固溶体中间层钛基氧化物阳极研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在电化学应用技术中,耐酸阳极材料的选择和制备一直是电化学工业的难题之一,高性能的阳极材料应当具有导电性能好、耐氧化、耐腐蚀、使用寿命长、催化活性高和成本低等优点。在强酸性溶液中,由于酸的腐蚀性和阳极氧析出的强氧化性,致使阳极材料的选择很困难。因此选择合适的耐酸性阳极材料将是一个非常有实际意义的课题。
     有关耐酸性阳极材料的选择,阀金属钛是目前国内外公认的最佳基体材料。钛具有密度小、机械强度高、耐腐蚀、导电性好和廉价等优点。非贵金属半导体氧化物PbO_2、SnO_2、MnO_2等具有较好耐腐蚀性和较高的电催化活性,适用于做阳极材料的活性层。因此,钛基氧化物(Ti/MO_2)在环境污染物去除、电化学合成等工业生产中是广泛应用的阳极材料之一。但该类电极存在的明显问题是:①由于阳极放出活性氧,扩散到基体表面形成TiO_2绝缘体使电极导电能力降低;②钛基体与表面活性层的结合力差,特别是当TiO_2绝缘体生成后,基体与活性层的机械结合力减弱,致使表面活性层脱落,在强腐蚀性的酸性溶液中尤其严重。本文认为加入氧化物(SnO_2、Sb_2O_4、MnO_2等)形成固溶体氧化物中间层可增强钛基体和活性层(MnO_2、SnO_2和PbO_2)之间的粘结力和导电性,同时也可增加阳极的机械强度和耐腐蚀性能,这可有效解决以上问题。
     本文首先采用了热分解、电沉积等方法及其组合技术制备出具有多元非贵金属氧化物中间层的电极,对氧化物中间层及活性层进行了表征,同时探讨了掺杂半导体氧化物固溶体的形成机制,主要研究了多元氧化物中间层形成的匹配固溶体在电极中的作用,探讨了晶体构型等因素对固溶体形成的影响和固溶体中间层形成过程中产生的晶体缺陷、氧空位对电极导电性能的影响,并考察了上述电极的使用寿命和电催化性能。其次将分形几何理论引入钛基氧化物电极体系,探讨了氧化物电极表面的分形维数和电催化性能之间的关系。最后将该类电极应用于含酚有机废水处理及电解还原偏硼酸钠制备硼氢化钠体系,考察了该类氧化物电极的电催化等综合性能,为耐酸阳极的工业化提供理论依据。主要研究内容及结论如下:
     1.选择金属钛为基体,非贵金属半导体氧化物(SnO_2、Sb_2O_4、MnO_2等)为中间过渡层材料,MnO_2、SnO_2和PbO_2为活性层,采用热分解、电沉积和溶胶-凝胶及其组合技术制备了具有多元氧化物中间过渡层的Ti/PbO_2、Ti/MnO_2及Ti/SnO_2阳极,利用SEM、XRD、XPS等技术对上述电极表面形貌、结构物相、组成价态进行了表征;采用快速寿命法考察了氧化物电极在1.0 mol/L H_2SO_4溶液中4A/cm~2下的预期使用寿命。同时探讨了电极在酸性溶液中的电催化性能。研究结果表明:
     ①用溶胶凝胶法制备出了纳米级的一元锑掺杂的Ti/SnO_2电极,最佳烧结温度为600℃,SbCl_3最佳掺入量为4%。加速寿命实验表明电极使用寿命较长,动力学测试表明该电极是一种高析氧过电位的电极材料,同时探讨了Ti/SnO_2+Sb_2O_4电极在酸性溶液中的析氧机理。
     ②用热分解和电沉积法分别制备出具有多元氧化物中间层的Ti/PbO_2电极,该电极的活性层(Pb_3O_4和β-PbO_2)成菜花蘑菇状,其表面积大催化活性优良。稀土铈、钇掺杂的三元中间层的PbO_2电极寿命较长,电催化性能良好,该类电极在酸性溶液中的使用寿命和放氧动力学参数比单质铅电极优越。
     ③用热分解法制备出具有不同多元中间层的Ti/MnO_2电极,该电极的活性层是β-MnO_2,该电极在酸性溶液中放氧特性优良,a、b值普遍比贵金属的小,i_0值较大,过电位小,其中Ti/SnO_2+RuO_2+MnO_2/MnO_2电极的析氧是SN_1反应机理,电极的析氧活化能(8KJ/mol)比PtO_2(60.67KJ/mol)和Pt/MnO_2(18.83KJ/mol)电极均低,是酸性溶液中低析氧过电位的理想材料。
     ④具有二元SnO_2+Sb_2O_4固溶体中间层的Ti/MO_2阳极是用于酸性溶液中不同析氧体系的较理想的阳极材料。Ti/SnO_2+Sb_2O_4/MnO_2、Ti/SnO_2+Sb_2O_4/PbO_2和Ti/SnO_2+Sb_2O_4阳极在1.0mol/L H_2SO_4中的析氧起始电位依次增大,分别为1.701V、1.860V和1.918V,因此Ti/SnO_2+Sb_2O_4/PbO_2和Ti/SnO_2+Sb_2O_4阳极在酸性溶液中析氧电位较高,适用于阳极氧化的电化学体系;Ti/SnO_2+Sb_2O_4/MnO_2有较低的析氧电位,比较适合于阳极析氧的电化学体系。
     ⑤一元Sb_2O_4中间层、二元SnO_2+Sb_2O_4中间层、三元SnO_2+Sb_2O_4+MO_2(M=Ru、Mn)中间层分别是Ti/SnO_2、Ti/PbO_2和Ti/MnO_2电极中较匹配的中间层材料。其中,二元SnO_2+Sb_2O_4(56%Sb_2O_3和44%Sb_2O_5)中间层能与相同晶体构型的铅锰活性层及二氧化钛形成良好的匹配固溶体,该固溶体生长过程的活化能较低(约13.965kJ/mol),形成的固溶体中间层表面晶粒均匀细小、结合紧密无裂缝,可有效阻止新生态氧原子的扩散,减少二氧化钛绝缘层的形成,从而延长电极的使用寿命。其作为中间层的Ti/SnO_2+Sb_2O_4/PbO_2、Ti/SnO_2+Sb_2O_4+MO_2(M=Ru、Mn)/MnO_2和Ti/SnO_2+Sb_2O_4阳极在工业电流密度(1000A/m~2)下的预期使用寿命可分别达到15.7y、10.6y及4.6y。同时固溶体在形成过程中产生的晶体缺陷、氧空位增强了电极的导电性能,具有该固溶体中间层的Ti/PbO_2在相同电流密度下比单纯的用Pb作阳极节约电能17%,因此电极的综合性能明显提高。
     2.电极表面的粗糙程度是影响电极性能的一个重要因素。本文根据分形几何理论首次采用盒维数法计算了钛基氧化物电极表面的分形维数,并用该维数定量描述电极表面的粗糙程度。同时利用不同扫描速度下的循环伏安图形,根据扫描速度与峰电流的双对数关系测定了氧化物电极的分形维数。最后探讨了氧化物电极的分形维数和电催化性能之间的关系。将分形几何理论与电极材料的电催化性能相关联,为深入研究电催化剂提供了一条新的思路。研究结果表明:具有固溶体中间层的钛基氧化物电极是一类多孔三维电极,其分形维数介于2~3之间。由盒维数方法计算的钛基氧化物电极表面的分形维数大小顺序为:Ti/RuO_2>Ti/MnO_2>Ti/PbO_2,析氧电催化性能也按照同样的顺序呈现一定的规律。采用循环伏安方法测定的分形维数是Ti/PbO_2电极的较高,这与该电极的表面形貌相吻合,此两类方法各有其特点,都可以用来构建电极的表面形态和电化学性能之间的关系。
     3.将溶胶凝胶法制备的钛基二氧化锡电极用于含酚废水处理,考察了锑掺杂量和电极的焙烧温度等因素对含酚废水处理效果的影响,计算了在该电极上苯酚氧化的动力学参数和活化能;采用热分解和电沉积组合技术制备了具有多元氧化物过渡层的钛基二氧化铅电极并用于处理含酚废水体系,研究了其动力学规律,考察了各种因素对废水处理效率的影响;同时考察了Ti/MnO_2和不锈钢/MnO_2电极在光电催化条件下苯酚的降解转化率。结果表明:具有固溶体氧化物中间层的Ti/SnO_2+Sb_2O_4、Ti/SnO_2+Sb_2O_3+MnO_2/PbO_2和Ti/SnO_2+MnO_2+RuO_2/MnO_2(光电)阳极用于含酚废水深度处理,苯酚降解率可分别达到96.5%、95.8%和91.5%;Ti/SnO_2+Sb_2O_4、Ti/SnO_2、Ti/SnO_2+Sb_2O_3+MnO_2/PbO_2和Ti/PbO_2电极上苯酚氧化的电流效率分别为73.5%、66.0%、62.0%和54.9%,用于含酚废水深度处理,消耗的电能依次增大。可见具有固溶体氧化物中间层的Ti/SnO_2+Sb_2O_4电极是深度处理含酚废水较好的电极材料。
     4.将上述具有多元氧化物固溶体中间层的电极(Ti/SnO_2+Sb_2O_4/PbO_2、Ti/SnO_2+Sb_2O_4/MnO_2及Ti/SnO_2+Sb_2O_4)和Ti/Sn等阴极应用于偏硼酸钠制备硼氢化钠的原位硼循环体系。首次将NaBO_2电解还原(充电)成硼氢化物,硼氢化物在放氢时再(放电)产生副产物偏硼酸钠,从而实现硼的原位循环利用。同时首次建立了镍电极开路电位测定微量硼氢根浓度(10~(-5)-10~(-3)mol/L)方法,测量相对标准偏差为2.22%,回收率为98.43%。最后初步提出了电解偏硼酸钠制备硼氢化钠电化学反应机理的动力学规律。
     综上所述,多元匹配的氧化物固溶体中间层对钛基氧化物电极的综合性能起了关键作用。中间层的加入使基体和活性层形成良好的匹配固溶体,该固溶体不仅增加了其导电性,而且增强了与基体和活性层之间的结合力,使得上述氧化物电极在酸性溶液中的使用寿命增加,电催化性能得到改善。尤其,二元SnO_2+Sb_2O_4是一种较好的中间层材料。
The selection and preparation of acid-proof anodic materials are always achallenge in the electrochemical applications. A high performance anodicmaterials should have following characteristics: high electrical conduction,good electrocatalytic properties, long service life, corrosion resistance,availability, as well as low cost etc., but due to the strong oxidizability relatedto oxygen evolution and the corrosiveness of acid to anode, the selection ofanodic material used in sulfuric acid electrolyte is more difficult than thatused in mild condition, and it is also of high practical significance in industry.
