北极深海沉积物中微生物的多样性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
深海沉积物由于数以万年的沉积作用,所含成分繁复,是最复杂的微生物栖息地。北极地区蕴含着丰富的微生物资源,由于其特殊的地理位置和气候条件,处于其中的微生物大多有其特殊的生理生化特性。因此,对于北极地区深海沉积物中微生物的研究具有重要的意义。依靠传统的分离培养的方法只能获得其中0.1%-1%的菌种,大量的未知微生物未被发现,需要依靠现代分子生物学的方法进行分析研究。本研究利用PCR-DGGE结合克隆测序的方法对北极地区沉积物中微生物的多样性进行了初步的研究,为进一步深入开展极地深海微生物资源与环境研究打下基础。
     本文研究材料是取自白令海和楚科奇海海域的沉积物样品。实验采用了包含试剂盒法在内的九种DNA提取方法,以期获得最适的提取北极沉积物中微生物总DNA的方法。选用细菌通用引物,优化PCR反应退火温度。对PCR扩增出的16S rDNA的V3-V5区产物进行变性梯度凝胶电泳检测,进而进行16S rDNA的多态性分析。选取其中较为清晰的特征条带克隆测序,最终获得沉积物中微生物的多样性分析结果。九种DNA提取方法结果显示:这些方法都能获得大小在23kb左右的DNA样品。将样品经过初步处理后,颜色较深的直接使用OMEGA公司试剂盒提取总DNA。而对于颜色较淡的则通过方法Ⅰ(SDS-蛋白酶k法)提取总DNA后进行纯化。通过巢式PCR的方法可获得大小在570bp左右16S rDNA的V3-V5区片段。两次PCR优化后的退火温度分别为55℃和53℃。采用变性梯度范围为40%-60%,丙烯酰胺浓度为6%的变性胶进行DGGE检测。不同地点不同深度的沉积物样品,其DGGE图谱均有所差异,条带数目,位置及亮度均有不同。
     数据统计显示,最终获得的DNA序列大多为未可培养微生物序列。克隆获得的类群包括变形细菌门(Proteobacteria)、放线菌门(Actinobacteria),酸杆菌门(Aciodobacteria),拟杆菌门(Bacteroidetes),硝化螺旋菌门(Nitrospirae),厚壁菌门(Firmicutes),异球菌属(Deinococcus),其中变形细菌(包括α,β,γ,δ,ε-Proteobacteria)为明显的优势类群,与文献报道基本相同。各表层样品间优势菌群基本相同,尤其是相近海域的样品。而相距较远的沉积物样品间DGGE指纹图谱差异相对较大,只有优势条带相同,其余条带在位置和数量方面均有所差异。柱式样品中大多为中间偏上层数的DGGE指纹图谱较为特殊,出现一些特有条带。经测序后发现大多为一些沉积物中较为少见的菌种。整体而言,柱式样品各层间DGGE指纹图谱基本相同,随深度增加条带数目有所减少,亮度减弱。
     本研究对北极深海沉积物中微生物群落的多样性进行了初步的研究,克服了传统方法的局限性,获得了较为丰富的微生物遗传信息。其中包括一些未培养或鉴定的潜在新菌,针对它们特殊的生理生化性质可以进行深入的开发利用。
Due to tens of thousands of years of sedimentation, the deep sea sediments’ compositionsare complex. It is one of the most complex microbial habitats. The Arctic region contains awealth of microbial resources, because of its special geographical position and climateconditions, in which microorganisms have the special physiological and biochemicalcharacteristics. Therefore, The investigation on microbial diversity of arctic deep sea sedimentsis very important. Rely on traditional culture methods, we can only get the0.1%-1%strain, alarge number of unknown microorganisms are undetected, we need to use the method ofmodern molecular biology. The study combine the PCR-DGGE with cloning and sequencingmethod to research microbial diversity of arctic deep sea sediments, and will provide basis forfurther study and reference.
