以人类免疫缺陷病毒整合酶为靶点的药物设计及耐药机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
艾滋病是由I型人类免疫缺陷病毒(Human immunodeficiency virus I,HIV-1)感染引发全身免疫系统严重损害,使人体对威胁生命的各种病原体丧失抵抗能力,最后导致死亡的严重疾病。目前,艾滋病仍是不治之症。整合酶(Integrase,IN)介导病毒cDNA与宿主细胞DNA的整合过程,在HIV-1生活周期中起必不可少的作用,且人体内没有IN的功能类似物,这使得IN抑制剂对人体正常细胞的毒性作用较小。近来,IN已成为发展抗艾滋病药物的最具吸引力的靶标,以IN为靶点开发新药及进行抑制剂改造成为研究热点。此外,现有的抗艾滋病药物大都产生了耐药性,这是成功进行高效抗逆转录病毒疗法(Highly active antiretroviral therapy,HAART)及新药设计的重大障碍。进一步从结构与功能的角度阐明耐药机制,特别是弄清最有前景的二酮酸(Diketoacids,DKAs)类IN抑制剂引起的耐药性机理,将有助于更合理地使用和设计针对IN的抑制剂。
     本论文的工作主要包括三部分:第一部分,是基于DKAs类IN抑制剂的药效团模型构建及针对IN蛋白的药效团模型构建;第二部分,是基于DKAs类IN抑制剂的三维定量构效关系(Quantitative Structure-Activity Relationships,QSAR)研究;第三部分,是多种IN耐药突变体的共有耐药机理研究。
     一.基于DKAs类IN抑制剂及IN蛋白的药效团模型构建
     药效团模型的构建可以找出化合物中对活性具有重要作用的药效团元素特征,利用建立好的模型进行数据库搜索,可能发现结构新颖的活性小分子。目前已获得几类DKAs小分子抑制剂的结构,且IN的晶体结构已被解析,本论文从配体及受体两个角度出发,进行DKAs类IN抑制剂的药效团模型构建,目前国际上还未见类似的工作报道。以作用于HIV-1 IN的DKAs类抑制剂构建药效团模型,尝试将抑制剂与药效团叠合后的构象和抑制剂与IN的对接构象进行叠合,得到药效团模型与分子对接构象中IN残基的相对位置,并基于抑制剂的药效团模型特征与周围IN氨基酸残基位置的匹配情况进行药效团特征的修改。所得最优药效团由1个疏水特征、3个氢键特征对和1个氢键供体特征组成。该药效团的命中物质量(Goodness of hit,GH)为0.56,产出率达63.6%,假阳性率为0.41%。结果表明,该药效团模型产出率较高,假阳性率较低,具有较好的置信度。另外,基于5类DKAs与IN的合理结合模式,建立了基于IN受体的药效团模型。分析了药效特征元素与周围蛋白残基环境的吻合程度。将基于配体的药效团与基于受体的药效团相互验证,确定了DKAs与IN相互作用中关键的相互作用残基及关键的药效特征元素。所得药效团模型及关键特征元素可用于数据库搜索,以发现新的具有DKAs药效团特征的活性化合物,也可为先导化合物的改造提供帮助。
     二.基于DKAs类IN抑制剂的QSAR研究
     通过研究药物小分子的化学结构和生物活性之间的关系,获得三维定量构效关系模型,所得模型可用来预测药物小分子的作用方式及改造后的化合物活性,并可指导新药设计和先导化合物的优化等。虽然国内外已有一些关于IN抑制剂的结构改造及构效关系研究发表,然而,迄今为止,尚未见到专门针对DKAs类IN抑制剂进行的构效关系研究。DKAs是目前最有前景的IN抑制剂,进行DKAs抑制剂的构效关系研究,会对更好的理解DKAs抑制剂与IN的相互作用以及如何改造DKAs类抑制剂提供帮助。论文将药效团模型、分子对接及三维定量构效关系研究相结合,进行了DKAs类IN抑制剂的构效关系研究。首先,构建了基于DKAs抑制剂的药效团模型。用所得药效团模型进行基于药效团模型的分子叠合,同时,将公共骨架叠合法作为对比,以寻找适合于体系的最佳模型。最佳模型由比较相似因子分析方法(Comparative molecular similarity indices analysis,CoMSIA)所得,即CoMSIA model 2。该模型具有最佳交叉验证回归系数(q2 = 0.665)以及非交叉回归系数(r2 = 0.955),并对测试集分子作出的较好的预测(r2 = 0.559)。为了评价所得最优QSAR模型的合理性,将IN与DKAs抑制剂小分子的对接结果与QSAR模型叠合,考察该模型所建议的取代基团是否与IN蛋白的周围残基环境相吻合。在此基础上对DKAs分子结构提出了合理的改造意见。
     三.多种IN耐药突变体的共有耐药机理研究
     现有的抗艾滋病药物大都产生了耐药性,HIV产生耐药突变是成功进行HARRT及新药设计的重大障碍。为了使已有的以及新开发的抑制剂在抗病毒治疗中最大限度的发挥其药效,进一步从结构与功能的角度,对HIV-1在这些抑制剂存在下产生的耐药性、特别是针对IN的耐药性机制进行研究是新的热点。已有关于IN突变体的耐药机理研究多来自对一个IN耐药突变体与野生型IN的比较,但多种耐药突变体IN共有的耐药机理尚未见报道。为了解DKAs引起的多种耐药株共有的耐药机理,论文选择三种针对S-1360耐药的HIV-1突变株,用分子对接和分子动力学模拟阐明IN对DKAs抑制剂耐药的机理。结果表明,在突变体中,由于T66残基突变成I66,阻止了抑制剂S-1360进一步进入结合口袋,因此在突变体中,S-1360与IN的结合位置靠近功能loop 3区却远离与病毒DNA结合的关键残基K156和K159,不能阻止病毒DNA与IN的结合;另外,发现对IN活性起重要作用的loop 3区和helix 1区的二级结构长度比野生型复合物中增长,且在野生型复合物中,抑制剂通过与helix 1区的E152及sheet 1区的D64形成氢键抑制了该区域的柔性,而在突变复合物中,抑制剂不与IN这两个区域的残基形成任何氢键作用,因此不能抑制该区域的柔性,使该区域表现出较高柔性。抑制剂结合位置的变化及loop 3区和helix 1区的构象变化是导致耐药性产生的主要原因。多种耐药突变体共有的耐药机理将对基于突变体复合物进行的3D药效团构建,对提高药物抑制IN耐药突变体的活性以及研发新药具有很大帮助。
Acquired immunodeficiency syndrome (AIDS) is caused by human immunodeficiency virus (HIV). This disease results in heavily damage of human immune system, then makes people lost the resist to all kinds of pathogens, and finally lead to death. Nowadays, AIDS remains an irremediable disease. An essential step in HIV replication is the integration of the viral cDNA into host chromosomal DNA by integrase (IN), IN has no sequence homologue in the human host, therefore, it is considered as a pivotal and validated drug target. Recently, new drug development and inhibitor modification targeting IN become the focus of the medical research. Besides, drug resistance against most of the anti-HIV drugs has appeared. The drug resistant mutations in HIV are major impediment to successful highly active antiretroviral therapy (HAART) and new drug design. Understanding the mechanism of HIV drug resistance in terms of structure and function will be useful for the rational inhibitor modification and drug design targeting IN, whereas, the mechanism of drug resistance caused by diketoacids (DKAs), the most potent IN inhibitors is still unknown.