     Valve metal titanium, having high mechanical strength, low density,corrosion resistance, good conductivity and low-cost, is recognized as themost suitable substrate among all the acid-proof materials, non-precioussemiconductor oxides (SnO_2, Sb_2O_4, MnO_2, etc.) are appropriate to be theactivated layer of anodes, because they have not only good electrocatalyticproperties, but also good corrosion resistance. So titanium anodes (Ti/MO_2)are very well-known in the electrochemical industry, their applications allowa long and stable operation in several important industrial fields, such as theelectrochemical synthesis and the degradation of pollutant. However, thedisadvantage is that the evolving oxygen diffuses into the substrate to formtitanium dioxide-an insulator-can cause a reduction of conductivity andweakens the binding of activated layer to the substrate, the former will detach from the titanium support, especially in a strong acid electrolyte. View fromabove, addition of oxides (SnO_2, Sb_2O_4, MnO_2, etc.) as an intermediate layerinterposed between substrate and activated layer, all form of a solid solution,provides a way to improve corrosion resistance, binding force andconductivity. Thereby problems arising from above are prevented.
     This paper presents an investigation on performance of Ti/MO_2 electrode.First, a novel anode with intermediate layers of multiple non-noble metaloxides was prepared by thermal decomposition, sol-gel and the combinationtechnology, the intermediate layers and activated layer were characterized,mechanism of formation of oxide solid solution was discussed, the role ofmatched solid solution in anode was proposed, the effect of crystal structure,crystal defect and oxygen vacancy on the formation and conduction of solidsolution was researched, the service life and catalytic properties of anodeswere also tested. Then the fractal geometry theory was introduced into thefield of titanium oxide electrodes, the correlation between surface fractaldimension and the electrocatalytic performance was proposed. Finally, theseanodes were applied into phenol wastewater treatment and the electrolyticreduction of sodium metaborate to sodium borohydride. The contents andconclusions are as follows:
     1. The metal titanium and non-noble metal semiconductor oxides (SnO_2,Sb_2O_4, MnO_2, etc.) were singled out as the substrate and the intermediatelayer respectively, the oxides (MnO_2, SnO_2 and PbO_2) are chosen as the activelayers, Ti/PbO_2, Ti/MnO_2 and Ti/SnO_2 anodes with multiple intermediatelayers were prepared by thermal decomposition, electrodepositing, sol-gel andcombination technology, above electrodes morphology, crystal phase, surfacecomposition and valence state were characterized by means of SEM, XRDand XPS, the anticipated service lives of electrodes were measured using accelerated life test in 1.0mol/L H_2SO_4 solution at a current density of 4A/cm~2.The electrocatalytic properties of electrodes have also been studied. Theresults are as follow:
     ①The nanometer-sized Ti/SnO_2 electrode was prepared by sol-geltechnique. The optimum doping concentration of antimony is 4% and the bestsintering temperature is 600℃. The service life is prolonged, determined bythe accelerated lifetime test, the over potential for oxygen-evolution is highbased on the kinetics test. The mechanism of the oxygen evolution reaction onthe anode was also proposed.
     ②The Ti/PbO_2 anode with multiple intermediate layers was prepared bythermal decomposition and electrodepositing technology, the mushroomshaped activated layer (Pb_3O_4andβ-PbO_2), possessed a high surface area, leadto a good electrocatalytic property. When the rare earth elements Ce and Ywere doped into the intermediate layer, the service life, kinetic parameters ofoxygen evolution and electrocatalytic property of Ti/PbO_2 in acidic solutionwere better than lead anode.
     ③A novel Ti/MnO_2 anode with different multiple intermediate layers andactivated layer (β-MnO_2) was prepared by thermal decomposition. The resultsindicated that the kinetic parameters a, b and overpotential are smaller thanprecious metal, the i_0 is bigger than precious metals, The activation energy ofoxygen evolution reaction on Ti/MnO_2 anode (8KJ/mol) is lower thanPtO_2(60.67KJ/mol) and Pt/MnO_2(18.83KJ/mol), the substitution mechanismof oxygen evolution is SN_1. Among all the anodes with different intermediatelayers, the Ti/SnO_2+RuO_2+MnO_2/MnO_2 appears to be an ideal material foroxygen-evolution in acid solution due to its lower overpotential.
