石墨纤维中间层钛基氧化物阳极研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
现代电化学工业中许多生产过程需在强酸的环境中进行,由于酸性溶液的强腐蚀性和阳极放氧的强氧化性,使得满足工业条件的阳极材料十分稀少,优良的阳极要求具有导电性高、催化活性好、寿命长、表面积大、价格低和污染小等优点。目前国内外研究较广泛的耐酸不溶性阳极类型多是以钛为导电基,此种阳极的主要缺点是在电解使用过程中,阳极放出的氧使钛钝化而导致电极电阻增大,电极失效。
     本文提出了一种以钛为基体,SnO_2+Sb_2O_4+GF(石墨纤维)为中间层,PbO_x或MnO_x为活性层的电极,采用热分解和电沉积组合技术制备了Ti/SnO_2+Sb_2O_4+GF/PbO_x和Ti/SnO_2+Sb_2O_4+GF/Mno_x阳极。利用SEM、XRD和XPS等手段对上述电极表面形貌、结构物相、组成价态进行了表征;采用快速寿命实验考察了该电极在1.0 mol/L H_2SO_4溶液中4A/cm~2下的预期使用寿命;采用三电极体系测定了上述电极在不同溶液中的循环伏安曲线,同时利用循环伏安曲线求得了电极表面的分形维数、活化能、氢离子反应级数和动力学参数等;并对析氧反应机理进行了探讨。结果表明:
     (1)Ti/SnO_2+Sb_2O_4+GF/PbO_x和Ti/SnO_2+Sb_2O_4+GF/MnO_x电极在1.0mol/L H_2SO_4溶液中,工业电流密度下(1000A/m~2)预期使用寿命分别约为22年和3.65年,上述两种电极寿命均比一般氧化物电极的寿命长,尤其前者更为明显。
     (2)Ti/SnO_2+Sb_2O_4+GF/PbO_x电极的析氧动力学参数a、b、i_0依次为0.238V、0.737V和4.75×10~(-1)A/cm~2;Ti/SnO_2+Sb_2O_4+GF/MnO_x电极a、b、i_0分别为0.395V、1.261V和7.70×10~(-3)A/cm~2。两者相比,前者的a、b较小,i_0较大。因此,Ti/SnO_2+Sb_2O_4+GF/PbO_x的电催化性能更好。
     (3)Ti/SnO_2+Sb_2O_4+GF/PbO_x电极和Ti/SnO_2+Sb_2O_4+GF/MnO_x电极在强酸溶液中的平均活化能分别为14.21 kJ/mol和28.01 kJ/mol,较一般的化学反应活化能低。因此该电极的析氧电催化性能较好。
     (4)Ti/SnO_2+Sb_2O_4+GF/PbO_x电极和Ti/SnO_2+Sb_2O_4+GF/MnO_x电极在强酸性溶液放氧反应中H~+的反应级数约为零。
     (5)Ti/PbO_x类电极OER的历程如下:
     PbO_(2-X)+H_2O→PbO_(2-X)(·OH)+H~++e~-
     PbO_(2-X)(·OH)→PbO_(2-X+1)+H~++e~-
     PbO_(2-X)(·OH)→PbO_(2-X)+H~++e~-+1/2O_2
     PbO_(2-X+1)→PbO_(2-X)+1/2O_2
     其中,第一步为速度控制步骤,动力学表达式为:
     i=4k_aF exp[(1-α)F△ψ/RT]-4Fk_c′exp[(1-α)F△F△ψ/RT]
Fine anode requests high-conductivity, good catalytic activity, long life, big surface area, low price, small pollution and so on. Because of strong corrosiveness and oxidation of oxygen atom in anodic acid solution, the anode materials is very rare, Therefore it is important to choose and prepare non-precious metal anode.