     A pharmacophore model could be used for database searching and new structural entities revealing. There are several classes of DKAs structures have been reported, simultaneously, the catalytic domain structure of IN with 5-CITEP determined by X-ray crystallography is available. Hence, both ligand based and receptor based pharmacophore models are developed in this study, no similar studies have been reported. Firstly, we developed a three-dimensional pharmacophore model for HIV IN from DKAs inhibitors, inhibitor conformations mapped into the pharmacophore model were superimposed with their docking conformations. Corresponding positions between the pharmacophore model and IN residues were thus obtained. The pharmacophore model was refined according to whether the pharmacophore features were compatible with residues around them. An optimal pharmacophore model was generated and consisted of 1 hydrophobic feature, 3 hydrogen pair features and 1 hydrogen-bond donor feature. This pharmacophore model based on DKAs had high reliability with a goodness of hit (GH) score of 0.56, a high percentage yield of actives (Y) of 63.6.1% and a lower false positive rate (FP) of 0.41%. The pharmacophore model had high reliability. Additionally, a receptor-based pharmacophore model was generated according to the binding mode between IN and 6 classes of DKAs. We attempted to refine the obtained pharmacophore model according to the corresponding residues of IN around pharmacophore features. Finally, the key interactions and the common pharmacophore features were obtained by comparing the pharmacophore models based on ligands and acceptor. The final pharmacophore model can contribute to the discovery and design of new IN inhibitors.
     A QSAR (Quantitative structure-activity relationship) analysis has been done to gain the relationship between structure and biological activity of drug molecules. The model obtained from QSAR analysis can be used to predict the binding mode and the biological activity of new inhibitors, and the model can also be used to guide the new drug design and lead compound optimization. There are some studies on QSAR analysis of IN inhibitors, whereas, we found no QSAR model of IN DKAs inhibitors was built. DKAs are the most potential IN inhibitors, QSAR studies on DKAs will benefit the understanding of interaction between DKAs and IN, and will benefit the modification of IN inhibitors. In this paper, QSAR analysis combined with pharmacophore model construction and molecular docking have been done against IN DKAs inhibitors. Firstly, a pharmacophore model was built. The structure alignment for all the inhibitors were performed based on the pharmacophore; for a comparison, the common substructure-based alignment was performed in the structure alignment of inhibitors. As a result, a optimal CoMSIA model gains a conventional correlation coefficient r2 of 0.955 and a leave-one-out cross-validated coefficient q2 of 0.665, and the model also can predict the activities of the test DKAs well (r2 = 0.559). In order to validate the rationality of the optimal CoMSIA model, the CoMSIA contours were mapped into the binding mode of IN and DKAs, and the rationality of the substitutions suggested by QSAR model were investigated according to the IN residues around these substitutions. Reasonably modification rules were suggested based on this QSAR study.
     Drug resistance against most of the anti-HIV drugs has appeared. The drug resistant mutations in HIV are major impediment to successful highly active antiretroviral therapy (HAART) and new drug design. In order to make drugs take full effects, understanding the mechanism of HIV drug resistance in terms of structure and function became a attractive issue. Previous studies on drug resistant IN mutants are all from comparing 1 drug-resistant IN strain with wild-type IN, whether the mechanism mutually existed for multiple drug-resistant strains remains unclear. In order to understand the drug resistance mechanism mutually existed for multiple drug-resistant strains caused by the most potent IN inhibitors of DKAs, 3 S-1360-resistant HIV strains were selected and molecular docking and molecular dynamics simulations were performed to illustrate the mechanism of drug resistance against DKAs inhibitors. The results showed that: after Thr66 was mutated to Ile66 in the three mutants, the long side chain of Ile66 occupied the center of IN active pocket, then prevented the inhibitor S-1360 from moving into depth of the active pocket, thus, the binding site of S-1360 is close to loop 3 region whereas far from the residues K156 and K159 which are crucial for virus DNA binding; Additionally, it was found from secondary structural analyses that the length of loop 3 and helix 1 regions are longer in the three mutant complexes in comparison to the wild type IN complex. Also, there are hydrogen bonds between S-1360 and E152 in helix 1 region, the hydrogen bond depressed the flexibility of the region, whereas, in the three mutant complexes, there is no hydrogen bond between S-1360 and the residues in helix 1 and loop 3 regions of IN, therefore, the regions show higher flexibility in the three mutant complexes. All above results contribute to drug resistance. Altogether, the drug resistance lies in the different binding sites of the inhibitor and the conformation changes of loop 3 and helix 1 regions. The mechanism mutually existed for multiple drug-resistant strains will be useful for improving the inhibition potency of DKA inhibitors against drug-resistant IN, and rational inhibitor modification and design targeting IN.
引文
1中国卫生部. 2007年中国艾滋病防治联合评估报告. 2007,
    2 D. Finzi, J. Blankson, J. D. Siliciano, J. B. Margolick, K. Chadwick, T. Pierson, K. Smith, J. Lisziewicz, F. Lori, C. Flexner, T. C. Quinn, R. E. Chaisson, E. Rosenberg, B. Walker, S. Gange, J. Gallant, and R. F. Siliciano. Latent infection of CD4(+) T cells provides a mechanism for lifelong persistence of HIV-1, even in patients on effective combination therapy. Nature Medicine. 1999,5(5):512-517
    3曾毅,陈启民, and耿运琪.艾滋病毒及其有关病毒,第一版(南开大学出版社,天津, 1999).
    4李芳琼,丁倩, and詹金彪. HIV-1整合酶及其抑制剂的研究进展.中国生物工程杂志. 2008,28(1):80-86
    5 W. Greene. The brightening future of HIV therapeutics. Nature Immunology. 2004,5(9):867-871
    6 D. Wilkinson. HIV-1: Cofactors provide the entry keys. Current Biology. 1996,6(9):1051-1053
    7 D. C. Chan, D. Fass, J. M. Berger, and P. S. Kim. Core structure of gp41 from the HIV envelope glycoprotein. Cell. 1997,89(2):263-273
    8 W. Weissenhorn, A. Dessen, S. C. Harrison, J. J. Skehel, and D. C. Wiley. Atomic structure of the ectodomain from HIV-1 gp41. Nature. 1997,387(6631):426-430
    9 S. B. Jiang, Q. Zhao, and A. K. Debnath. Peptide and non-peptide HIV fusion inhibitors. Current Pharmaceutical Design. 2002,8(8):563-580
    10王希成.生物化学,第二版(清华大学出版社,北京,2005).