     ④The Ti/MO_2 anode with dual SnO_2+Sb_2O_4 intermediate layers is anoptimum material used for oxygen evolution in acidic solution. The initial potentials of Ti/SnO_2+Sb_2O_4/MnO_2, Ti/SnO_2+Sb_2O_4/PbO_2 and Ti/SnO_2+Sb_2O_4 anodefor oxygen evolution in 1.0mol/L H_2SO_4 solution are 1.701V, 1.860V and1.918V respectively. So the Ti/SnO_2 and Ti/PbO_2 electrodes are applicable inthe system of anodic oxidation, the Ti/MnO_2 anode is applicable in thesystem of anodic oxygen evolution.
     ⑤The single Sb_2O_4, the dual SnO_2+Sb_2O_4 and the multipleSnO_2+Sb_2O_4+MO_2(M=Ru、Mn) are appropriate oxide intermediate layers forTi/SnO_2, Ti/PbO_2 and Ti/MnO_2 anodes respectively. Due to the same crystalstructure, the SnO_2+Sb_2O_4 (56% Sb_2O_3 and 44% Sb_2O_5) intermediate layercan form a matched solid solution with lead, manganese coatings and titaniumdioxide, activation energy is low (13.965KJ/mol) during the formation, tinyand closely grains were uniformly distributed on the solid solution surfacewithout cracked structure, thereby effectively preventing oxygenated speciestransport toward the titanium substrate to form titanium dioxide insulatinglayer and extending anode service life. The anticipated service lives ofTi/SnO_2+Sb_2O_4/PbO_2, Ti/SnO_2+Sb_2O_4/MnO_2 and Ti/SnO_2+Sb_2O_4 anodes canreach 15.7y, 10.6y and 4.6y respectively in an industrial current density(1000A/m~2). Meanwhile the conductivities of these anodes were alsoimproved because of the generation of oxygen vacancy and crystal defectsduring the formation of solid solution. Compared to a lead electrode, theconsumption of electricity by Ti/SnO_2+Sb_2O_4/PbO_2 electrode is 17% lower inthe same condition.
     2. Geometric factors are usually recognized to govern catalysis ofelectrode. The fractal geometry theory was firstly introduced to describe theanode surface irregularity quantitatively in this article, and the fractaldimensions of the oxide electrode surface were determined by means of boxdimension law and cyclic-voltammetry based on the correlation between different scan rate and peak current. Meanwhile the relationship betweenfractal dimension and electrocatalysis performance of oxide electrode wasalso investigated. The combination of fractal geometry theory and theelectrode electrocatalysis performance has provided a new method to theresearch of electrocatalysis. The results indicated that oxide electrode withmultiple transitional layers is porous and three-dimensional, the fractaldimension ranges from 2 to 3, the electrocatalysis performance of oxygenevolution on anode is related to surface fractal dimension, e.g., theelectrocatalytic activity of Ti/RuO_2 anode with a higher box dimension isbetter than Ti/MnO_2 and Ti/PbO_2 anodes. However, the fractal dimension ofTi/PbO_2 calculated from cyclic-voltammetry method is greater than others,which coincides well with the irregularities of surface layer. Both twomethods have their own merits, can construct the relation between surfacemorphology and catalytic activity.
     3.The performance of Ti/SnO_2 prepared by sol-gel method wasinvestigated in the application of phenol contained wastewater treatment.Impacts of doping antimony and calcinations temperature on phenoldegradation were studied; kinetic parameters and activated energy of phenoldegradation were measured. A same investigation applied to theTi/SnO_2+Sb_2O_4+MnO_2/PbO_2 electrode prepared by thermal decompositionand electrodepositing. Photoelectrocatalytic degeneration of phenol on theTi/MnO_2 and stainless steel/MnO_2 electrode were conducted and the removalrates were also compared. The results indicated that Ti/SnO_2+Sb_2O_4,Ti/SnO_2+Sb_2O_4/PbO_2 and Ti/SnO_2+Sb_2O_4/MnO_2 anodes are applicable tophenol contained wastewater treatment, the removal rates are 96.5%, 95.8%,and 91.5% respectively. The current efficiencies for Ti/SnO_2+Sb_2O_4, Ti/SnO_2,Ti/SnO_2+Sb_2O_4+MnO_2/PbO_2 and Ti/PbO_2 in the same condition are 73.5%, 66.0%, 62.0%, and 54.9% respectively. So the Ti/SnO_2+Sb_2O_4 with solidsolution intermediate layer is an ideal anodic materials used for phenolcontained wastewater treatment.
     4 Ti/SnO_2+Sb_2O_4/PbO_2, Ti/SnO_2+Sb_2O_4/MnO_2, Ti/SnO_2+Sb_2O_4 anodesand Ti/Sn cathode were applied into the realization of electrochemicalreduction sodium metaborate to sodium borohydride, i.e., the NaBO_2 wasconverted directly into borohydride by electrochemical reduction (charge), theborohydride produced by-product sodium metaborate again (discharge) whenhydrogen evolution occurs, thus in situ boron circulation was carried out. Thequantitative relationship between nickel electrode opening potential andborohydride concentration (10~(-5)-10~(-3)mol/L) was first established in this article,the relatively standard deviation is 2.22%, and the recovery ratio is 98.43%.Kinetics law of electrochemical reduction sodium metaborate to sodiumborohydride was also preliminary proposed.
     Summarizing the points above, we can make a conclusion that multipleintermediate layers of solid solution play an important role in the performanceof titanium based oxide anodes. Because the addition of oxides asintermediate layer can form matched solid solution, not only the anodeconductivity is improved, but also the binding force between the substrate andactivated layer is strengthened. So the service life of anode is prolonged inacid solution and their electrocatalytic ability is improved. Among all theintermediate layers mentioned above, the dual SnO_2+Sb_2O_4 is recognized asthe best in anodes.
引文
[1] Casellato U, Cattarin S, Musiani M. Preparation of porous PbO2 electrodes by electrochemical deposition of composites [J]. Electrochimica Acta,2003,48(27):3991-3998.
    [2] Fernandez J L, Gennero De. Chialvo M R, Chialvo A C. Preparation and electrochemical characterization of Ti/RuxMn1-xO2 electrodes [J].Journal Applied Electrochemistry, 2002,32(5):513-520.
    [3] Park Tae Joo, Jeong Doo Seok, Hwang Cheol Seong, et al.. Fabrication of ultrathin IrO2 top electrode for improving thermal stability of metal-insulator-metal field emission cathodes[J]. Thin Solid Films, 2005, 471(1-2):236-242.
    [4] da Silva L A, Alves V A, da Silva M A P, et al.. Oxygen evolution in acid solution on IrO_2+TiO_2 ceramic films. A study by impedance, voltammetry and SEM [J]. Electrochimica Acta,1997,42(2):271-281.
    [5] Terezo Ailton J, Pereira Ernesto C. Preparation and characterisation of Ti/RuO_2 anodes obtained by sol-gel and conventional routes[J]. Materials Letters, 2002,53(4-5):339-345.
    [6] Mahe Eric, Devilliers Didier. Surface modification of titanium substrates for the preparation of noble metal coated anodes [J]. Electrochimica Acta,2001,46(5):629-636.