     The studies’ samples are the sediments,which are from the Bering Sea and the ChukchiSea. In this experiment we use nine methods of DNA extraction, which are including kitmethods. We want to get the best way to extract microorganisms’ total DNA in the Arcticsediments. Selection of bacteria universal primers, optimized PCR reaction annealingtemperature. The16S rDNA V3-V5products separated by denaturing gradient gelelectrophoresis, and then analysis of16S rDNA polymorphism. Select the characteristic strip toclone, finally get the results of microbial diversity of sediments.Nine methods of DNAextraction results show: these methods can obtain the DNA, which are all about23kb in size.After initial treatment, if the color is dark, use the OMEGA kit for extracting the total DNA. Asfor the lighter use methodⅠ(SDS-protease K) to extract total DNA,then purified it. By nestPCR method we can obtain the size of570bp16S rDNA V3-V5fragment. Two PCR annealingtemperatures were55℃and53℃. PCR products were separated in6%polyacrylamide gelswith a denaturant gradient from40%to60%. Ultimately determine the optimal time for9-10h,and select the EB staining method for subsequent cloning experiments. The sediments ofdifferent locations, different depth the DGGE profiles are different, the band number, locationand intensity are different.
     The results showed the DNA sequences mostly are uncultured microorganismsequence.IncludingProteobacteria,Actinobacteria,Aciodobacteria,Bacteroidetes,Nitrospirae,Fir micutes, Deinococcus. Proteobacteria (including α,β,γ,δ,ε-Proteobacteria)is the dominantgroup.That is same to the report. Surface sediments have the same dominantMicrobes.,especially samples from the near sea. The middle upper layers’ fingerprint is mostlyspecial in Column sample,and have some unique strip, After sequencing, we found that speciesare mostly rarely in sediment. As a whole,the column sediments’ each layer are similar, withthe depth increasing, the strip of column station’s DGGE map is gradually reduced.
引文
[1] Wobus A, Bleul C, Maassen S, et al. Microbial diversity and functional characterization of sedments fromreservoirs of different trophic state[J]. FEMS Microbiology Ecology,2003,46:331-347.
    [2] Chen X L, Zhang Y Z, Gao P J. Progress in deep-sea microbiology[J]. Marine Sciences,1998,13(4):398-402.
    [3]宋金明.海洋沉积物中的生物种群在生源物质循环中的功能[J].海洋科学,2000,24(4):22-26.
    [4]刘璞,王红梅.海洋沉积物微生物多样性研究[J].安徽农业科学,2009,37(10):4569-4571.
    [5]冯胜,李定龙,高光.淡水湖泊沉积物微生物多样性研究方法进展[J].常州大学学报(自然科学版),2010,22(2):66-72.
    [6]穆春华.西北太平洋深海沉积物微生物多态性分析[D].青岛:中国海洋大学,2005.
    [7]刘欣,邵宗泽.东太平洋海隆深海热液区沉积物微生物多样性的研究[J].台湾海峡,2008,27(3):271-277.
    [8]徐宏翔,吴敏,王小谷,杨俊毅,王春生.东北太平洋深海沉积物细菌多样性[J].2008.生态学报,2(28):479-485.
    [9] Ravenschlag K, Sahm K, Pernthaler J, et al. High bacterial in permanently cold marine sediment[J].Applied and Environmental Microbiology,1999,65(9):3982-3989.
    [10] Bowman J P, McCuaig R D. Biodiversity,community structural shifts, and biogeography of prokaryoteswithin Antarctic continental shelf sediment[J]. Applied and Environmental Microbiology,2003,69:2463-2483.
    [11]戴欣,周惠,陈月琴等.中国南海南沙海区沉积物中细菌16S rDNA多样性德初步研究[J].自然科学进展,2002,12(5):479-484.
    [12]李会荣,俞勇,曾胤新等.北极北冰洋太平洋扇区海洋沉积物细菌多样性的系统发育分析[J].微生物学报,2006,46(2):177-183.