    11 F. E. McCutchan, M. O. Salminen, J. K. Carr, and D. S. Burke. HIV-1 genetic diversity. Aids. 1996,10:S13-S20
    12 A. Mazumder, D. Cooney, R. Agbaria, M. Gupta, and Y. Pommier. Inhibition of Human-Immunodeficiency-Virus Type-1 Integrase by 3'-Azido-3'-Deoxythymidylate. Proceedings of the National Academy of Sciences of the United States of America. 1994,91(13):5771-5775
    13 A. Pani and M. E. Marongiu. Anti-HIV-1 integrase drugs: How far from the shelf? Current Pharmaceutical Design. 2000,6(5):569-584
    14 J. C. Chermann, F. Barré-Sinoussi, C. Dauguet, F. Brun-Vezinet, C. Rouzioux, W. Rozenbaum, and L. Montagnier. Isolation of a new retrovirus in a patient at risk for acquired immunodeficiency syndrome. Antibiotics and chemotherapy 1983,32:48-53
    15 D. J. Hazuda, P. Felock, M. Witmer, A. Wolfe, K. Stillmock, J. A. Grobler, A. Espeseth, L. Gabryelski, W. Schleif, C. Blau, and M. D. Miller. Inhibitors of strand transfer that prevent integration and inhibit HIV-1 replication in cells. Science. 2000,287(5453):646-650
    16 R. G. Karki, Y. Tang, T. R. Burke, and M. C. Nicklaus. Model of full-length HIV-1 integrase complexed with viral DNA as template for anti-HIV drug design. Journal of Computer-Aided Molecular Design. 2004,18(12):739-760
    17 M. Katzman and M. Sudol. Mapping viral DNA specificity to the central region of integrase by using functional human immunodeficiency virus type 1 visna virus chimeric proteins. Journal of Virology. 1998,72(3):1744-1753
    18 D. J. Kim, Y. T. Oh, S. K. Lee, and C. G. Shin. Analysis of integration activity of humanimmunodeficiency virus type-1 integrase. Molecules and Cells. 1999,9(4):446-451
    19 T. M. Jenkins, D. Esposito, A. Engelman, and R. Craigie. Critical contacts between HIV-1 integrase and viral DNA identified by structure-based analysis and photo-crosslinking. Embo Journal. 1997,16(22):6849-6859
    20 J. C. H. Chen, J. Krucinski, L. J. W. Miercke, J. S. Finer-Moore, A. H. Tang, A. D. Leavitt, and R. M. Stroud. Crystal structure of the HIV-1 integrase catalytic core and C-terminal domains: A model for viral DNA binding. Proceedings of the National Academy of Sciences of the United States of America. 2000,97(15):8233-8238
    21 C. S. Adamson and E. O. Freed. Recent progress in antiretrovirals - lessons from resistance. Drug Discovery Today. 2008,13(9-10):424-432
    22 N. Tsurutani, M. Kubo, Y. Maeda, T. Ohashi, N. Yamamoto, M. Kannagi, and T. Masuda. Identification of critical amino acid residues in human immunodeficiency virus type 1 IN required for efficient proviral DNA formation at steps prior to integration in dividing and nondividing cells. Journal of Virology. 2000,74(10):4795-4806
    23 R. A. P. Lutzke, N. A. Eppens, P. A. Weber, R. A. Houghten, and R. H. A. Plasterk. Identification of a Hexapeptide Inhibitor of the Human-Immunodeficiency-Virus Integrase Protein by Using a Combinatorial Chemical Library. Proceedings of the National Academy of Sciences of the United States of America. 1995,92(25):11456-11460
    24 J. M. McCune, L. B. Rabin, M. B. Feinberg, M. Lieberman, J. C. Kosek, G. R. Reyes, and I. L. Weissman. Endoproteolytic Cleavage of Gp160 Is Required for the Activation of Human Immunodeficiency Virus. Cell. 1988,53(1):55-67
    25 S. M. Hammer. Advances in antiretroviral therapy and viral load monitoring. Aids. 1996,10:S1-S11
    26 J. Cohen. Therapies: Confronting the limits of success. Science. 2002,296(5577):2320-2324
    27 N. J. Anthony. HIV-1 integrase: A target for new AIDS chemotherapeutics. Current Topics in Medicinal Chemistry. 2004,4(9):979-990
    28 D. J. Hazuda, N. J. Anthony, R. P. Gomez, S. M. Jolly, J. S. Wai, L. H. Zhuang, T. E. Fisher, M. Embrey, J. P. Guare, M. S. Egbertson, J. P. Vacca, J. R. Huff, P. J. Felock, M. V. Witmer, K. A. Stillmock, R. Danovich, J. Grobler, M. D. Miller, A. S. Espeseth, L. X. Jin, I. W. Chen, J. H. Lin, K. Kassahun, J. D. Ellis, B. K. Wong, W. Xu, P. G. Pearson, W. A. Schleif, R. Cortese, E. Emini, V. Summa, M. K. Holloway, and S. D. Young. A naphthyridine carboxamide provides evidence for discordant resistance between mechanistically identical inhibitors of HIV-1 integrase. Proceedings of the National Academy of Sciences of the United States of America. 2004,101(31):11233-11238
    29 B. A. Boyle. Recent developments in HIV research. AIDS Read. 2002,12(9):390-394
    30 R. Steigbigel, P. Kumar, J. Eron, M. Schechter, M. Markowitz, M. Loufty, J. Zhao, R. Isaacs, B. Nguyen, and H. Teppler. Results of BENCHMRK-2, a Phase III Study Evaluating the Efficacy and Safety of MK-0518, a Novel HIV-1 Integrase Inhibitor, in Patients with Triple-class Resistant Virus. 14th Conference on Retroviruses and Opportunistic Infections, February, 2007, Los Angeles. Abstract 105bLB.
    31 H. M. Berman, J. Westbrook, Z. Feng, G. Gilliland, T. N. Bhat, H. Weissig, I. N. Shindyalov, and P. E. Bourne. The Protein Data Bank. Nucleic Acids Research. 2000,28(1):235-242
    32陈凯先and蒋华良.计算机辅助药物设计-原理、方法及应用,第一版(上海科学技术出版社,上海, 2000).
    33徐筱杰,侯廷军,乔学斌, and章威.计算机辅助药物分子设计,第一版(化学工业出版社,北京, 2004).