    [7] Cao Dianxue, Bergens Steven H. Pt-Ru_(adatom) nanoparticles as anode catalysts for direct methanol fuel cells[J]. Journal of Power Sources,2004,134(2): 170-180.
    [8] Kamachi Mudali U, Raju V R, Dayal R K. Preparation and characterisation of platinum and platinum-iridium coated titanium electrodes[J]. Journal of Nuclear Materials,2000,277(1):49-56.
    [9] Terezo A J, Pereira EC. Fractional factorial design applied to investigate properties of Ti/IrO_2-Nb_2O_5 electrodes[J]. Electrochimica Acta,2000,45(25-26):4351-4358.
    [10] Trasatti S. Electrocatalysis in the anodic evolution of oxygen and chlorine [J]. Electrochimica Acta, 1984,29(11):1503-1512.
    [11] Chen Xueming, Chen Guohua. Stable Ti/RuO_2-Sb_2O_5-SnO_2 electrodes for O_2 evolution [J]. Electrochimica Acta,2005,50(20):4155-4159.
    [12] 冯玉杰,李晓岩,尤宏等,电化学技术在环境工程中的应用[M].北京:化学工业出版社,2002:63-74.
    [13] 曾人杰著.无机材料化学[M].厦门大学出版社,2001:194-257.
    [14] Tena M A, Llusar M, Badenes J A, et al.. Structural and electrical conductivity studies on (M,V)-TiO_2 (M=Al, Cr, Fe) rutile solid solutions at high temperature[J]. Journal of Materials Science: Materials in Electronics,2004,15(4):265-270.
    [15] Vashook V, Vasylecbko I., Zosel J. et al.. Crystal structure and electrical conductivity of lanthanum-calcium chromites-titanates Lal-xCaxCrl-yTi yO3-δ(x=0-1, y=0-1)[J]. Journal of Solid State Chemistry, 2004,177(10):3784-3794.
    [16]. Miles M H, Klaus E A, Gunn B P, et al.. The oxygen evolution reaction on platinum, iridium ruthenium and their alloys at 80℃ in acid solutions [J]. Electrochimica Acta,1978,23: 521-526.
    [17] Rigato V, Zandolin S, Benedetti A, et al.. Microstructural characterization and electrochemical properties of RuO_2 thin film electrodes prepared by reactive radio-frequency magnetron sputtering [J]. Chemistry of Materials, 2002,16(5):946-952.
    [18] Terezo Ailton J, Pereira Ernesto C. Preparation and characterisation of Ti/RuO_2 anodes obtained by sol-gel and conventional routes [J]. Materials Letters,2002,53(4-5):339-345.
    [19] Casellato U, Cattarin S, Musiani M. Preparation of porous PbO_2 electrodes by electrochemical deposition of composites [J]. Electrochimica Acta, 2003,48(27): 3991-3998.
    [20] Velichenko A B, Baranova E A, Girenk D V, et al.. Mechanism of electrodeposition of lead dioxide from nitrate solutions [J]. Russian Journal of Electrochemistry, 2003,39(6):615-621.
    [21] 梁镇海,王森,孙彦平等.Ti/SnO_2+SbO_2+RuO_2/Pb_3O_4阳极研究[J].无机材料学报,1995,10(3):381-384.
    [22] Velichenko A B, Amadelli R, Baranova E A. Electrodeposition of Co-doped lead dioxide and its physicochemical properties [J]. Journal of Electroanalytical Chemistry,2002,527(1-2):56-64.
    [23] Tahar N, Belhadj Savall A. Electrochemical degradation of phenol in aqueous solution on bismuth doped lead dioxide, a comparison of the activities of various electrode formulations [J]. Journal of Applied Electrochemistry, 1999,29:277-283.
    [24] Berthome Gregory, Prelot Benedicte, Thomas Fabien, et al.. Manganese dioxides surface properties studied by XPS and gas adsorption [J]. Journal of the Electrochemical Society,2004,151(10): A1611-A1615.
    [25] Pang Suh-cem, Anderson mare A, Chapman Thomas W. Novel electrode materials for thin-film ultracapacitors, comparison electrochemical properties of sol-gel-derived and electrodeposited manganese dioxide [J]. Journal of the Electrochemical Society, 2000, 147(2):444-450.
    [26] Izumiya K, Akiyama E, Habazaki H, et al.. Effects of additional elements on electrocatalytic properties of thermally decomposed manganese oxide electrodes for oxygen evolution from seawater [J]. Materials Transactions, JIM, 1997,38(10): 899-905.
    [27] 梁镇海,王森,孙彦平等.硫酸中Ti/MnO_x型阳极的电化性能[J].过程工程学报,1995,16(1):32-35.
    [28] Comninellis Ch, Pulgarin C. Electrochemical oxidation of phenol for wastewater treatment using SnO_2 anodes [J]. Journal of Applied Electrochemistry, 1993, 23(2): 108-112.
    [29] Correa-Lozano B, Comninellis Ch, De Battisti A. Electrochemical properties of Ti/SnO_2-Sb_2O_5 electrodes prepared by the spray pyrolysis technique [J]. Journal of Applied Electrochemistry, 1996,26(7):683-688.
    [30] He Deliang, Mho Sun-I. Electrocatalytic reactions of phenolic compounds at ferric ion co-doped SnO_2,Sb~(5+) electrodes [J]. Journal of Electroanalytical Chemistry, 2004,568(1-2):19-27.
    [31] Moustafid T Ei, Tribollet B, Festy D, et al.. Modified transparent SnO_2 electrodes as efficient and stable cathodes for oxygen reduction [J]. Electrochimica Acta, 2002,47(8):1209-1215.
    [32] 尤宏,崔玉虹,冯玉杰等.钛基Co中间层SnO_2电催化电极的制备及性能研究[J].材料科学与工艺,2004,12(3):230-233.
    [33] Baronetto D, Kodintsev I M, Trasatti S. Origin of ohmic losses at Co_3O_4/Ti electrodes [J]. Journal of Applied Electrochemistry, 1994,2:189-194.
    [34] Jin Shixiong, Ye Siyu. Oxygen evolution on titanium anodes coated with conductive metallic oxides, kinetics and mechanism in alkaline solution [J]. Electrochimica Acta, 1996, 41(6):827-834.
    [35] Jafarian M, Mahjani M G, Heli H, et al.. A study of the electro-catalytic oxidation of methanol on a cobalt hydroxide modified glassy carbon electrode [J]. Electrochimica Acta,2003, 48(23):3423-3429.
    [36] Susana Pilla A, Duarte Marta ME, Mayer Carlos E. Manganese dioxide electrodeposition in sulphate electrolytes, the influence of ferrous ions [J]. Journal of Electroanalytical Chemistry,2004,569(1):7-14.
    [37] Saez Veronica, Gonzia Jose, Iniesta Jesus. Electrodeposition of PbO_2 on glassy carbon electrodes, influence of ultrasound frequency [J]. Electrochemistry Communications,2004,6(8):757-761.
    [38] Rochefort D, Hamel C, Guay D. Effect of graphite on the electrochemical properties of ballmilled RuO_2[J]. Journal of the Electrochemical Society, 2004,151 (8):A1141-A1146.
    [39] Canizares P, Saez C, Lobato J, et al.. Electrochemical treatment of 4-Nitrophenol-Containing aqueous wastes using boron-doped diamond anodes [J]. Industrial and Engineering Chemistry Research,2004, 43(9):1944-1951.