     Ti/SnO_2+Sb_2O_4+GF/PbO_x and Ti/SnO_2+Sb_2O_4+GF/MnO_x anodes were prepared by thermal decomposition and electrodeposition combination technology. Electrodes surface appearance, structure phase and composition valent state were characterized by means of SEM、XRD and XPS、the anticipated service life of the oxide anodes were inspected by fast life test in 1.0mol/L H_2SO_4 solution at 4A/cm~2, cyclic voltammograms、dynamics parameters、apparent activation energy and reaction order of H~+ were measured by three electrodes system in acid solution, meanwhile the relationship between fractal dimension and the electrocatalytic activity was discussed. Finally, the mechanism of oxygen evolution was put forward. Results were shown:
     (1) The anticipated service life of Ti/SnO_2+Sb_2O4+GF/PbO_x anode and Ti/SnO_2+Sb_2O_4+GF/MnO_x anode in 1.0mol/L H_2SO_4 solution at 1000A/m~2 industrial current density can reach 22y and 3.65y, which are longer than that of other oxide anodes.
     (2) The kinetic parameters of Ti/SnO_2+Sb_2O_4+GF/PbO_x(a、b、i_0) are 0.238V, 0.737V and 4.75×10~(-1)A/cm~2 respectively; them of Ti/SnO_2+Sb_2O_4+GF/MnO_x anode are 0.395V, 1.261V and 7.70×10~(-3)A/cm~2, a and b of the first anode are smaller, but its i_0 is much longer. So the electrocatalytic properties of Ti/SnO_2+Sb_2O_4+GF/PbO_x anode is better than that of Ti/SnO_2+Sb_2O_4+GF/MnO_x in acidic solution.
     (3) The average activation energy of Ti/SnO_2+Sb_2O_4+GF/PbO_x anode and Ti/SnO_2+Sb_2O_4+GF/MnO_x anode are 14.21 kJ/mol and 28.01 kJ/mol respectively, they are smaller than that of general chemical reaction. So the electrocatalytic properties of above two anodes are good.
     (4) The reaction order of H~+ of Ti/SnO_2+Sb_2O_4+GF/PbO_x anode and Ti/SnO_2+Sb_2O_4+GF/MnO_x anode in acdic solution for OER (oxygen evolution reaction) are approximate 0.
     (5) The mechanism of OER about Ti/PbO_x anode was proposed: PbO_(2-x)+H_2O→PbO_(2-x)(·OH)H~++e~- PbO_(2-x)(·OH)→PbO_(2-x+1)+H~++e~- PbO_(2-x)(·OH)→PbO_(2-x)+H~++e~-+1/20_2 PbO_(2-x+1)→PbO_(2-x)+1/20_2
     The first step is the rate control step, the kinetic expression is shown below: i=4k_α~'Fexp[(1-α)F△φ/RT]-4Fk_c~'exp[(1-α)F△φ/RT]
引文
[1] Fachinotti.E, Guerrini.E, Tavares A.C, etc. Electrocatalysis of H_2 evolution by thermally prepared ruthenium oxide:Effect of precursors:Nitrate vs.chloride, Journal of Electroanalytical Chemistry, 2007,600 (1), 103-112
    [2] 张招贤,钛电极工学(第二版),北京,冶金工业出版社,2003,157-173
    [3] 陈康宁,金属阳极,上海,华东师范大学出版社,1989,50-200
    [4] Rigato V, Zandolin S, Benedetti A ,etc. Microstructural characterization and electrochemical properties of RuO_2 thin film electrodes prepared by reactive radio-frequency magnetron sputtering, Chemistry of Materials, 2002,16(5),946-952
    [5] Miles M H, Klaus E A, Gunn B P etc. The oxygen evolution reaction on platinum, iridium ruthenium and their alloys at 80℃ in acid solutions, Electrochimica Acta, 1978,23,521-526
