电积铜用聚苯胺/四氧化三钴复合阳极的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目前,工业铜电积过程中广泛采用Pb-Ca-Sn阳极,由于其价格相对低廉,而且在电积过程中可以形成PbO2保护层,基本上可以满足工业生产需要。然而从能耗和环保方面考虑,Pb合金阳极在电积过程中具有高的析氧过电位(600mV),占电解槽能耗的30%左右,而且Pb合金阳极的溶解会影响阴极铜的品质,为了解决这些问题,人们正致力于研发更优性能的阳极材料。
     聚苯胺(PAN[)基复合材料具有高导电性和催化活性,并且对环境友好,应用前景十分广泛。本文采用PANI基节能阳极作为替换阳极,通过原位聚合法制备出高导电和催化活性的PANI/Co304复合材料,研究了合成条件对复合材料导电性的影响,并通过傅里叶红外光谱(FT-IR)、X射线衍射(XRD)、热分析(TGA-DTG).扫描电镜(SEM)等对复合材料的结构和表面形貌进行了表征;通过模压成型工艺制备出所需阳极,系统的研究了PANI/Co304复合阳极在硫酸铜电解液体系和盐酸溶液中的电化学性能,并研究PANI/Co304阳极在铜电积应用中的恒电流极化、槽电压、阳极寿命、电能消耗等,分析了PANI基阳极失效的原因;在此基础上,与纯PANI和Pb-Ag(1%)阳极进行了对比,研究结果如下:
     (1)确定出PANI/Co304复合材料的最佳制备工艺条件:CAn=0.5 mol·L-1, C氧化剂=0.5mol·L-1, C酸=1 mol·L-1,其中SSA与H28O4的配比为2.5:10,在5℃条件下反应10h;C0304的加入使得PANI链的电荷离域化作用增强,体系致密性提高,从而提高了复合材料的导电性,当mCo304:mAn=5%时,电导率最高为4.56 S/cm;
     (2)研究表明PANI/Co304复合材料中两种粒子之间存在着相互作用,热稳定性较PANI有所提高,PANI和PANI/Co304复合材料在200℃以下都保持稳定;PANI/Co304复合材料粒径分布较为均匀,C0304基本上被PANI所包裹形成一种有序的核壳结构组织;
     (3)PANI基阳极在硫酸体系中的耐腐蚀性好于盐酸体系,在同一种体系中,阳极材料的耐腐蚀性依次为:PANI     (4)PANI/Co304阳极的表观活化能仅为15.71kJ·mol-1,表现出最好的催化活性,并能够显著降低阳极的极化电位,从而可以达到较好的节能效果,而且复合阳极具有较好的电化学稳定性;
     (5)在电流密度为200A/m2的条件下,PANI基阳极电位明显小于Pb-Ag(1%)阳极电位,槽电压降低0.26-0.36V,可以节约能耗13.92-19.27%,其中PANI-Co3O4阳极节能效果最为明显,电解铜单位能耗为1364.21 kWh/t-Cu;
     (6)电解后PANI仍然为本征态结构,并没有被完全氧化而失去催化活性,证明了PANI基阳极的失效主要与阳极的开裂有关。
At present, the Pb-Ca-Sn anodes are widely used in industrial copper electrowinning, which can basically meet the needs of industrical production, because of its relatively inexpensive and forming PbO2 protective layer during the electrowinning process. However, from the energy consumption and environmental considerations, the Pb alloy anodes have a high oxygen over potential(600mV) in electrolysis process, that consume 30 percent of cell energy, and the Pb alloy anodic dissolution affects the quality of cathode copper, in order to solve these problems, people are committed to the development of better performance anode materials.
     PANI composites have very prospect of application with high conductivity, catal-ytic activity and environment-friendly. PANI base energy saving anodes were used as replaced anode in this article, the PANI/Co3O4 composites with high conductivity and catalytic activity were prepared by in situ polymerization, the effect of synthesis conditions on the conductivity of composite was researched, the structure and surface morphology of the composite were characterized by means of FT-IR, XRD,TGA-DTG, and SEM. The required anodes were preparation by molded forming technology. The electrochemical performance of PANI/Co3O4 composite anodes in copper sulfate electrolysis liquid system and hydrochloride solution were systemic researched, and the constant current polarization, cell voltage, anodes life and power consumption were also researched during copper electrowinning process, the failure of PANI based anodes was analysised at last. Based on that, and pure PANI and Pb-Ag (1%) anodes were used for comparison, research results following:
     (1) The optimum technological conditions for preparation of PANI/Co3O4 composites were determined:CAn=0.5mol-L"1, Coxidant=0.5mol·L-1, Cacid=1mol-L-1, the ratio of SSA and H2SO4 is 2.5:10. The joined Co3O4 can enhance the charge delocalization of PANI chain and improve the compactness of system, thereby improving the conductivity of composite materials, when mCo304:An=5%, the conductivity of up to 4.56S/cm.