    [40] Yang L X, Allen R G, Scott K, et al.. A study of PtRuO_2 catalysts thermally formed on titanium mesh for methanol oxidation [J]. Electrochimica Acta, 2005,50(5):1217-1223.
    [41] Yang L X, Allen R G, Scott K, et al.. A comparative study of PtRu and PtRuSn thermally formed on titanium mesh for methanol electro-oxidation [J]. Journal of Power Sources, 2004, 137(2): 257-263.
    [42] Foti G, Mousty C, Reid V, et al.. Characterisation of DSA type electrodes prepared by rapid thermal decomposition of the metal precursor [J]. Electrochimica Acta, 1998,44(5):813-818.
    [43] Da Silva L M, De Faria L A, Boodts J F C. Electrochemical impedance spectroscopic (EIS) investigation of the deactivation mechanism, surface and electrocatalytic properties of Ti/RuO_2(x)+Co_3O_4(1-x) electrodes[J]. Journal of Electroanalytical Chemistry, 2002,532(1-2): 141-150.
    [44] Chang Jeng-Kuei, Chen Yi-Lun, Tsai Wen-Ta. Effect of heat treatment on material characteristics and pseudo-capacitive properties of manganese oxide prepared by anodic deposition [J]. Journal of Power Sources, 2004, 135(1-2):344-353.
    [45] De Pauli C P, Trasatti S. Composite materials for electrocatalysis of O_2 evolution, IrO_2+SnO_2 in acid solution [J]. Journal of Electroanalytical Chemistry, 2002, 538-53:145-151.
    [46] Huang Feng, Yuan Zhengyong, Zhan Hui, et al.. Synthesis and electrochemical performance of nanosized magnesium tin composite oxides [J]. Materials Chemistry and Physics, 2004,83(1):16-22.
    [47] Forti Jutiane Cristina, Olivi Paulo, de Andrade Adalgisa R. Characterisation of DSA(?)-type coatings with nominal composition Ti/Ru_(0.3)Ti+(0.7(?)x)Sn_xO_2 prepared via a polymeric precursor [J]. Electrochimica Acta, 2001.47(6):913-920.
    [48] 王雅琼,童宏扬,许文林.热分解法制备的Ti/SnO_2+Sb_2O_3/PbO_2电极性质研究[J].无机材料学报,2003,18(5):1033-1038.
    [49] 阎建中,曲久辉,孙志民等.热处理对SnO_2/Ti电化学催化降解p-苯醌的影响[J].环境科学,2004,25(1):30-34.
    [50] Velichenko A B, Amadelli R, Baranova E A, et al.. Electrodeposition of Co-doped lead dioxide and its physicochemical properties [J]. Journal of Electroanalytical Chemistry,2002, 527(1-2):56-64.
    [51] Ghaemi M, Ghavami R K, Khosravi-Fard L, et al.. Electrolytic MnO_2 via non-isothermal electrode heating, a promising approach for optimizing performances of electroactive materials [J].Journal of Power Sources, 2004,125(2):256-266.
    [52] Surviliene S, Orlovskaja L, Bikulcius G, et al.. Effect of MoO_2 and TiO_2 on electrodeposition and properties of chromium coating [J]. Surface and Coatings Technology, 2001, 137(2-3):230-234.
    [53] Amadelli R, Maldotti A, Molinari A, et al.. Influence of the electrode history and effects of the electrolyte composition and temperature on O_2 evolution at β-PbO_2 anodes in acid media [J]. Journal of Electroanalytical Chemistry, 2002,534(1): 1-12.
    [54] 申哲民,雷阳明,贾金平等.PbO_2电极氧化有机废水的研究[J].高校化学工程学报,2004,18(1):105-108.
    [55] 武刚,李宁,戴长松等.阳极电沉积Co-Ni混合氧化物在碱性介质中的电催化析氧性能[J].催化学报,2004,25(1):319-325.
    [56] 谌攀,曹江林,冷文华.掺钴氧化钛电极的制备、表征及其光电性能[J].化学物理学报,2003,16(1):307-311.
    [57] Liu Yang, Li Zhiying, Li Jinghong. IrO_2/SnO_2 electrodes, prepared by sol-gel process and their electrocatalytic for pyrocatechol [J]. Acta Materialia, 2004,52(3):721-727.
    [58] Terezo Ailton J, Pereira Ernesto C. Preparation and characterisation of Ti/RuO_2 anodes obtained by sol-gel and conventional routes[J]. Materials Letters ,2002, 53(4-5):339-345.
    [59] Spinolo G, Ardizzone S, Trasatti S. Surface characterization of CO_3O_4 electrodes prepared by the sol-gel method [J]. Journal of Electroanalytical Chemistry, 1997, 423(1-2):49-57.
    [60] 王欣,唐电,周敬恩.TiO2组元对RuO2+SnO2+TiO2/Ti阳极涂层微观结构的影响[J].中国有色金属学报,2003,13(3):708-712.
    [61] 夏熙,龚良玉.PbO2纳米粉体的固相合成及其对MnO2电极材料的改性作用[J].化学学报2002,60(1):87-92.
    [62] Yang Jingsi, Xu JunJohn. Influence of synthesis conditions on the electrochemical properties of nanostructured amorphous manganese oxide cryogels [J]. Journal of Power Sources, 2003, 122(2):181-187.
    [63] Li Feng, Yu Xianghua, Pan Hongjun, et al.. Syntheses of MO2 (M=Si, Ce, Sn) nanoparticles by solid-state reactions at ambient temperature [J]. Solid State Sciences,2000,2(8):767-772.
    [64] 冯玉杰,崔玉虹,孙丽欣等.化学废水处理技术及高效电催化电极的研究与进展[J].哈尔滨工业大学学报,2004,36(4):450-455.
    [65] Das Kaushik, Mondal Aparesh. Discharge behavior of electro-deposited lead and lead dioxide electrodes on carbon in aqueous sulfuric acid [J]. Journal of Power Sources, 1995, 55(2):251-254.
    [66] Czerwinski A, Zelazowska M, Grden M, et al.. Electrochemical behavior of lead in sulfuric acid solutions[J]. Journal of Power Sources,2000,85(1):49-55.
    [67] Nijjer S, Yhonstad J, Haarberg G M. Oxidation of manganese(Ⅱ) and reduction of manganese dioxide in sulphuric acid [J]. Electrochimica Acta,2000,46(2-3):395-399.
    [68] Liang zhenhai, Fan caimei, Sun yanping. The electrocatalysis of oxygen evolution reaction on Ti/MnO_2 electrode in sulfuric acid solution [J]. Chemical Research Chinese Universities 2001,17(3):287-292.
    [1] 杨建广,唐谟堂,张保平等.锑掺杂二氧化锡导电机理及制备方法研究现状[J].中国粉体技术,2004,(1):38-43.
    [2] Boschloo Gerrit, Fitzmaurice Donald. Spectroelectrochemistry of highly doped nanostructured tin dioxide electrodes [J]. Journal Physical Chemistry B, 1999,103(16):3093-3098.
    [3] Montilla F, Morallon E, De Battisti A, et al.. Preparation and characterization of antimony-doped tin dioxide electrodes Part 2. XRD and EXAFS characterization [J]. Journal of Physical Chemistry B, 2004,108(16):5044-5050.