    [6] Terezo Ailton J, Pereira Ernesto C, Preparation and characterisation of Ti/RuO_2 anodes obtained by sol-gel and conventional routes,Materials Letters, 2002,53(4-5),339-345
    [7] Casellato U, Cattarin S, Musiani M, Preparation of porous PbO_2 electrodes by electrochemical deposition of composites, Electrochimica Acta, 2003,48(27),3991-3998
    [8] Velichenko A B, Baranova E A, Girenk D V, etc. Mechanism of electrodeposition of Lead dioxide from Nitrate Solutions, Russian Journal of Electrochemistry, 2003,39(6),615-621
    [9] 梁镇海,王森,孙彦平等,Ti/SnO_2+SbO_2+RuO_2/Pb_3O_4阳极研究,无机材料学报,1995,10(3),381-384
    [10] Velichenko A B, Amadelli R, Baranova E A, Electrodeposition of Co-doped lead dioxide and its physicochemical properties, Journal of Electroanalytical Chemistry, 2002,527(1-2),56-64
    [11] Munichandraiah, N, Insoluble anode of porous lead dioxide for electrosynthesis : preparation and characterization, Appl Electrocheml, 1987, 17(1), 22~23
    [12] Pang Suh-cem, Anderson mare A, Chapman Thomas W, Novel electrode materials for thin-film ultracapacitors: comparison electrochemical properties of sol-gel-derived and electrodeposited manganese dioxide, Journal of electrochemical society, 2000, 147(2),444-450
    [13] 陈振方,蒋汗瀛,有色金属电积新型阳极及其行为的研究,有色金属,1989(3), 16219
    [14] 曾曙,王新民,湿法冶金中钛基二氧化锰阳极的研究,广东有色金属学报,1996,6(1),27232
    [15] 梁镇海,王森,孙彦平等,硫酸中Ti/MnO_x型阳极的电化性能,过程工程学报,1995,16(1),32-35
    [16] Comninellis Ch, Pulgarin C, Electrochemical oxidation of phenol for wastewater treatment using SnO_2 anodes, Journal of Applied Electrochemistry, 1993, 23(2),108-112
    [17] Correa-Lozano B, Comninellis Ch, De Battisti A, Electrochemical properties of Ti/SnO_2-Sb_2O_5 electrodes prepared by the spray pyrolysis technique, Journal of Applied Electrochemistry, 1996, 26 (7), 683-688
    [18] 崔玉虹,冯玉杰,刘峻峰,含Mn中间层钛基二氧化锡电催化电极的性能,材料研究学报,2005,19(1),48
    [19] Moustafid T Ei, Tribollet B, Festy D, etc. Modified transparent SnO_2 electrodes as efficient and stable cathodes for oxygen reduction, Electrochimica Acta, 2002,47(8), 1209-1215
    [20] 尤宏,崔玉虹,冯玉杰等,钛基Co中间层SnO_2电催化电极的制备及性能研究,材料科学与工艺,2004,12(3),230-233
    [21] Baronetto D, Kodintsev I M, Trasatti S, Origin of ohmic losses at Co_3O_4/Ti electrodes, Journal of applied electrochemistry, 1994,24,189-194
    [22] Jin Shixiong, Ye Siyu, Oxygen evolution on titanium anodes coated with conductive metallic oxides: kinetics and mechanism in alkaline solution, Electrochimica Acta, 1996,41(6),827-834
    [23] Jafarian M, Mahjani M G, Heli H, etc. A study of the electro-catalytic oxidation of methanol on a cobalt hydroxide modified glassy carbon electrode, Electrochimica Acta, 2003,48(23),3423-3429
    [24] Susana Pilla A, Duarte Marta ME, Mayer Carlos E, Manganese dioxide electrode position in sulphate electrolytes: the influence of ferrous ions, Journal of Electroanalytical Chemistry, 2004,569(1),7-14