    [13]柳耀建,林影,吴晓英.极端微生物的研究概况[J].工业微物,2000,30(3):53-55.
    [14]黄春晓.极端微生物在环境保护中的应用[J].长春师范学院学报(自然科学版),2007,26(3):69-73.
    [15]顾觉奋,罗学刚.极端微生物活性物质的研究进展[J].中国天然药物,2003,1(3):252-256.
    [16]戴欣,王保军,黄燕.普通和稀释培养基研究太湖沉积物可培养细菌的多样性[J].微生物学报,2005,45(2):161-165.
    [17] Suzuki M T, Rap M S, Haimherger Z W, et a1.Bacterial diversity among small—subunit rRNA geneclones and cellular isolates from the same sea water sample[J]. Appl Environ MicrobioI,1997,63:983-989.
    [18] Felske A, Wolterink A, van Lis R, et al.Searching for pre-dominant soil bacteria:16SrDNA cloningversus strain cultivation[J]. FEMS Microbiol Ecol,1999,30:137-145.
    [19] Hill G T, Mitkowskin A, Aldrich-wolfe, et al. Methods for assessing the composition and diversity of soilmicrobial communities[J]. Applied Soil Ecology,2000,15:25-36.
    [20]车玉伶,王慧,胡洪营等.微生物群落结构和多样性解析技术研究进展[J].生态环境,2005,14(1):127-133.
    [21]姚槐应.评估红壤微生物群落结构BIOLOG体系的改进[J].浙江农业科学,2003,4:200-203.
    [22] Hial W, Rangger A, Sharma S, et a1.Separation power of the95substrates of the BIOLOG systemdetermined with various soils[J]. FEMS microbial Ecol,1997,22:167-174.
    [23] Werker A G, Beeker J, Huitema C. Assessment of activated sludge microbia1community analysis infull—scale biological wasterwater treatment plants using patterns of fatty acid isopro pyl esters(FAPEs)[J].Water Research,2003,37(9):2162-2172.
    [24] Hu H Y, Lim B R,Goto N, et al. Analytical precision and repeatability of respiratory quinones forquantitative study of microbial community structure in environmental samples[J]. Journal of MicrobiologicalMethods,2001,47:17-24.
    [25]胡洪营,童中华.微生物醌指纹法在环境微生物群体组成研究中的应用[J].微生物学通报,2002,29(4):95-98.
    [26] Glucksman A M, Skipper H D, Brigmon R L, et al. Use of the MIDI-FAME technique to characterizegroundwater communities[J]. Journal of Applied Microbiology,2000,88:711-719.
    [27] Calderon F J, Jackson L E, Scow K M, et al. Microbial responses to simulated tillage incultivated anduncultivated soils[J]. Soil Biology and Biochemistry,2000,32:1547-1559.
    [28] Song X H, Hopke P K. Pattern recognition of soil samples based on the microbial fatty acid contents[J].Environmental Science&Technology,1999,33:3524-3530.
    [29] Rajendran N, Matsuda O, Imamura N, et a1.Microbial community structure analysis of eu xinicsediments using phospho-lipids fatty acid biomarkers[J]. J Oceanog,1995,51:21-38.
    [30] Pace N R.A molecular view of microbial diversity and the biosphere[J]. Science,1997,276(5313):734.
    [31] Bmmbilla E, et al.16S rDNA diversity of cultured and uncultured prokaryotes of a mat sample fromLake Fryxell,McMurdo Dry Valleys,Antarctica[J]. Extremophiles,2001,5(1):23.
    [32] Zhang Y, Ruan X H. Molecular biological techniques and theirs application to analysis of microorganismin environmental samples[J]. Journal of Hehai University (Natural Sciences),2005,33(3):241-245.
    [33] Tatsuhiro Fukuba, Marl Ogawa, Teruo Fujii,et a1. Phyulogenetic diversity of dissimilatory sulfitereductase genes from deep—sea cold seep sediment[J]. Marine Biotechnology,2003,5:458-468.