    34 W. P. Walters, M. T. Stahl, and M. A. Murcko. Virtual screening - an overview. Drug Discovery Today. 1998,3(4):160-178
    35 G. M. Crippen. Distance Geometry Approach to Rationalizing Binding Data. Journal of Medicinal Chemistry. 1979,22(8):988-997
    36 A. J. Hopfinger. A Qsar Investigation of Dihydrofolate-Reductase Inhibition by Baker Triazines Based Upon Molecular Shape-Analysis. Journal of the American Chemical Society. 1980,102(24):7196-7206
    37 R. D. Cramer, D. E. Patterson, and J. D. Bunce. Comparative Molecular-Field Analysis (Comfa) .1. Effect of Shape on Binding of Steroids to Carrier Proteins. Journal of the American Chemical Society. 1988,110(18):5959-5967
    38 G. Klebe, U. Abraham, and T. Mietzner. Molecular Similarity Indexes in a Comparative-Analysis (Comsia) of Drug Molecules to Correlate and Predict Their Biological-Activity. Journal of Medicinal Chemistry. 1994,37(24):4130-4146
    39 A. N. Jain, K. Koile, and D. Chapman. Compass - Predicting Biological-Activities from Molecular-Surface Properties - Performance Comparisons on a Steroid Benchmark. Journal of Medicinal Chemistry. 1994,37(15):2315-2327
    40 H. J. Bohm. Ludi - Rule-Based Automatic Design of New Substituents for Enzyme-Inhibitor Leads. Journal of Computer-Aided Molecular Design. 1992,6(6):593-606
    41 H. J. Bohm. Prediction of binding constants of protein ligands: A fast method for the prioritization of hits obtained from de novo design or 3D database search programs. Journal of Computer-Aided Molecular Design. 1998,12(4):309-323
    42 P. J. Goodford. A Computational-Procedure for Determining Energetically Favorable Binding-Sites on Biologically Important Macromolecules. Journal of Medicinal Chemistry. 1985,28(7):849-857
    43 D. N. A. Boobbyer, P. J. Goodford, P. M. McWhinnie, and R. C. Wade. New Hydrogen-Bond Potentials for Use in Determining Energetically Favorable Binding-Sites on Molecules of Known Structure. Journal of Medicinal Chemistry. 1989,32(5):1083-1094
    44 R. X. Wang, Y. Gao, and L. H. Lai. LigBuilder: A multi-purpose program for structure-based drug design. Journal of Molecular Modeling. 2000,6(7-8):498-516
    45 I. D. Kuntz, J. M. Blaney, S. J. Oatley, R. Langridge, and T. E. Ferrin. A Geometric Approach to Macromolecule-Ligand Interactions. Journal of Molecular Biology. 1982,161(2):269-288
    46 T. J. A. Ewing and I. D. Kuntz. Critical evaluation of search algorithms for automated molecular docking and database screening. Journal of Computational Chemistry. 1997,18(9):1175-1189
    47 M. Rarey, B. Kramer, T. Lengauer, and G. Klebe. A fast flexible docking method using an incremental construction algorithm. Journal of Molecular Biology. 1996,261(3):470-489
    48 A. N. Jain. Surflex: Fully automatic flexible molecular docking using a molecular similarity-based search engine. Journal of Medicinal Chemistry. 2003,46(4):499-511
    49 G. Jones, P. Willett, R. C. Glen, A. R. Leach, and R. Taylor. Development and validation of a genetic algorithm for flexible docking. Journal of Molecular Biology. 1997,267(3):727-748
    50 D. S. Goodsell and A. J. Olson. Automated Docking of Substrates to Proteins by Simulated Annealing. Proteins-Structure Function and Genetics. 1990,8(3):195-202
    51 G. M. Morris, D. S. Goodsell, R. S. Halliday, R. Huey, W. E. Hart, R. K. Belew, and A. J. Olson.Automated docking using a Lamarckian genetic algorithm and an empirical binding free energy function. Journal of Computational Chemistry. 1998,19(14):1639-1662
    52 B. A. Luty, Z. R. Wasserman, P. F. W. Stouten, C. N. Hodge, M. Zacharias, and J. A. McCammon. A Molecular Mechanics Grid Method for Evaluation of Ligand-Receptor Interactions. Journal of Computational Chemistry. 1995,16(4):454-464
    53 C. M. Venkatachalam, X. Jiang, T. Oldfield, and M. Waldman. LigandFit: a novel method for the shape-directed rapid docking of ligands to protein active sites. Journal of Molecular Graphics & Modelling. 2003,21(4):289-307
    54 Z. Zsoldos, D. Reid, A. Simon, B. S. Sadjad, and A. P. Johnson. eHITS: An innovative approach to the docking and scoring function problems. Current Protein & Peptide Science. 2006,7(5):421-435
    55 R. A. Friesner, J. L. Banks, R. B. Murphy, T. A. Halgren, J. J. Klicic, D. T. Mainz, M. P. Repasky, E. H. Knoll, M. Shelley, J. K. Perry, D. E. Shaw, P. Francis, and P. S. Shenkin. Glide: A new approach for rapid, accurate docking and scoring. 1. Method and assessment of docking accuracy. Journal of Medicinal Chemistry. 2004,47(7):1739-1749
    56 Y. C. Martin. "Distance comparisons: A new strategy for examining three-dimensional structure-activity relationships," in Classical and Three-Dimensional Qsar in Agrochemistry (Amer Chemical Soc, Washington, 1995), pp. 318~329.
    57 Y. Kurogi and O. F. Guner. Pharmacophore modeling and three-dimensional database searching for drug design using catalyst. Current Medicinal Chemistry. 2001,8(9):1035-1055
    58 G. Jones, P. Willett, and R. C. Glen. A genetic algorithm for flexible molecular overlay and pharmacophore elucidation. Journal of Computer-Aided Molecular Design. 1995,9(6):532-549
    59 Y. C. Martin, M. G. Bures, E. A. Danaher, J. Delazzer, I. Lico, and P. A. Pavlik. A Fast New Approach to Pharmacophore Mapping and Its Application to Dopaminergic and Benzodiazepine Agonists. Journal of Computer-Aided Molecular Design. 1993,7(1):83-102
    60牛彦,裴剑锋,吕雯, and雷小平.距离比较法构建M1受体激动剂药效团模型.化学学报. 2005,63(22):2021-2026
    61陈凯,程永浩, and杨华铮.距离比较法(DISCO)构建ALS抑制剂药效团模型.化学学报. 2002,60(3):518-523
    62郭彦伸,褚凤鸣, and郭宗儒.距离比较法构建表皮生长因子受体抑制剂的药效团模型.中国医学科学院学报. 2004,26(4):379-384
    63 S. D. PATEL and B. P. V. New leads for selective GSK-3 inhibition : pharmacophore mapping and virtual screening studies. Journal of computer-aided molecular design 2006,20(1):55-66
    64 A. Smellie, S. L. Teig, and P. Towbin. Poling - Promoting Conformational Variation. Journal of Computational Chemistry. 1995,16(2):171-187