    [25] Sáez Verdnica, Gonzia José, Iniesta Jesǘs, Electrodeposition of PbO_2 on glassy carbon electrodes: influence of ultrasound frequency, Electrochemistry Communications, 2004,6(8),757-761
    [26] Rochefort D, Hamel C, Guay D, Effect of graphite on the electrochemical properties of ballmilled RuO_2, Journal of the Electrochemical Society, 2004,151(8),Al 141-A1I46
    [27] Canizares P, Saez C, Lobato J, etc. Electrochemical treatment of 4-Nitrophenol- Containing aqueous wastes using boron-doped diamond anodes, Industrial and Engineering Chemistry Research, 2004,43(9), 1944-1951
    [28] Correa-Lozano B, Comninellis CH, Battisti A De, Electrochemical properties of Ti/SnO_2-Sb_2O_5 electrodes prepared by the spray pyrolysis technique, Journal Applied Electrochemistry, 1996,26, 683 -688
    [29] Yang L X, Allen R G, Scott K, etc. A study of PtRuO_2 catalysts thermally formed on titanium mesh for methanol oxidation, Electrochem.Acta, 2005, 50(5), 1217-1223
    [30] Foti G, Mousty C, Reid V, etc.Characterization of DSA type electrodes prepared by rapid thermal decomposition of the metal precursor, Electrochim.Acta, 1998,44(5),813-818
    [31] Chang Jeng-Kuei, ChenYi-Lun, Tsai Wen-Ta, Effect of heat treatment on material characteristics and pseudo-capacitive properties of manganese oxide prepared by anodic deposition, Journal of Power Sources, 2004,135(1-2),344-353
    [32] De Pauli C P,Trasatti S, Composite materials for electrocatalysis of O_2 evolution:IrO_2+SnO_2 in acid solution, Journal of Electroanalytical Chemistry,2002,538-539,145-151
    [33] Forti Juliane Cristina, Olivi Paulo, de Andrade Adalgisa R, Characterization of DSA?-type coatings with nominal composition Ti/Ru_(0.3)Ti_((0.7-X))Sn_xO_2 prepared via a polymeric precursor, Electrochim. Acta, 2001, 47 (6), 913-920
    [34] Velichenko A B, Amadelli R, Baranova E A, etc. Electrodeposition of Co-doped lead dioxide and its physicochemical properties, Journal of Electroanalytical Chemistry,2002,527 (1-2),56-64
    [35] Pilla A Susana, Duarte Marta M E, Mayer Carlos E, Manganese dioxide electrodeposition in sulphate electrolytes:the influence of ferrous ions, Journal of Electroanalytical Chemistry, 2004,569 (1),7-14
    [36] Surviliene S, Orlovskaja L, Bikulcius G, etc. Effect of MoO_2 and TiO_2 on electrodeposition and properties of chromium coating, Surface and Coatings Technology, 2001,137 (2-3), 230-234
    [37] Amadelli R, Maldotti A, Molinari A, etc. Influence of the electrode history and effects of the electrolyte composition and temperature on O_2 evolution at P-PbO_2 anodes in acid media, Journal of Electroanaly- tical Chemistry, 2002,534 (1),1-12
    [38] 申哲民,雷阳明,贾金平等,PbO_2电极氧化有机废水的研究,高校化学工程学报,2004,18(1),105-108
    [39] 谌攀,曹江林,冷文华,掺钴氧化钛电极的制备、表征及其光电性能,化学物理学报,2003,16(4),307-311
    [40] Liu Yang, Li Zhiying, Li Jinghong, IrO_2/SnO_2 electrodes: prepared by sol-gel process and their electrocatalytic for pyrocatechol, Acta Materialia, 2004,52(3),721-727
