干细胞的耐药性及耐药酶的表达.中国癌症杂志,2009,29(12):889-893.
    1. Carron CP, Meyer DM, Pegg JA, Engleman VW, Nickols MA, Settle SL, Westlin WF, Ruminski PG, Nickols GA. A Peptidomimetic antagonist of the intergrin alpha(v) beta 3 inhibitis Leydig cell tumor growth and development of hypercalcemia of malignancy. Cancer Res,1998,58(9):1930-1935.
    2. Pak J, Mit suhalhi Y, Bayko L, Filmus J, Shirasawa S, Sasazuki T, Kerbel RS. Mutant ras oncogenes upregulate VEGF/VPF expression:implication for induction and inhibition of tumor angiogenesis. Cancer res,1995,55 (20):4575-4580.
    3.金惠铭,卢建,殷莲华,等.细胞分子病理生理学[M].河南:郑州大学出版社,2002.267.
    4. Keck PJ, Hauser SD, Krivi G, Sanzo K, Warren T, Feder J, Connolly DT. Vascular permeability factor, an endothelial cell mitogen related to PDGF. Science,1989, 246(4935):1309-1312.
    5. Moriyama M, Kumagai S, Kawashiric S. Immunohisochemical study of tumor angiogenesis in oral squamous cell carcinoma. Oral Oncol,1997,33(5):369-374.
    6. Charnock Jones DS, Sharkey AM, Boocock CA, Ahmed A, Plevin R, Ferrara N, Smith SK. Vascular endothelial growth factor receptor localization ad activation in human trophoblast and choriocarainoma cell. Bolo Reprod,1994,51(3):524-530.
    7. Veikkola T, Karkkainen M, Claesson-Welsh L, Alitalo K. Regulation of angiogenesis via vascular endothelial growth factor receptors. Cancer Res,2000, 60(2):203-212.
    8. Yonemura Y, Fushida S, Bando E, Kinoshita K, Miwa K, Endo Y, Sugiyama K, Partanen T, Yamamoto H, Sasaki T. Lymphangiogenesis and the vascular endothelial growth factor receptor (VEGFR) 3in gastric cancer. Eur J Cancer,2001,37 (7): 918-923.
    9. Soufla G, Sifakis S, Baritaki S, Zafiropoulos A, Koumantakis E, Spandidos DA. VEGF, FGF2, TGFB1 and TGFBR1 mRNA expression level s correlate with the malignant transformation of the uterine cervix. Cancer Lett,2005,221(1):105-118.
    10. Xu T, Chen D, Chen J. Expression of vascular endothelial growth factor C and it s correlation wit h lymph node metastasis in colorectal carcinoma. J Huazhong Univ Sci Technolog Med Sci,2004,24 (6):596-601.
    11. Ziemer LS, Koch CJ, Maity A,Magarelli DP, Horan AM, Evans SM. Hypoxia and VEGF mRNA expression in human tumors. Neoplasia,2001,3(6):500-509.
    12. Kerbel R, Folkman J. Clinical translation of angiogenesis inhibitors. Nat Rev Cancer,2002,2(10):727-739.
    13. Sano T, Horiguchi H. Von Hippel-Lindau disease. Microsc Res Tech,2003,60 (2): 159-164.
    14.杨丽蓉,徐晓玉.血管内皮生长因子对血管内皮细胞增殖与DNA合成的影响.黑龙江医学,2004,28(1):35-36.
    15. Thurston G, Suri C, Smith K,McClain J, Sato TN, Yancopoulos GD, McDonald DM. Leakage-resistant blood vessels in mice transgenically overexpressing angiopoietin-1. Science,1999,286(5449):2511-2514.
    16. Ferrara N. VEGF:an update on biology and therapeutic aspects. Curr opin biotechnol,2000,11(6):617-624.
    17. Pidgeon GP, Barr MP, Harmey JH,Foley DA, Bouchier-Hayes DJ. Vascular endothelial growth factor (VEGF) upregulates Bcl-2 and inhibits apoptosis in human and murine mammary adenocarcinoma cells. Br J Cancer,2001,85(2):273-278.
    18. Carbone JE, Ohm DP. Immune dysfunction in cancer patients. Oncology (Huntingt),2002,16(1 Suppl 1):11-18.
    19. Netti PA, Hamberg LM, Babich JW, Kierstead D, Graham W, Hunter GJ, Wolf GL, Fischman A, Boucher Y, Jain RK. Enhancement of fluid filtration across tumor vessels:implication for delivery of macromolecules. Proc Natl Acad Sci USA,1999, 96(6):3137-3142.
    20. Lee CG, Heijin M, di Tomaso E, Griffon-Etienne G, Ancukiewicz M. Anti-vascular endothelial growth factor treatment augments tumor radiation response under nomoxic or hypoxic conditions. Cancer Res,2000,60:5565-5570.