    65 R. D. Cramer and S. DePriest. Implemented in the SYBYL program, 1996, Tripos Associates, St.Louis, MO, USA.
    66 Y. Patel, V. J. Gillet, G. Bravi, and A. R. Leach. A comparison of the pharmacophore identification programs: Catalyst, DISCO and GASP. Journal of Computer-Aided Molecular Design. 2002,16(8-9):653-681
    67 T. Langer and G. Wolber. Pharmacophore definition and 3D searches Drug Discovery Today: Technologies 2004,1(3):203-207
    68 C. Charlier, J. P. Henichart, F. Durant, and J. Wouters. Structural insights into human 5-lipoxygenase inhibition: Combined ligand-based and target-based approach. Journal ofMedicinal Chemistry. 2006,49(1):186-195
    69 S. J. Weiner, P. A. Kollman, D. A. Case, U. C. Singh, C. Ghio, G. Alagona, S. Profeta, and P. Weiner. A New Force-Field for Molecular Mechanical Simulation of Nucleic-Acids and Proteins. Journal of the American Chemical Society. 1984,106(3):765-784
    70 B. R. Brooks, R. E. Bruccoleri, B. D. Olafson, S. Swaminathan, and M. Karplus. CHARMM: A program for macromolecular energy, minmimization, and dynamics calculations. J Comp Chem. 1983,4:187-217
    71 A. T. Hagler, E. Huler, and S. Lifson. Energy Functions for Peptides and Proteins .1. Derivation of a Consistent Force-Field Including Hydrogen-Bond from Amide Crystals. Journal of the American Chemical Society. 1974,96(17):5319-5327
    72 G. Nemethy, M. S. Pottle, and H. A. Scheraga. Energy Parameters in Polypeptides .9. Updating of Geometrical Parameters, Nonbonded Interactions, and Hydrogen-Bond Interactions for the Naturally-Occurring Amino-Acids. Journal of Physical Chemistry. 1983,87(11):1883-1887
    73 H. J. C. Berendsen, J. P. M. Postma, W. F. Vangunsteren, A. Dinola, and J. R. Haak. Molecular-Dynamics with Coupling to an External Bath. Journal of Chemical Physics. 1984,81(8):3684-3690
    74 F. Dyda, A. B. Hickman, T. M. Jenkins, A. Engelman, R. Craigie, and D. R. Davies. Crystal-Structure of the Catalytic Domain of Hiv-1 Integrase - Similarity to Other Polynucleotidyl Transferases. Science. 1994,266(5193):1981-1986
    75 Y. Goldgur, R. Craigie, G. H. Cohen, T. Fujiwara, T. Yoshinaga, T. Fujishita, H. Sugimoto, T. Endo, H. Murai, and D. R. Davies. Structure of the HIV-1 integrase catalytic domain complexed with an inhibitor: A platform for antiviral drug design. Proceedings of the National Academy of Sciences of the United States of America. 1999,96(23):13040-13043
    76 J. Y. Wang, H. Ling, W. Yang, and R. Craigie. Structure of a two-domain fragment of HIV-1 integrase: implications for domain organization in the intact protein. Embo Journal. 2001,20(24):7333-7343
    77胡建平,柯国涛,常珊,陈慰祖, and王存新.用分子对接方法研究HIV-1整合酶与病毒DNA的结合模式.高等学校化学学报. 2008,29(7):1432-1437
    78 A. Eijkelenboom, R. Sprangers, K. Hard, R. A. P. Lutzke, R. H. A. Plasterk, R. Boelens, and R. Kaptein. Refined solution structure of the C-terminal DNA-binding domain of human immunovirus-1 integrase. Proteins-Structure Function and Genetics. 1999,36(4):556-564
    79 D. Esposito and R. Craigie. Sequence specificity of viral end DNA binding by HIV-1 integrase reveals critical regions for protein-DNA interaction. Embo Journal. 1998,17(19):5832-5843
    80 S. Maignan, J. P. Guilloteau, Q. Zhou-Liu, C. Clement-Mella, and V. Mikol. Crystal structures of the catalytic domain of HIV-1 integrase free and complexed with its metal cofactor: High level of similarity of the active site with other viral integrases. Journal of Molecular Biology. 1998,282(2):359-368
    81 N. Neamati. Structure-based HIV-1 integrase inhibitor design: a future perspective. Expert Opinion on Investigational Drugs. 2001,10(2):281-296
    82 M. L. Barreca, K. W. Lee, A. Chimirri, and J. M. Briggs. Molecular dynamics studies of the wild-type and double mutant HIV-1 integrase complexed with the 5CITEP inhibitor: Mechanism for inhibition and drug resistance. Biophysical Journal. 2003,84(3):1450-1463
    83 J. Greenwald, V. Le, S. L. Butler, F. D. Bushman, and S. Choe. The mobility of an HIV-1 integrase active site loop is correlated with catalytic activity. Biochemistry.1999,38(28):8892-8898
    84 J. A. Grobler, K. Stillmock, B. H. Hu, M. Witmer, P. Felock, A. S. Espeseth, A. Wolfe, M. Egbertson, M. Bourgeois, J. Melamed, J. S. Wai, S. Young, J. Vacca, and D. J. Hazuda. Diketo acid inhibitor mechanism and HIV-1 integrase: Implications for metal binding in the active site of phosphotransferase enzymes. Proceedings of the National Academy of Sciences of the United States of America. 2002,99(10):6661-6666
    85 X. Chen, M. Tsiang, F. Yu, M. Hung, G. S. Jones, A. Zeynalzadegan, X. Qi, H. Jin, C. U. Kim, S. Swaminathan, and J. M. Chen. Modeling, analysis, and validation of a novel HIV integrase structure provide insights into the binding modes of potent integrase inhibitors. Journal of Molecular Biology. 2008,380(3):504-519
    86 L. Zhao, M. K. O'Reilly, M. D. Shultz, and J. Chmielewski. Interfacial peptide inhibitors of HIV-1 integrase activity and dimerization. Bioorganic & Medicinal Chemistry Letters. 2003,13(6):1175-1177
    87 K. Krajewski, Y. Q. Long, C. Marchand, Y. Pommier, and P. P. Koller. Design and synthesis of dimeric HIV-1 integrase inhibitory peptides. Bioorganic & Medicinal Chemistry Letters. 2003,13(19):3203-3205
    88 K. Krajewski, C. Marchand, Y. Q. Long, Y. Pommier, and P. P. Roller. Synthesis and HIV-1 integrase inhibitory activity of dimeric and tetrameric analogs of indolicidin. Bioorganic & Medicinal Chemistry Letters. 2004,14(22):5595-5598
    89 V. R. de Soultrait, A. Caumont, V. Parissi, N. Morellet, M. Ventura, C. Lenoir, S. Litvak, M. Fournier, and B. Roques. A novel short peptide is a specific inhibitor of the human immunodeficiency virus type 1 integrase. Journal of Molecular Biology. 2002,318(1):45-58
    90 E. Zeinalipour-Loizidou, C. Nicolaou, A. Nicolaides, and L. G. Kostrikis. HIV-1 integrase: From biology to chemotherapeutics. Current Hiv Research. 2007,5(4):365-388
    91 G. C. Chi, N. Neamati, and V. Nair. Inhibition of the strand transfer step of HIV-1 integrase by non-natural dinucleotides. Bioorganic & Medicinal Chemistry Letters. 2004,14(19):4815-4817
    92 M. J. Ahn, C. Y. Kim, J. S. Lee, T. G. Kim, S. H. Kim, C. K. Lee, B. B. Lee, C. G. Shin, H. Huh, and J. Kim. Inhibition of HIV-1 integrase by galloyl glucoses from Terminalia chebula and flavonol glycoside gallates from Euphorbia pekinensis. Planta Medica. 2002,68(5):457-459