    [41] Terezo Ailton J, Pereira Ernesto C, Preparation and characterisation of Ti/RuO_2 anodes obtained by sol-gel and conventional routes, Materials Letters, 2002, 53(4-5),339-345
    [42] Spinolo G, Ardizzone S, Trasatti S, Surface characterization of Co_3O_4 electrodes prepared by the sol-gel method, Journal of Electroanalytical Chemistry, 1997, 423(1-2),49-57
    [43] 王欣,唐电,周敬恩,TiO_2组元对RuO_2+SnQ+TiO_2/Ti阳极涂层微观结构的影响,中国有色金属学报,2003,13(3),708-712
    [44] 夏熙,龚良玉,PbO_2纳米粉体的固相合成及其对MnO_2电极材料的改性作用,化学学报,2002,60(1),87-92
    [45] Yang Jingsi, Xu JunJohn, Influence of synthesis conditions on the electrochemical properties of nanostructure damorphous manganese oxide cryogels, Journal of Power Sources, 2003,122 (2), 181-187
    [46] Li Feng, Yu Xianghua, Pan Hongjun,etc. Syntheses of MO_2 (M=Si, Ce, Sn) nanoparticles by solid-state reactions at ambient temperature, Solid state sciences, 2000,2(8),767-772
    [47] Simonsson D. Electrochemistry for cleaner environment, Chemical Society Reviews, 1997,26 (3),181-190
    [48] Hu Yi, Hou S.-H, Preparation and charaterzation of Sb-doped SnO_2 thin films from colloidal precursors, Materials Chemistry and Physics, 2004,86(1),21-25
    [49] Grimm J, Bessarabov D, Maier W.,etc.Sol-gel film-preparation of novel electrodes for the electrocata- lytic oxidation of organic pollutants in water, Desalination, 1998,115 (3),295 - 302
    [50] 严东生,纳米材料的合成与制备,无机材料学报,1995,10(1),1-6
    [51] 周亚光,超微细SnO_2气敏材料研究现状,传感器技术,1997,16(4),46
    [52] Dieguez A., Romani-Rodriguez A.,Moranto J.R, eta1. Morphological Analysis of Nanocrystalline SnO_2 for gas Sensor Applications, Sensor and Actuators, 1996, 31(1-2),1-8
    [53] 何琳,SnO_2气敏半导体材料,硅酸盐通报,1985,4(5),41-51
    [54] KoTZ R., Stucki S., Carcer B..Electrochemical waste water treatment using high overvoltage anodes. Part Ⅰ: Physical and electrochemical properties of SnO_2 anodes, Journal of applied electrochemistry, 1991,21 (1), 14-20
    [55] Stucki B, Kotz R, Carcer S, Sutet W, Electrochemical wastewater treatment using high overvoltage anodes.PartⅡ:Anode performance and applications, Journal of applied electrochemistry, 1991,21 (2), 99 - 104
    [56] Grimm J, Bessarabov D, Maier W.,etal. Sol-gel film-preparation of novel electrodes for the electrocata-lytic oxidation of organic pollutants in water, Desalination, 1998,115 (3),295-302
    [57] Duverneuil P, Maury F., Pebere N., etal. Chemical vapor deposition of SnO_2 coatings on Ti plates for the preparation of electrocatalytic anodes, Surface and Coatings Technology, 2002,151 (52),9-13
    [58] Racheva T.M, Critchlow G.W, SnO_2 thin films prepared by the sol-gel process, Thin Solid Films, 1997, 292 (1-2),299-302
    [59] 张乃东,李宁,彭永臻,电镀烧结烧结法制备Ti/SnO_2-Sb_2O_4电极的研究,无机化学学报,2002,18(11),1173-1176
    [60] 王茂章,贺福,碳纤维的制造、性质及其应用,北京,科学出版社,1984,261
    [61] 符若文,曾汉明,吴斌,活性炭纤维氧化还原特性的研究,水处理技术,1990,16(1),14-21