    [4] Pflughoefft Malte, Weller Horst. Spectroelectrochemical analysis of the electrochromism of antimony-doped nanoparticulate tin-dioxide electrodes [J]. Journal of Physical Chemistry B, 2002, 106(41): 10530-10534.
    [5] Lipp L, Pletcher D. Preparation and characterization of tin dioxide coated titanium electrodes [J]. Electrochimica Acta, 1997, 42(7):1091-1099.
    [6] Cheng Shao-An, Chan Kwong-Yu. Electrolytic generation of ozone on an antimony-doped tin dioxide coated electrode [J]. Electrochemical and Solid-State Letters, 2004, 7(3): D4-D6.
    [7] Chiaki lwakura, Meguru Inai, Masatsugu Manabe. The cause of the activity loss of titanium-supported ruthenium dioxide electrodes during the anodic evolution of oxygen [J]. 电化学工业物理化学,1980,48(2):91-96.
    [8] 苗海霞,Ti/SnO_2-Sb_2O_4电极的制备及性能研究[D].太原理工大学,2005年.
    [9] 张招贤.钛电极工学[M].北京:冶金工业出版社,2000:242.
    [10] 方国家,刘阳黎,胡一帆等.CuO-SnO_2纳米晶粉料的Sol—Gel制备及表征[J].无机材料学报,1996,11(3):537-541.
    [11] 薄占满.掺Sb二氧化锡半导体导电机理的实验探讨[J].无机材料学报,1990,5(4):324-329.
    [12] Lai J K L, Shek C H, Lin G M J. Grain growth kinetics of nanocrystalline SnO_2 for long-term isothermal annealing [J]. Scripta Mater,2003, 49(5):441-446.
    [13] McCarty K F, Nobel J A, Bartelet N C. Vacanicies in solids and the stability of surface morphology [J]. Nature, 2001, 412: 622-625.
    [14] Moldovan D,Yamakov V, Wolf D, et al.. Scaling Behavior of grain-rotation-induced grain growth [J]. Physics Review Letters,2002, 89 (20):206101-206103.
    [15] Leite E R, Giraldi T R, Pontes F M, et al.. Crystal growth in colloidal tin oxide nanocrystals induced by coalescence at room temperature [J]. Applied Physics Letters, 2003, 83(8): 1566-1568.
    [16] Correa-Lozano B, Comninellis CH, Battisti A De. Electrochemical properties of Ti/SnO_2-Sb_2O_5 electrodes prepared by the spray pyrolysis technique [J]. Journal Applied Electrochemistry, 1996,26:683-688.
    [17] Comninellis Christos. Electrocatalysis in the electrochemical conversion/combustion of organic pollutants for waste water treatment [J]. Electrochimica Acta,1994,39 (11-12): 1857-1862.
    [18] 冯玉杰,李晓岩,尤宏等.电化学技术在环境工程中的应用[M].北京:化学工业出版社,2002,36.
    [1] 孙风梅,潘建跃,罗启富等.PbO_2阳极材料的研究进展[J].兵器材料科学与工程,2004,27(1):68-72.
    [2] Pavlov D, Monahov B. Mechanism of the elementary electrochemical processes taking place during oxygen evolution on the lead dioxide electrode [J]. Journal Electrochemical Society, 1996, 143(11): 3616-3629.
    [3] Petersson Ingela, Berghult Bo, Ahlberg Elisabet. Thin lead dioxide electrodes for high current density applications in semi-bipolar batteries [J]. Journal of Power Sources, 1998, 74(1):68-76.
    [4] Saez Veronica, Gonzia Jose, Iniesta Jesus, et al.. Electrodeposition of PbO_2 on glassy carbon electrodes, influence of ultrasound frequency [J]. Electrochemistry Communications, 2004,6(8):757-761.
    [5] Yeh Chih-Hsuan, Wan Chi-Chao, Chen Jenn-Shing. Physical and electrochemical characterization of PbO_2 electrode prepared at different H_2SO_4/H_2O/PbO ratios [J]. Journal of Power Sources, 2001,101 (2):219-225.
    [6] Velichenko A B, Amadelli R, Zucchini G L, et al.. Electrosynthesis and physicochemicai properties of Fe-doped lead dioxide electrocatalysts [J]. Electrochimica Acta, 2000, 45(25-26): 4341-4350.
    [7] Casellato U, Cattarin S, Musiani M. Preparation of porous PbO_2 electrodes by electrochemical deposition of composites [J]. Electrochimica Acta, 2003,48(27):3991-3998.
    [8] Kanagawa F S. Electrode catalyst and method for production thereof [P], EP 0319489 A, 1989.
    [9] 胡吉明,孟惠民,张鉴清等.Ti基IrO_2+Ta_2O_5阳极在H_2SO_4溶液中的电解时效行为[J].物理化学学报,2002,18(1):14-20.
    [10] Martelli G.N, Ornelas R, Faita G. Deactivation mechanisms of oxygen evolving anodes at high current densities [J]. Electrochimica Acta,1994,39(11-12):1551-1558.
    [11] 张瑞峰,于亚莉,胡刚等,钌-钛金属氧化物涂层电极的电子能谱分析[J].分析化学,1993,21(3):282-284.
    [12] 刘世宏,王当憨,潘承璜.X射线光电子能谱分析[M].北京:科学出版社,1988:313-341.
    [13] 梁镇海,王森,孙彦平等.Ti/RuO_2+SnO_2+Sb_2O_3/Pb_3O_4阳极的性能研究[J].无机材料学报,1995,10(3):381-384.
    [14] 梁镇海,王森,孙彦平等.Ti/SnO_2+Sb_2O_3/PbO_2阳极的性能研究[J].电化学,1995,1(4):456-460.
    [15] 梁镇海,孙彦平.Ti/SnO_2+Sb_2O_3+MnO_2/PbO_2阳极的性能研究[J].无机材料学报,2001,16(1):183-187.
    [1] Shao-Horn Y, Hackney S A, Johnson C S, et al.. Microstructural features of a-MnO2 electrodes for lithium batteries [J]. Journal Electrochemical Society, 1998,145(2):582-589.
    [2] Kucza Witold. Structural stability of MnO_2 polymorphs and their reactivity v s. lithium [J]. Electrochemistry Communications, 2002, 4(9):669-673.
    [3] Qu Deyang. The study of the proton diffusion process in the porous MnO_2 electrode [J]. Electrochimica Acta, 2004, 49(4):657-665.
    [4] Lu Weiming, Chung D D L. A comparative study of carbons for use as an electrically conducting additive in the manganese dioxide cathode of an electrochemical cell [J]. Carbon, 2002, 40(3):447-449.
    [5] Johnson C S, Dees D W, Mansuetto M F, et al.. Structural and electrochemical studies of α-manganese dioxide (α -MnO_2) [J]. Journal of Power Sources, 1997, 68(2):570-577.
    [6] 张蕴珊,刘瑞霞.Ti基MnO_x型DSA析氧电极材料的性能[J].材料科学进展,1992,6(1):47-51.
    [7] Masayuki Morita, Chiaki Iwakura, Hideo Tamura. The anodic characteristics of modifed Mn oxide electrode,Ti/RuO_x/MnO_x[J]. Electrochimica Acta, 1978,23:331-335.
    [8] 刘世宏,王当憨,潘承璜.X射线光电子能谱分析[M].北京:科学出版社,1988:313-341.
    [9] 清山哲郎编,黄敏明译.金属氧化物及其催化作用[M].合肥:中国科技大学出版社,1991:33.