    93 J. Y. Lee, K. J. Yoon, and Y. S. Lee. Catechol-substituted L-chicoric acid analogues as HIV integrase inhibitors. Bioorganic & Medicinal Chemistry Letters. 2003,13(24):4331-4334
    94 H. Yoo, J. Y. Lee, J. H. Park, B. Y. Chung, and Y. S. Lee. Synthesis of styrylbenzofuran derivatives as styrylquinoline analogues for HIV-1 integrase inhibitor. II Farmaco. 2003,58(12):1243-1250
    95 K. C. Santhosh, E. De Clercq, C. Pannecouque, M. Witvrouw, T. L. Loftus, J. A. Turpin, R. W. Buckheit, and M. Cushman. Anti-HIV activity of a series of cosalane amino acid conjugates. Bioorganic & Medicinal Chemistry Letters. 2000,10(22):2505-2508
    96 C. P. Gordon, R. Griffith, and P. A. Keller. Control of HIV through the inhibition of HIV-1 integrase: A medicinal chemistry perspective. Medicinal Chemistry. 2007,3(2):199-220
    97 N. Neamati. Patented small molecule inhibitors of HIV-1 integrase: a 10-year saga. Expert Opinion on Therapeutic Patents. 2002,12(5):709-724
    98 R. Dayam and N. Neamati. Small-molecule HIV-1 integrase inhibitors: the 2001-2002 update. Current Pharmaceutical Design. 2003,9(22):1789-1802
    99 R. Dayam, T. Sanchez, O. Clement, R. Shoemaker, S. Sei, and N. Neamati. beta-Diketo acidpharmacophore hypotesis. 1. Discovery of a novel class of HIV-1 integrase inhibitors. Journal of Medicinal Chemistry. 2005,48(1):111-120
    100 S. Mario, S. Luciano, C. Fabrizio, P. Michele, D. Roberto, D. Alessandro, D. Massimiliano, Z. Zahrah, and N. Nouri. Design of novel bioisosteres ofβ-diketo acid inhibitors of HIV-1 integrase. Antiviral chemistry and chemotherapy. 2005,16(1):41-61
    101 L. C. Zhuang, J. S. Wai, M. W. Embrey, T. E. Fisher, M. S. Egbertson, L. S. Payne, J. P. Guare, J. P. Vacca, D. J. Hazuda, P. J. Felock, A. L. Wolfe, K. A. Stillmock, M. V. Witmer, G. Moyer, W. A. Schleif, L. J. Gabryelski, Y. M. Leonard, J. J. Lynch, S. R. Michelson, and S. D. Young. Design and synthesis of 8-hydroxy-[1,6]naphthyridines as novel inhibitors of HIV-1 integrase in vitro and in infected cells. Journal of Medicinal Chemistry. 2003,46(4):453-456
    102 X. N. Li and R. Vince. Conformation ally restrained carbazolone-containing alpha,gamma-diketo acids as inhibitors of HIV integrase. Bioorganic & Medicinal Chemistry. 2006,14(9):2942-2955
    103 M. A. Walker, T. Johnson, Z. Ma, J. Banville, R. Remillard, O. Kim, Y. Zhang, A. Staab, H. Wong, A. Torri, H. Samanta, Z. Lin, C. Deminie, B. Terry, M. Krystal, and N. Meanwell. Triketoacid inhibitors of HIV-integrase: A new chemotype useful for probing the integrase pharmacophore. Bioorganic & Medicinal Chemistry Letters. 2006,16(11):2920-2924
    104 V. Nair, V. Uchil, and N. Neamati. beta-Diketo acids with purine nucleobase scaffolds: Novel, selective inhibitors of the strand transfer step of HIV integrase. Bioorganic & Medicinal Chemistry Letters. 2006,16(7):1920-1923
    105 C. Desjobert, V. R. de Soultrait, A. Faure, V. Parissi, S. Litvak, L. Tarrago-Litvak, and M. Fournier. Identification by phage display selection of a short peptide able to inhibit only the strand transfer reaction catalyzed by human immunodeficiency virus type 1 integrase. Biochemistry. 2004,43(41):13097-13105
    106 R. G. Maroun, S. Gayet, M. S. Benleulmi, H. Porumb, L. Zargarian, H. Merad, H. Leh, J. F. Mouscadet, F. R. Troalen, and S. Fermandjian. Peptide inhibitors of HIV-1 integrase dissociate the enzyme oligomers. Biochemistry. 2001,40(46):13840-13848
    107 A. G. Cox and V. Nair. Novel HIV integrase inhibitors with anti-HIV activity: insights into integrase inhibition from docking studies. Antivir Chem Chemother 2006,7 343-353.
    108 F. Bailly and P. Cotelle. Anti-HIV activities of natural antioxidant caffeic acid derivatives: Toward an antiviral supplementation diet. Current Medicinal Chemistry. 2005,12(15):1811-1818
    109 C. Maurin, F. Bailly, G. Mbemba, J. F. Mouscadet, and P. Cotelle. Design, synthesis, and anti-integrase activity of catechol-DKA hybrids. Bioorganic & Medicinal Chemistry. 2006,14(9):2978-2984
    110 M. Sechi, M. Derudas, R. Dallocchio, A. Dessi, A. Bacchi, L. Sannia, F. Carta, M. Palomba, O. Ragab, C. Chan, R. Shoemaker, S. Sei, R. Dayam, and N. Neamati. Design and synthesis of novel indole beta-diketo acid derivatives as HIV-1 integrase inhibitors. Journal of Medicinal Chemistry. 2004,47(21):5298-5310
    111 M. L. Barreca, S. Ferro, A. Rao, L. De Luca, M. Zappala, A. M. Monforte, Z. Debyser, M. Witvrouw, and A. Chimirri. Pharmacophore-based design of HIV-1 integrase strand-transfer inhibitors. Journal of Medicinal Chemistry. 2005,48(22):7084-7088
    112 V. Nair, G. Chi, R. Ptak, and N. Neamati. HIV integrase inhibitors with nucleobase scaffolds: Discovery of a highly potent anti-HIV agent. Journal of Medicinal Chemistry. 2006,49(2):445-447
    113 M. Lataillade and M. J. Kozal. The hunt for HIV-1 integrase inhibitors. Aids Patient Care andStds. 2006,20(7):489-501
    114 G. C. G. Pais, X. C. Zhang, C. Marchand, N. Neamati, K. Cowansage, E. S. Svarovskaia, V. K. Pathak, Y. Tang, M. Nicklaus, Y. Pommier, and T. R. Burke. Structure activity of 3-aryl-1,3-diketo-containing compounds as HIV-1 integrase inhibitors. Journal of Medicinal Chemistry. 2002,45(15):3184-3194
    115 R. Di Santo, R. Costi, A. Roux, M. Artico, A. Lavecchia, L. Marinelli, E. Novellino, L. Palmisano, M. Andreotti, R. Amici, C. M. Galluzzo, L. Nencioni, A. T. Palamara, Y. Pommier, and C. Marchand. Novel bifunctional quinolonyl diketo acid derivatives as HIV-1 integrase inhibitors: Design, synthesis, biological activities, and mechanism of action. Journal of Medicinal Chemistry. 2006,49(6):1939-1945
    116 M. W. Embrey, J. S. Wai, T. W. Funk, C. F. Homnick, D. S. Perlow, S. D. Young, J. P. Vacca, D. J. Hazuda, P. J. Felock, K. A. Stillmock, M. V. Witmer, G. Moyer, W. A. Schleif, L. J. Gabryelski, L. X. Jin, I. W. Chen, J. D. Ellis, B. K. Wong, J. H. Lin, Y. M. Leonard, N. N. Tsou, and L. H. Zhuang. A series of 5-(5,6)-dihydrouracil substituted 8-hydroxy-[1,6]naphthyridine-7-carboxylic acid 4-fluorobenzylamide inhibitors of HIV-1 integrase and viral replication in cells. Bioorganic & Medicinal Chemistry Letters. 2005,15(20):4550-4554
    117 J. P. Guare, J. S. Wai, R. P. Gomez, N. J. Anthony, S. M. Jolly, A. R. Cortes, J. P. Vacca, P. J. Felock, K. A. Stillmock, W. A. Schleif, G. Moyer, L. J. Gabryelski, L. X. Jin, I. W. Chen, D. J. Hazuda, and S. D. Young. A series of 5-aminosubstituted 4-fluorobenzyl-8-hydroxy-[1,6]naphthyridine-7-carboxamide HIV-1 integrase inhibitors. Bioorganic & Medicinal Chemistry Letters. 2006,16(11):2900-2904