    [34] Yuri A Trotsenko, Valentina N Khmelenina. Aerobic methanotrophic bacteria of cold ecosyste ms[J].FEMS Microbiology,2005,53:15-26.
    [35]梁小兵,万国江,黄荣贵. PCR-RFLP技术在环境地球化学研究中的应用及展望[J].地质地球化学,2001,29(1):94-98.
    [36]吴少慧,张成刚,张忠泽. RAPD技术在微生物生物多样鉴定中的应用[J].微生物学杂志,2000,20(2):44-47.
    [37] Lowe et al. Standardization of molecular genetic techniques for the characterization of germplasmcollections: the case of random amplified polymorphic DNA(RAPD)[J]. Plant Genetic ResourcesNewsletter,1996,107:50-54.
    [38] Heuer H, Wieland G, Schonfeld J, et al.Bacterial community profiling using DGGE or TGGE analysis[J].Environmental Molecular Microbiology: Protocols and Applications,2001,9:177-190.
    [39] G Muyzer, E C de Waal, and A G Uitterlinden.Profiling of complex microbial populations by denaturinggradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for16SrRNA[J].Applied and Environmental Microbiology,1993,59:695-700.
    [40] Higuchi R, Fockler C, Dollinger G, et al.Kinetic PCR analysis:real time monitoring of DNAamplification reactions[J]. Nature Biotechnology,1993,11:1026-1030.
    [41] Huong LV, Serge T, Huan HN, et al. A method for quantification of absolute amounts of nucleic acidsby(RT)PCR and a new math ematical model for data analysis[J].Nucleic Acids Research,2000,28(7):18.
    [42] Schm Ittgen T D. Real time quantitative PCR[J].Methods,2001,25:383-385.
    [43] Ranjardl, Poly F, Nazaret S. Monitoring complex bacterial communities using culture-indep-endentmolecular techniques:application to soil environment[J]. Research in Microbiology,2000,151:167-177.
    [44] Xintian Lai, Xiaofan Zeng, Shu Fang. Denaturing gradient gel electrophoresis(DGGE) analysis ofbacterial community composition in deep-sea sediments of the South China sea [J]. World JournalMicrobiology and Biotechnology,2006,22:1337-1345.
    [45]许飞,戴欧,陈月琴.南沙海区沉积物中细菌和古细菌16S rDNA多样性的研究[J].海洋与湖沼,2004,35(1):89-94.
    [46] Hongchen Jiang, Hailiang Dong, Shanshan Ji, et al.Microbial diversity in the deep marine sedimentsfrom the Qiongsdongnan Basin in south China Sea[J]. Geomicrobiology Journal,2007,24(6):505-517.
    [47]穆春华.西北太平洋深海沉积物徽生物多态性分析[D].青岛:中国海洋大学,2005.
    [48]李世杰,申慧彦等.湖泊沉积物中DNA提取与PCR扩增.地球科学进展,2008,2(4):433.
    [49]曹治明,郑维,权春善.土壤DNA提取方法的研究[J].大连民族学院学报,2005,7(3):94.
    [50] Frostegard A, Courtois S, Ramisse V et al.1999. Quantification of bias related to the extraction of DNAdirectly from soils[J]. Appl Environ Microbiol,65(12):5409-5420.
    [51] GAO Pingping, ZHAO Liping.2002. DNA extract ion from activated sludge for molecular communityanalysis[J]. Acta Ecologica Sinica,11(22):2015-2019.
    [52] Orsini M, Romano-Spica V.2001. A microwave-based method for nucleic and isolation fromenvironmental samples[J]. Letters in AppliedMicrobiology,33(1):17-20.
    [53] Gabor EM, Vries EJ, Janssen DB.Gabor EM, Vries EJ,Janssen DB.2003. Efficient recovery ofenvironmental DNA for exp ression cloning by indirect extraction methods[J]. FEMS Microbiol Ecol,44(2):153-163.