    [10] Miles M H, Klaus EA, Gunn B P, et al.. The oxygen evolution reaction on platinum,iridium, ruthenium and their alloys at 80℃ in acid solutions [J]. Electrochimica Acta, 1978,2:521-526.
    [11] Issa l M, Abdelaal M S, Eimiligy A A. Anodic behaviour of α-PbO_2 substrates containing different percentages of lower lead oxides [J]. Journal of Applied Electrochemistry, 1975,5:271-277.
    [12] Liang zhenhai, Fan caimei, Sun yanping. Electrocatalysis of oxygen evolution reaction on Ti/SnO_2+RuO_2+MnO_2/MnO_2 electrode in sulfuric acid solution [J]. Chemical Ressarch in Chinese Universities,2001,17(3):287-290.
    [13] Bochiris John O'M, Otagawa Takaaki. The electrocatalysis of oxygen evolution on perivskites [J]. Journal Electrochemical Society, 1984,131 (2):290-302.
    [14] Morita M, Iwakura C, Tamura H. Anodic characteristics of modified Mn oxide electrode, Ti/RuOx/MnOx [J]. Electrochimica Acta, 1978, 23:331-335.
    [15] lnai M H, Klaus E A, Gunn B P. Experimental activation energies for oxygen evolution reaction on transition metal oxide electrodes in acidic solution [J]. Electrochemistry, 1980,48:173-179.
    [16] Huheey J E. Inorganic Chemistry 2nd. [M]. New York:Harper & Row Publishers, 1978:371,500.
    [1] Terezo A J, Pereira E C. Fractional factorial design applied to investigate properties of Ti/IrO_2-Nb_2O_5 electrodes [J]. Electrochimica Acta, 2000,45(25-26): 4351-4358.
    [2] Park Tae Joo, Jeong Doo Seok, Hwang Cheol Seong, et al.. Fabrication of ultra thin IrO_2 top electrode for improving thermal stability of metal-insulator-metal field emission cathodes [J]. Thin Solid Films, 2005,471 (1-2):236-242.
    [3] Silva L A, Alves V A, da Silva M A P, et al.. Oxygen evolution in acid solution on IrO_2+TiO_2 ceramic films. A study by impedance,voltammetry and SEM [J]. Electrochimica Acta, 1997,42(2):271-281.
    [4] Terezo Ailton J, Pereira, Ernesto C. Preparation and characterisation of Ti/RuO_2 anodes obtained by sol-gel and conventional routes [J]. Materials Letters, 2002,53(4-5):339-345.
    [5] Mahe Eric, Devilliers Didier. Surface modification of titanium substrates for the preparation of noble metal coated anodes [J]. Electrochimica Acta, 2001,46(5):629-636.
    [6] Cao Dianxue, Bergens Steven H. Pt-Ru_(adatom) nanoparticles as anode catalysts for direct methanol fuel cells [J]. Journal of Power Sources, 2004,134(2): 170-180.
    [7] Kamachi Mudali U, Raju V R, Dayal R K. Preparation and characterisation of platinum and platinum-iridium coated titanium electrodes [J]. Journal of Nuclear Materials, 2000,277(1):49-56.
    [8] Chen Xueming, Chen Guohua. Stable Ti/RuO_2-Sb_2O_5-SnO_2 electrodes for O_2 evolution [J]. Electrochimica Acta, 2005,50(20):4155-4159.
    [9] 罗文秀,任鹏程,谭忠恪.汞灯辅助MOCVD二氧化锡薄层晶体的结构与透明导电性研究[J].功能材料,1993,24(2):129-133.
    [10] 刘世宏,王当憋,潘承璜.X射线光电子能谱分析[M].北京:科学出版社,1988:313-341.
    [11] 王静,冯玉杰.制备方法对稀士Gd掺杂SnO_2/Sb电催化电极性能的影响[J].吉林大学学报(理学版),2005,43(4):546-550.
    [12] 曹晓平,姚文清,叶小燕等.氢吸附对掺杂SnO_2薄膜电子结构的影响[J].化学物理学报,1997,10(3):255-258.
    [13] 葛欣,张惠良.甲苯选择性氧化制苯甲醛-铁锑氧化物表面性质与催化性能的研究[J].化学研究与应用,1998,10(2):159-162.
    [14] 吴辉煌编著.电极学原理[M].厦门:厦门大学出版社,1991:30-34.
    [15] 曾人杰.无机材料化学(上)[M].厦门:厦门大学出版社,2001:187-213.
    [16] 杨建广,唐谟堂,唐朝波等.锑掺杂二氧化锡薄膜的导电机理及其理论电导率[J].微纳电子技术,2004,4:18-21.
    [17] 刘杏芹,朱海宁,沈瑜生.SbxSn1-xO2固溶体系电学性能与导电机制研究[J].无机化学学报,1996,12(2):130-134.
    [18] Kotz R, Stucki S, Carcer B. Electrochemical waste water treatment using high overvoltage anodes. Part Ⅰ. Physical and electrochemical properties of SnO_2 anodes [J]. Journal of Applied Electrochemistry, 1991, 21(1):14-20.
    [19] Rogers D B, Shannon R D, Sleight A W, et al.. Crystal Chemistry of Metal Dioxides with Rutile-Related Structures [J]. Inorganic Chemistry, 1969, 8(4):841-849.
    [20] 杨文治.电化学基础[M].北京:北京大学出版社,1982:273-273.
    [1] 龚竹青编著.理论电化学导论[M].长沙:中南工业大学出版社,1988:390.
    [2] Go Joo-Young, Pyun Su-Ⅱ, Hahn Yoo-Dong. A study on ionic diffusion towards self-affine fractal electrode by cyclic voltammetry and atomic force microscopy [J]. Journal of Electroanalytical Chemistry,2003,549:49-59.
    [3] Pyun Su-Il, Rhee Chang-Kyu. An investigation of fractal characteristics of mesoporous carbon electrodes with various pore structures [J]. Electrochimica Acta,2004, 49(24):4171-4180.
    [4] Eftekhari Ali. On the fractal study of LiMn_2O_4 electrode surface [J]. Electrochimica Acta,2003,48(19):2831-2839.
    [5] 汪富泉,李后强著.分形几何与动力学系统[M].哈尔滨:黑龙江教育出版社,1993:40.
    [6] 黄润生编著.混沌及其应用[M].武汉:武汉大学出版社,2000:183-194.
    [7] 袁慷.Windows中BMP图形文件在DOS下的存取[J].中国计算机用户,1995,(5):56-58.
    [8] 梁镇海,董黎君,陈新国等.钛基氧化物电极的分形维数和电催化性能[J].催化学报,2001,22(2):148-150.
    [9] Iwakura C,Hirao K,Tarnura H.Anode evolution of oxygen on ruthenium in acidic solution [J]. Electrochimica Acta, 1977,22:329-334.
    [10] Zuo xiaobing, Xu changsen, Xin houwen. Simnlation of voltamrnogram on rough electrode [J]. Electrochimica Acta, 1997,42(16):2555-2558.
    [11] Strφmme M.,Niklasson G.A,Granqvist C.G.. Determination of fractal dimension by cyclic Ⅰ-Ⅴ studies,The laplace-transform method [J]. Physical Review B, 1995,52(19): 14192-14197.