    118 H. L. Jin, R. Z. Cai, L. Schacherer, S. Jabri, M. Tsiang, M. Fardis, X. W. Chen, J. M. Chen, and C. U. Kim. Design, synthesis, and SAR studies of novel and highly active tri-cyclic HIV integrase inhibitors. Bioorganic & Medicinal Chemistry Letters. 2006,16(15):3989-3992
    119 M. Fardis, H. L. Jin, S. Jabri, R. Z. Cai, M. Mish, M. Tsiang, and C. U. Kim. Effect of substitution on novel tricyclic HIV-1 integrase inhibitors. Bioorganic & Medicinal Chemistry Letters. 2006,16(15):4031-4035
    120 C. da Silva, G. Del Ponte, A. F. Neto, and C. A. Taft. Rational design of novel diketoacid-containing ferrocene inhibitors of HIV-1 integrase. Bioorganic Chemistry. 2005,33(4):274-284
    121 G. L. Mustata, A. Brigo, and J. M. Briggs. HIV-1 integrase pharmacophore model derived from diverse classes of inhibitors. Bioorganic & Medicinal Chemistry Letters. 2004,14(6):1447-1454
    122 R. Dayam, T. Sanchez, and N. Neamati. Diketo acid pharmacophore. 2. Discovery of structurally diverse inhibitors of HIV-1 integrase. Journal of Medicinal Chemistry. 2005,48(25):8009-8015
    123 L. De Luca, M. L. Barreca, S. Ferro, N. Iraci, M. Michiels, F. Christ, Z. Debyser, M. Witvrouw, and A. Chimirri. A refined pharmacophore model for HIV-1 integrase inhibitors: Optimization of potency in the 1H-benzylindole series. Bioorganic & Medicinal Chemistry Letters. 2008,18(9):2891-2895
    124 G. Bujacz, M. Jaskolski, J. Alexandratos, A. Wlodawer, G. Merkel, R. A. Katz, and A. M. Skalka. High-Resolution Structure of the Catalytic Domain of Avian-Sarcoma Virus Integrase. Journal of Molecular Biology. 1995,253(2):333-346
    125 D. Van der Spoel, A. R. Van Buuren, E. Apol, P. J. Meulenhoff, D. P. Tieleman, A. L. T. M. Sijbers, B. Hess, K. A. Feenstra, E. Lindahl, R. van Drunen, and H. J. C. Berendsen. GROMACS User Manual, version 3.0, Nijenborgh 4, 9747 AG Groningen, The Netherlands. 2001, Internet:www.gromaccs.org
    126 E. Lindahl, B. Hess, and D. v. d. Spoel. GROMACS 3.0: a package for molecular simulation and trajectory analysis. Journal of Molecular Modeling. 2001,7(8):306-317
    127 B. Hess, H. Bekker, H. J. C. Berendsen, and J. Fraaije. LINCS: A linear constraint solver for molecular simulations. Journal of Computational Chemistry. 1997,18(12):1463-1472
    128 A. Hombrouck, B. Van Remoortel, M. Michiels, W. Noppe, F. Christ, A. Eneroth, B. L. Sahlberg, K. Benkestock, L. Vrang, N. G. Johansson, M. L. Barreca, L. De Luca, S. Ferro, A. Chimirri, Z. Debyser, and M. Witvrouw. Preclinical evaluation of 1H-benzylindole derivatives as novel human immunodeficiency virus integrase strand transfer inhibitors. Antimicrobial Agents and Chemotherapy. 2008,52(8):2861-2869
    129 A. C. Wallace, R. A. Laskowski, and J. M. Thornton. Ligplot - a Program to Generate Schematic Diagrams of Protein Ligand Interactions. Protein Engineering. 1995,8(2):127-134
    130 A. Savarino. In-Silico docking of HIV-1 integrase inhibitors reveals a novel drug type acting on an enzyme/DNA reaction intermediate Retrovirology. 2007,4:21
    131 L. S. Fisher and O. F. Guner. Seeking novel leads through structure-based pharmacophore design. Journal of the Brazilian Chemical Society. 2002,13(6):777-787
    132 T. L. Diamond and F. D. Bushman. Role of metal ions in catalysis by HIV integrase analyzed using a quantitative PCR disintegration assay. Nucleic Acids Research. 2006,34(21):6116-6125
    133 M. L. Barreca, F. Ortuso, N. Iraci, L. De Luca, S. Alcaro, and A. Chimirri. Tn5 transposase as a useful platform to simulate HIV-1 integrase inhibitor binding mode. Biochemical and Biophysical Research Communications. 2007,363(3):554-560
    134 R. Dayam, F. X. Detig, and N. Neamati. HIV-1 integrase inhibitors: 2003-2004 update. Medicinal Research Reviews. 2006,26(3):271-309
    135 E. C. Meng, B. K. Shoichet, and I. D. Kuntz. Automated Docking with Grid-Based Energy Evaluation. Journal of Computational Chemistry. 1992,13(4):505-524
    136 E. C. Meng, I. D. Kuntz, D. J. Abraham, and G. E. Kellogg. Evaluating Docked Complexes with the Hint Exponential Function and Empirical Atomic Hydrophobicities. Journal of Computer-Aided Molecular Design. 1994,8(3):299-306
    137 D. A. Gschwend, A. C. Good, and I. D. Kuntz. Molecular docking towards drug discovery. Journal of Molecular Recognition. 1996,9(2):175-186
    138 J. X. Deng, K. W. Lee, T. Sanchez, M. Cui, N. Neamati, and J. M. Briggs. Dynamic receptor-based pharmacophore model development and its application in designing novel HIT-1 integrase inhibitors. Journal of Medicinal Chemistry. 2005,48(5):1496-1505
    139 C. A. Sotriffer, H. H. Ni, and J. A. McCammon. HIV-1 integrase inhibitor interactions at the active site: Prediction of binding modes unaffected by crystal packing. Journal of the American Chemical Society. 2000,122(25):6136-6137
    140 R. D. Lins, J. M. Briggs, T. P. Straatsma, H. A. Carlson, J. Greenwald, S. Choe, and J. A. McCammon. Molecular dynamics studies on the HIV-1 integrase catalytic domain. Biophysical Journal. 1999,76(6):2999-3011
    141 R. D. Shannon. Revised Effective Ionic-Radii and Systematic Studies of Interatomic Distances in Halides and Chalcogenides. Acta Crystallographica Section A. 1976,32(SEP1):751-767
    142 M. T. Makhija and V. M. Kulkarni. QSAR of HIV-1 integrase inhibitors by genetic function approximation method. Bioorganic & Medicinal Chemistry. 2002,10(5):1483-1497
    143 F. Aiello, A. Brizzi, A. Garofalo, F. Grande, G. Ragno, R. Dayam, and N. Nouri. Synthesis ofnovel thiazolothiazepine based HIV-1 integrase inhibitors. Bioorganic & Medicinal Chemistry. 2004,12(16):4459-4466
    144 R. Dayam and N. Neamati. Active site binding modes of the beta-diketoacids: a multi-active site approach in HIV-1 integrase inhibitor design. Bioorganic & Medicinal Chemistry. 2004,12(24):6371-6381
    145 M. T. Makhija, R. T. Kasliwal, V. M. Kulkarni, and N. Neamati. De novo design and synthesis of HIV-1 integrase inhibitors. Bioorganic & Medicinal Chemistry. 2004,12(9):2317-2333
    146 M. T. Makhija and V. M. Kulkarni. Molecular electrostatic potentials as input for the alignment of HIV-1 integrase inhibitors in 3D QSAR. Journal of Computer-Aided Molecular Design. 2001,15(11):961-978
    147 M. T. Makhija and V. M. Kulkarni. Eigen value analysis of HIV-1 integrase inhibitors. Journal of Chemical Information and Computer Sciences. 2001,41(6):1569-1577