    [62] Lee Young Seak, Kim Young Ho, Hong Ji Sook, etc. The adsorption properties of surface modified activated carbon fibers for hydrogen storages, Catalysis Today, 2007,120(3-4),420-425
    [63] 符若文,活性炭纤维的氧化还原特性及其应用前景,新型炭材料,1998,13(4),1-11
    [64] Soo-Jin Park, Byung-Jae Park, Seung-Kon Ryu, Electrochemical treatment on activated carbon fibers for increasing the amount and rate of Cr (Ⅵ) adsorption, Carbon, 1999,37,1223-1226
    [65] 王莹,曾汉明,陆耘,吸附条件对几种氧化还原吸附Cr(Ⅵ)的影响,水处理技术,2000,26(3),154-159
    [66] Mochida L, Shirahama N, Kawano S, etc. NO oxidation over activated carbon fiber (ACF).Part 1. Extended kinetics over a pitch based ACF of very large surface area, Fuel, 2000, 79(14),1713-1723
    [67] 贺福,王茂章,碳纤维及其复合材料,北京,科学出版社,1995,288-298
    [68] 张招贤,郑团,涂层钛阳极强化寿命试验电解因素的选择,氯碱工业,2004(5),10-11
    [69] 罗文秀,任鹏程,谭忠恪,汞灯辅助MOCVD二氧化锡薄层晶体的结构与透明导电性研究,功能材料,1993,24(2),129-133
    [70] 张福元,钛基氧化物电极的制备及其在电解制备硼氢化钠中的应用,太原,太原理工大学,2006
    [71] 刘世宏,王当憨,潘承璜,X射线光电子能谱分析,北京,科学出版社,1988,313-341
    [72] 王静,冯玉杰,制备方法对稀土Gd掺杂SnO_2/Sb电催化电极性能的影响,吉林大学学报(理学版),2005,43(4),546-550
    [73] 曹晓平,姚文清,叶小燕等,氢吸附对掺杂SnO_2薄膜电子结构的影响,化学物理学报,1997,10(3),255-258
    [74] 葛欣,张惠良,甲苯选择性氧化制苯甲醛——铁锑氧化物表面性质与催化性能的研究,化学研究应用,1998,10(2),159-162
    [75] Chiaki Iwakura, Meguru Inai, Masatsugu Manabe, etc. The cause of activity loss of titanium - supported ruthenium dioxide electrodes during the anodic evolution of oxygen,电化学工业物理化学,1980,48(2),91-96
    [76] 曾人杰,无机材料化学(上),厦门,厦门大学出版社,2001,187-213
    [77] 杨建广,唐谟堂,唐朝波等,锑掺杂二氧化锡薄膜的导电机理及其理论电导率,微纳电子技术,2004,4,18-21
    [78] 刘杏芹,朱海宁,沈瑜生,Sb_xSn_(1-x)O_2固溶体系电学性能与导电机制研究,无机化学学报,1996,12(2),130-134
    [79] Kotz R, Stucki S, Carcer B. Electrochemical waste water treatment using high overvoltage anodes. Part Ⅰ. Physical and electrochemical properties of SnO_2 anodes,Journal of Applied Electrochemistry, 1991, 21 (1): 14-20
    [80] 陈振方,蒋汉瀛,舒余德等,PbO_2-Ti/MnO_2电极上析氧反应动力学及电催化,金属学报,1992,28(2),50-55
    [81] Strφmme M, Niklasson GA, Granqvist C G, Determination of fractal dimension by cyclic Ⅰ-Ⅴ studies:the laplace-transform method, Physical review B, 1995,52 (19),14192-14197
    [82] 舒余德,陈白珍,冶金电化学研究方法,湖南,中南工业大学出版社,1990,269-299
    [83] 吴辉煌,应用电化学基础,厦门,厦门大学出版社,2006,3,80-100
    [84] 梁镇海,固溶体中间层钛基氧化物阳极研究,太原,太原理工大学,2006
    [85] Qu Deyang, The study of the proton diffusion process in the porous MnO_2 electrode, Electrochimica Acta, 2004,49(4),657-665
    [86] Lu Weiming, Chung D D L, A comparative study of carbons for use as an electrically conducting additive in the manganese dioxide cathode of an electrochemical cell, Carbon, 2002,40(3),447-449
    [87] Johnson C S, Dees D W, Mansuetto M F, etc. Structural and electrochemical studies of α-manganese dioxide (α-MnO_2), Journal of Power Sources, 1997,68(2),570-577
    [88] Takashi Mizuno, Toshihike Hagiwara, Antitumor Activity and some Properties of Water-soluble Polysac charides from"Himematsutake",the Fruiting Body of Agaricusblazei Murill, Agric. Biol. Chem, 1990,54(11),2889~2905

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700