    21. Griffoen AW, Molenma G. Angiogenesis:potentials for pharmacologic intervention in the treatment of cancer, cardiovascular disease, and chronic inflammation. Pharmacol Rev,2000,52:237-268.
    22. Tong RT, Boucher Y, Kozin SV, Winkler F, Hicklin DJ, Jain RK. Vascular normalization by vascular endothelial growth factor receptor 2 blockade induces a pressure gradient across the vasculature and improves drug penetration in tumors. Cancer Res,2004,64(11):3731-3736.
    23. Gupta VK, Jaskowiak NT, Beckett MA, Mauceri HJ, Grunstein J, Johnson RS, Calvin DA, Nodzenski E, Pejovic M, Kufe DW, Posner MC, Weichselbaum RR. Vascular endothelial growth factor enhances endothelial cell survival and tumor radioresistance. Cancer Res,2002,8(1):47-54.
    24. Bergers G, Benjamin LE. Tumorigenesis and the angiogenic switch. Nat Rev Cancer,2003,3(6):401-410.
    25. Kerbel RS. Inhibition of tumor angiogenesis as a strategy to circumvent acquired resistance to anti-cancer therapeutic agents. BioEssays,1991,13(1):31-36.
    26. Hurwitz H, Fehrenbacher L, Novotny W, Cartwright T, Hainswoeth J, Heim W, Berlin J, Baron A, Griffing S, Holmgren E, Ferrara N, Fyfe G, Rogers B, Ross R, Kabbinavar F. Bevacizumab plus irinotecan, fluorouracil, and leucovorin for metastatic colorectal cancer. N Engl J Med,2004,350 (23):2335-2342
    27. Jayson GC, Zweit J, Jackson A, Mulatero C, Julyan P, Ranson M, Broughton L, Wagstaff J, Hakannson L, Groenewegen G, Bailey J, Smith N, Hastings D, Lawrance J, Haroon H, Ward T, McGown AT, Tang M, Levitt D, Marreaud S, Lehmann FF, Herold M, Zwierzina H. Molecular imaging and biological evaluation of HuMV833 anti-VEGF antibody:implications for trial design of antiangiogenic antibodies. J Natl Cancer Inst,2002,94(19):1484-1493
    28. Bianco F, Basini G, Grasselli F. Angiogenic activity of swine granulosa cells: effect s of hypoxia and vascular endothelial growth factor trap R1R2, a VEGF blocker. Domest Anim Endocrinol,2005,28(3):308-319.
    29. Hunt S. Technology Evolution:ICM-1C11, ImClone Systems. Curr Opin Mol Ther,2001,3(4):418-424.
    30. Fiedler W, Serve H, Dohner H,Schwittay M, Ottmann OG, O'Farrell AM, Bello CL, Allred R, Manning WC, Cherrington JM, Louis SG, Hong W, Brega NM, Massimini G, Scigalla P, Berdel WE, Hossfeld DK. A phase 1 study of SU1248 in the treatment of patients with refractory of resistant acute myeloid leukemia (AML) or not menable to conventional therapy for the disease. Blood,2005,105(3):986-993.
    31. Goldbrunner RH, Bendszus M, Wood J, Kiderlen M, Sasaki M, Tonn JC. PTK787/ZK222584, an inhibitor of vascular endothelial growth factor receptor tyrosine kinases, decreases glioma growth and vascularization. Neurosurgery,2004, 55(2):426-432.
    32. Ciardiello F, Caputo R, Damiano V, Caputo R, Troiani T, Vitagliano D, Carlomagno F, Veneziani BM, Fontanini G, Bianco AR, Tortora G. Antitumor effects of ZD6474, a small molecule vascular endothelial growth factor receptor tyrosine kinase inhibitor, with additional activity against epidermal growth factor receptor tyrosine kinase. Clin Cancer Res,2003,9(4):1546-1554
    33. Mahendra G, Kumar S, Isayeva T, Mahasreshti PJ, Curiel DT, Stockardt CR, Grizzle WE, Alapati V, Singh R, Siegal GP, Meleth S, Ponnazhagan S. Antiangiogenic cancer gene therapy by adeno-associated virus 2-mediated stable expression of the soluble FMS-like tyrosine kinase-1 receptor. Cancer Gene Ther,2005; 12:26-34
    34.糜军,陈诗书.腺病毒介导的反义VEGF与可溶性VEGF受体联合对实验性MM45 T. Li小鼠肿瘤生长及转移的影响.癌症,2001,20(8):794-800.
    35.白向阳,倪剑锋,吕安国,吴文芳,牛瑞芳等.杀伤血管内皮生长因子受体1阳性细胞的靶向毒素.生物化学与生物物理进展,2005,32(4):365-370.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700