    148 M. T. Makhija and V. M. Kulkarni. 3D-QSAR and molecular modeling of HIV-1 integrase inhibitors. Journal of Computer-Aided Molecular Design. 2002,16(3):181-200
    149 R. Costi, R. Di Santo, M. Artico, S. Massa, R. Ragno, R. Loddo, M. La Colla, E. Tramontano, P. La Colla, and A. Pani. 2,6-Bis(3,4,5-trihydroxybenzylydene) derivatives of cyclohexanone: novel potent HIV-1 integrase inhibitors that prevent HIV-1 multiplication in cell-based assays. Bioorganic & Medicinal Chemistry. 2004,12(1):199-215
    150 X. H. Ma, X. Y. Zhang, J. J. Tan, W. Z. Chen, and C. X. Wang. Exploring binding mode for styrylquinoline HIV-1 integrase inhibitors using comparative molecular field analysis and docking studies. Acta Pharmacologica Sinica. 2004,25(7):950-958
    151 N. Nunthaboot, S. Tonmunphean, V. Parasuk, P. Wolschann, and S. Kokpol. Three-dimensional quantitative structure-activity relationship studies on diverse structural classes of HIV-1 integrase inhibitors using CoMFA and CoMSIA. European Journal of Medicinal Chemistry. 2006,41(12):1359-1372
    152 L. Saiz-Urra, M. P. Gonzalez, Y. Fall, and G. Gomez. Quantitative structure-activity relationship studies of HIV-1 integrase inhibition. 1. GETAWAY descriptors. European Journal of Medicinal Chemistry. 2007,42(1):64-70
    153 R. Ragno, M. Artico, G. De Martino, G. La Regina, A. Coluccia, A. Di Pasquali, and R. Silvestri. Docking and 3-D QSAR studies on indolyl aryl sulfones. Binding mode exploration at the HIV-1 reverse transcriptase non-nucleoside binding site and design of highly active N-(2-hydroxyethyl)carboxamide and N-(2-hydroxyethyl)carbohydrazide derivatives. Journal of Medicinal Chemistry. 2005,48(1):213-223
    154 C. A. Sotriffer, H. H. Ni, and J. A. McCammon. Active site binding modes of HIV-1 integrase inhibitors. Journal of Medicinal Chemistry. 2000,43(22):4109-4117
    155 W. E. Robinson, M. Cordeiro, S. AbdelMalek, Q. Jia, S. A. Chow, M. G. Reinecke, and W. M. Mitchell. Dicaffeoylquinic acid inhibitors of human immunodeficiency virus integrase: Inhibition of the core catalytic domain of human immunodeficiency virus integrase. Molecular Pharmacology. 1996,50(4):846-855
    156 C. Marchand, A. A. Johnson, R. G. Karki, G. C. G. Pais, X. C. Zhang, K. Cowansage, T. A. Patel, M. C. Nicklaus, T. R. Burke, and Y. Pommier. Metal-dependent inhibition of HIV-1 integrase by beta-diketo acids and resistance of the soluble double-mutant (F185K/C280S). Molecular Pharmacology. 2003,64(3):600-609
    157 A. Agarwal, P. P. Pearson, E. W. Taylor, H. B. Li, T. Dahlgren, M. Herslof, Y. H. Yang, G.Lambert, D. L. Nelson, J. W. Regan, and A. R. Martin. 3-Dimensional Quantitative Structure-Activity-Relationships of 5-Ht Receptor-Binding Data for Tetrahydropyridinylindole Derivatives - a Comparison of the Hansch and Comfa Methods. Journal of Medicinal Chemistry. 1993,36(25):4006-4014
    158 A. Engelman and R. Craigie. Identification of Conserved Amino-Acid-Residues Critical for Human-Immunodeficiency-Virus Type-1 Integrase Function-Invitro. Journal of Virology. 1992,66(11):6361-6369
    159 M. Drelich, R. Wilhelm, and J. Mous. Identification of Amino-Acid-Residues Critical for Endonuclease and Integration Activities of Hiv-1 in Protein Invitro. Virology. 1992,188(2):459-468
    160 J. Kulkosky, K. S. Jones, R. A. Katz, J. P. G. Mack, and A. M. Skalka. Residues Critical for Retroviral Integrative Recombination in a Region That Is Highly Conserved among Retroviral Retrotransposon Integrases and Bacterial Insertion-Sequence Transposases. Molecular and Cellular Biology. 1992,12(5):2331-2338
    161 R. Lu, A. Limon, H. Z. Ghory, and A. Engelman. Genetic analyses of DNA-binding mutants in the catalytic core domain of human immunodeficiency virus type I integrase. Journal of Virology. 2005,79(4):2493-2505
    162 V. Fikkert, A. Hombrouck, B. Van Remoortel, M. De Maeyer, C. Pannecouque, E. De Clercq, Z. Debyser, and M. Witvrouw. Multiple mutations in human immunodeficiency virus-1 integrase confer resistance to the clinical trial drug S-1360. Aids. 2004,18(15):2019-2028
    163 J. Greenwald, V. Le, S. L. Butler, F. D. Bushman, and S. Choe. The Mobility of an HIV-1 Integrase Active Site Loop Is Correlated with Catalytic Activity Biochemistry. 1999,38(28):8892-8898
    164 R. Lu, A. Limo′n, H. Z. Ghory, and A. Engelman. Genetic Analyses of DNA-Binding Mutants in the Catalytic Core Domain of Human Immunodeficiency Virus Type 1 Integrase. American Society for Microbiology. 2005,79(4):2493-2505
    165 J.-p. HU, S. CHANG, W.-z. CHEN, and C.-x. WANG. Study pm the drug resistance and the binding mode of HIV-1 integrase with LCA inhibitor Science in China B. 2007,50(5):665-674
    166 M. Lataillade, J. Chiarella, and M. J. Kozal. Natural polymorphism of the HIV-1 integrase gene and mutations associated with integrase inhibitor resistance. Antiviral Therapy. 2007,12(4):563-570
    167 M. Kobayashi, K. Nakahara, T. Seki, S. Miki, S. Kawauchi, A. Suyama, C. Wakasa-Morimoto, M. Kodama, T. Endoh, E. Oosugi, Y. Matsushita, H. Murai, T. Fujishita, T. Yoshinaga, E. Garvey, S. Foster, M. Underwood, B. Johns, A. Sato, and T. Fujiwara. Selection of diverse and clinically relevant integrase inhibitor-resistant human immunodeficiency virus type 1 mutants. Antiviral Research. 2008,80(2):213-222
    168 A. A. Adesokan, V. A. Roberts, K. W. Lee, R. D. Lins, and J. M. Briggs. Prediction of HIV-1 integrase/viral DNA interactions in the catalytic domain by fast molecular docking. Journal of Medicinal Chemistry. 2004,47(4):821-828
    169 T. S. Heuer and P. O. Brown. Mapping features of HIV-1 integrase near selected sites on viral and target DNA molecules in an active enzyme-DNA complex by photo-cross-linking. Biochemistry. 1997,36(35):10655-10665
    170 R. D. Lins, A. Adesokan, T. A. Soares, and J. M. Briggs. Investigations on human immunodeficiency virus type 1 integrase/DNA binding interactions via molecular dynamics andelectrostatics calculations. Pharmacology & Therapeutics. 2000,85(3):123-131
    171 A. Brigo, K. W. Lee, F. Fogolari, G. L. Mustata, and J. M. Briggs. Comparative molecular dynamics simulations of HIV-1 integrase and the T66I/M154I mutant: Binding modes and drug resistance to a diketo acid inhibitor. Proteins-Structure Function and Bioinformatics. 2005,59(4):723-741

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700