    [12] Strφmme M, Niklasson G.A, Granqcist C.G.. Fractal dimension of insertion studies by diffusion-controlled voltammetry and impedance spectroscopy [J]. Physical Review B,1996,54(5):2968-2971.
    [13] Isdorsson J, Stromme M, Gahlin R,et al.. Ion transport in porous oxide files:cyclic voltammograms interpreted in terms of a fractal dimension [J]. Solid State Communications, 1996,99(2): 109-111.
    [14] Strφmme M, Niklasson G A, Granqvist C G. Voltammetry on fractals [J]. Solid State Communications, 1995,96(3):151-154.
    [15] Andrieux C P, Andebert P. Electron transfer through modified electrode with a fractal structure :cyclic voltammetry and chronoamperometry responses [J]. Journal Physical. Chemistry B,2001,105:444-448.
    [16] 陈振方,蒋汉瀛,舒余德等.PbO_2-Ti/MnO_2电极上析氧反应动力学及电催化[J].金属学报.1992,28(2):50-56.
    [1] Arslan Idil. Advanced oxidation of raw and biotreated textile industry waste water with O_3·H_2O/γv-1 and their sequential application [J]. Journal of Chemical Technology & Biotechnology .2001,76(1): 53-60.
    [2] Johnson D C. Direct electrochemical degradation of organic wastes in aqueous midia [J]. Electrochimica.Acta, 2000(46):325-330.
    [3] Mehmet A O. Complete destruction of p-Nitrophenrol in aqueous medium by electro-Fenton method [J]. Environimental Science&Technology,2000,34:3474-3479.
    [4] Mehmet A. O. Producation of hydroxyl radicals by electrochemically assisted Fenton's reagent [J]. Journal of Electroanalytical Chemistry,2001,507: 97-102.
    [5] Gattrell M, Kirk D W. A study of electrode passivation during aqueous phenol electrolysis [J]. Journal of the Electrochemical Society., 1993,140(4):903-911.
    [6] 冯玉杰,崔玉虹,孙丽欣等.电化学废水处理技术及高效电催化电极的研究与进展[J].哈尔滨工业大学学报,2004,36(4):450-455.
    [7] Wang G.S, Hsieh S.T.. Destruction of humicacid in water by UV light-catalyzed oxidation with hydrogen peroxide [J]. Water.Research., 2000,34(15):3882-3887.
    [8] 梁镇海,孙彦平.Ti/SnO_2+Sb_2O_3+MnO_2/PbO_2阳极的性能研究[J].无机材料学报,2001,16(1):183-187.
    [9] Oumitrin D, Bally A R., Hones P, et al.. Photocatalytic degradation of phenol by TiO_2 thin films prepared by sputtering [J]. Applied.Catalysis.B,2000,25(2):83-92.
    [10] 杨敏莉.光催化氧化含酚废水的研究[D].硕士学位论文,太原理工大学,2001:34.
    [11] Rodgers J D, Jedral W, Bunce N J. Electrochemical Oxidation of chlorinated phenols [J]. Environimental. Science&Technology., 1999,33:1452-1457.
    [12] He Deliang, Mho Sun-Il. Electrocatalytic reactions of phenolic compounds at ferric ion co-doped SnO_2:Sb~(5+) electrodes [J]. Journal of Electroanalytical Chemistry,2004,568(1-2):19-27.
    [13] Gole James L, Iretskii Alexei V, White Mark G, et al.. Suggested oxidation state dependence for the activity of submicron structures prepared from tin/tin oxide mixtures [J]. Chemistry of Materials, 2004,16(25):5473-5481.
    [14] 苗海霞.Ti/SnO_2-Sb_2O_4电极的制备及性能研究[D].太原理工大学,2005年.
    [15] 薄占满.掺Sb二氧化锡半导体导电机理的实验探讨[JJ.无机材料学报,1990,5(4):324-329.
    [1] Schlesinger H I, Brown H C, Finhdt A E, et al.. Sodium borohydride: its hydrolysis and its use as a reducing agent and in the generation of hydrogen [J]. Journal of American Chemical. Society., 1953(75):215-219.
    [2] Neale C B. Dyeing of dye stripping with alkaline borohydride and hydrosulfite solution [P]. US, 3127231,1964.
    [3] George D Jr, Robert M S. Aluminum containing precipitating agent for precious metals and method for its use [P]. US, 4092154,1978.
    [4] Schlesinger H I, Brown H C. Methods of preparing alkali metal borohydrides [P].US, 2534533,1950.
    [5] Yoshitsugu Kojima, Tetsuya Haga. Recycling process of sodium metaborate to sodium borohydride [J]. International Journal of Hydrogen Energy, 2003,28,989-993.
    [6] Li ZhouPeng, Liu BinHong, et al.. Preparation of potassium borohydride by a mechano-chemical reaction of saline hydrides with dehydrated borate through ball milling [J]. Journal of.Alloys and Compounds, 2003,354:243-247.
    [7] Cooper Hal B H. Electrolytic process for the production of alkali metal borohydride [P].US, 3734842, 1973.
    [8] Amendola Steven. Electroconversion Cell [P]. US, 5804329,1998.
    [9] Amendola Steven. Electroconversion Cell [P].US, 6497973,2002.
    [10] George F, Huff, et al.. Electrochemical method for the preparation of metal borohydrides [P]. US,2855353,1958.
    [11] Kojima Y, Haga T. Recycling process of sodium metaborate to sodium borohydride [J]. International Journal of Hydrogen Energy, 2003, 28:989-993.
    [12] Li Z P, Morigazaki N, Liu B H, et at.. Preparation of sodium borohydride by the reaction of MgH2 with dehydrated borax through ball milling at room temperature [J]. Journal of Alloys and Compounds,2003,349:232-236.
    [13] Zhou Yu. A process for synthesizing metal borohydrides [P]. WO, 02/06270 A1,2002.
    [14] Panizza M, Cerisola G. Removal of organic pollutants from industrial wastewater by electrogenerated fenton reagent [J]. Water Research, 2001, 35 (16):3987-3992.
    [15] Li Jun, Zhao Ling, Zhang XinSheng, et al.. The production of hydrogen peroxide in fuel cell reactors I experiment research [J]. Chemical Reaction Engineering and Technology, 2001, 17(3): 222-226.
    [16] 刘毅敏,覃军,王祥智等.硼氢化钠样品纯度的测定[J].理化检验-化学分册,2003,39(9):555-556.
    [17] Mirkin A J, Bard A J. Voltammetric method for the determination of borohydride concentration in alkaline aquesous solutions [J]. Analytical Chemistry., 1991,63,532-533.
    [18] Amendola Steven, Onnerud Per, Kelly Michael T, et al.. Inexpensive, in-situ monitoring of borohydride concentrations [J].Talanta,1999, 49(2): 267-270.
    [19] 黄惠忠.纳米材料分析[M].北京:化学工业出版社,2003:236-262.
    [20] Gyenge E L, Oloman C W. Electrosynthesis attempts of tetrahydridoborates [J], Journal of Applied Electrochemistry,1998,28:1147-1151.
    [21] 曹余良,杨汉西,光先勇等.一种电解制备硼氢化物的催化剂及催化剂电极的制备方法[P].CN200410013296.7,2005.
    [22] 梅热 D J.,温伯格 N L,托曼奇格尔 K.等.氢硼根的一步电合成[P].CN200510065018.0,2005.
    [23] 舒余德,陈白珍.冶金电化学研究方法[M].湖南:中南工业大学出版社,1990:269-299.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700