    [54] Bosshard PP, SantiniY, Grter D, et al. Bacterial diversity and community composition in the chemoclineof the meromictic alpinelake Cadagno a reveal by16S rDNAanalysis[J]. FEMS Microbiol Ecol,2000,31:173-182.
    [55] Sigler. Electrophoresis time impacts the denaturing gradient gel electrophoresis-based assessment ofbacterial community structure[J]. Microbiol Methods,2004,57:17-22.
    [56] Hales BA, Edwards C,Ritchie DA, Hall G, Pickup RW and Saunders JR. Isolation and identification ofMethanogen2S pecific DNA from Blanket Bog Peat by PCR amplification and sequence analysis[J]. ApplEnviron Microbiol,1996,62(2):668-675.
    [57] Miller DN, Bryant JE, Madsen EL, and Ghiorse WC. Evaluation and optimization of DNA extractionand purification procedures for soil and sediment samples[J]. Appl Environ Microbiol,1999,65(11):4715-4724.
    [58] Patra G, Sylvestre P, Ramisse V Isolation of a specific chromosomic DNA sequence of Bacillus anthracisand its possible use in diagnosis[J]. FEMS Immunol Med Microbiol,1996,15:223-231.
    [59]董旭南,段新华,张向阳. PCR技术常见疑难浅析及策略[J].草食家畜(季刊),2002,1:4-5.
    [60]邢德峰,任南琪.应用DGGE研究微生物群落时的常见问题分析[J].微生物学报,2006,46(2):331-335.
    [61] Akkermans AD, Elsas JD, Bruijn FJ. Molecular microbial ecology manual[D]. The Netherlands:Kluwer Academic Publishers,1997.
    [62]李莎.北极深海沉积物的微生物多样性研究[D].武汉:华中师范大学,2010.
    [63]田菲,陈波,俞勇.北极海底沉积物中菌群组成分析[A].全国海洋生物技术与海洋药物学术会议论文集[C].大连.
    [64]苏玉环.北极太平洋扇区表层沉积物中微生物群落的分子生物学分析[D].中国海洋大学,2007.
    [65] Ravenschlag K, Sahm K,Pernthaler J, et a1.High bacterial diversity in permanently cold marinesediments[J]. Appl Environ Microbiof,1999,65:3982-3989.
    [66]郝玉,龙江平.北极楚科奇海海底表层沉积物有机碳的生物地球化学特征[J].海洋科学进展,2007,25(1):63-72.
    [67]薛斌,潘建明,张海生等.北极楚科奇海地区沉积物生源物质的来源和分布[J].极地研究,2006,18(4):265-272.
    [68] Daly M J. A new perspective on radiation resistance based on Deinococcus radiodurans[J]. Nat RevMicrobiol,2009,7(3):237.
    [69] Minsky A,Shimoni E,Englander J. Ring-like nucleoids and DNA repair through error-freenonhomologous end joining in Deinococcus radiodurans[J]. J Bacteriol,2006,188(17):6047-6051,6052.
    [70] Tian B,Sun Z,Shen S,Wang H,Jiao J,Wang L,Hu Y,Hua Y. Effects of carotenoids from Deinococcusradiodurans on protein oxidation[J]. Lett Appl Microbiol,2009,49(6):689-694.
    [71]陈立,董俊兴.耐辐射奇球菌抗辐射作用的研究进展[J].癌变·畸变·突变2008,20(4):334-336.
    [72]赵清,舒为群.耐辐射球菌抗辐射机制研究进展及其环境修复应用前景[J].应用与环境生物学报,2008,14(4):578-584.
    [73]田兵,高冠军,徐步进,华跃进.辐射对耐辐射球菌(Deinococcus radiodurans)抗氧化酶活性提高的影响[J].核农学报,2004,18(3):221-224.
    [74]谢玉清,张志东,宋素琴,茆军.耐辐射菌株筛选及其胞外代谢产物抗紫外辐射物质特性[J].核农学报,2010,24(6):1172-1176.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700