     (2) Chemical bonds interaction is existed between two particles in composites, the composites are more thermally stable, and the stability of both PANI and PANI/Co3O4 composites can be able to remain below 200℃. The particle size distribution of PANI/Co3O4 composites is more uniform, Co3O4 is basically packaged by PANI through a organized core-shell structure.
     (3) PANI based anodes have good corrosion resistance in sulfuric acid system than in hydrochloric acid, in the same system, the corrosion resistance of anodes is following as:PANI     (4) The apparent activation energy of PANI/Co3O4 anode is only 15.71kJ·mol-1 showing the best of catalytic activity, and PANI/Co3O4 anode can significantly reduce anode polarization potential, so that composite anodes achieve better energy saving effect and electrochemical stability.
     (5) Under the conditions of current density of 200A/m2, the anodic potential of PANI based anodes is significantly smaller than the Pb-Ag (1%), cell voltage reducing 0.26~0.36V, that can save energy 13.92~19.27%, of which PANI/Co3O4(5%) anodes show the most obvious effect energy saving that the unit energy consumption electrolytic copper was 1364.21 kwh/t-Cu.
     (6) The structure of PANI is still eigenstate after electrolysis, so catalytic activity was not completely lost, that prove the failure of PANI based anodes related primarily to cracking of the anodes.
引文
[1]罗庆文主编.有色冶金概论[M].北京:冶金工业出版社,2007,7-8.
    [2]Reza A S, Yinghe H, Simon Gregory. Statistical analysis of the effect of operating parameters on acid mist generation in copper electrowinning[J]. Hydrometallurgy, 2011,106(1-2):113-118.
    [3]郭亚惠.铜湿法冶金现状及未来发展方向[J].国外工程技术,2006,(4):1-7.
    [4]曹江林,吴祖成,李红霞,等.Pb02阳极在硫酸溶液中的析氧失活行为[J].物理化学学报,2007,23(10):1515-1519.
    [5]梁振海,丁永波,孙颜发,等.渗氮钛基Pb02耐酸阳极的电化学性能[J].稀有金属材料与工程,2010,39(1):56-59.
    [6]袁学韬,吕旭东,华志强,等.电积铜用铅合金阳极的腐蚀行为研究[J].湿法冶金,2010,29(1):21-23.
    [7]Cifuentes L, Castro J M, Crisostomo G, et al. Modelling a copper electrowinning cell based on reactive electrodialysis[J]. Applied Mathematical Modelling,2007: 1308-1320.
    [8]Cifuentes L, Glasner R, Castro J M, et al. Aspects of the development of a copper electrowinning cell based on reactive electrodialysis[J].Chemical Engineering Scinence,2004,59:1087-1101.
    [9]Panda B, Das S C. Electrowinning of copper from sulfate electrolyte in presence of sulfurous acid[J].Hydrometallurgy,2001,59:55-67.
    [10]Panda B, Das S C, R K Panda. Effect of added cobalt ion on electro-deposition of copper from sulfate bath using graphite and Pb-Sb anodes[J]. Hydrometallurgy,2009,95:87-91.
    [11]傅崇说.有色冶金原理[J].北京:冶金工业出版社.2007,247-287.
    [12]曹远栋.锌电积用新型铅基合金极的制备及性能研究[D].昆明:昆明理工大学,2009.
    [13]Nguyen T, Atrens A. Composition and morphology of the film formed on a lead alloy under conditions typical of the electro-winning of copper [J]. Hydrometallurgy,2009,96:14-26.
    [14]纪存朋,于建生.铜电积技术的发展现状及应用前景[J].湿法冶 金,2009,28(2):77-79.
    [15]Lai Yanqing, Jiang Liangxing, Li Jie, et al. A novel porous Pb-Ag anode for energy-saving in zinc electrowinning[J]. Hydrometallurgy,2010(102):73-80.
    [16]Bijayalaxmi Panda, Das S C, Panda R K. Effect of added cobalt ion on electrodeposition of copper from sulfate bath using graphite and Pb-Sb anodes[J]. Hydrometallurgy,2009(95):87-91.
    [17]Zhou Yanbao, Yang Chunxiao, Zhou Weifang, et al. Comparison of Pb-Sm-Sn and Pb-Ca-Sn alloys for the positive grids in a lead acid battery[J]. Journal of Alloys and Compounds,2004 (365):108-111.
    [18]Bijayalaxmi P, Das S C, Panda R K. Effect of added cobalt ion on electro-deposition of copper from sulfate bath using graphite and Pb-Sb anodes [J]. Hydrometallurgy,2008:1-5.
    [19]Hrussanova A, Mirkova L, Dobrev T. Electrochmical properties of Pb-Sb,Pb-Ca-Sn and Pb-Co3O4 anodes in cooper electrowining [J] Journal of Applied Electrochemistry 2002,32:505-521.
    [20]杜文明.低银铅钙阳极板的制造[J].有色金属(冶炼部分),2000,31(6):46-47.
    [21]王恒章.四元合金在湿法炼锌中的应用[J].有色冶炼,20001,30(6):18-20.
    [22]Maitre A, Bourguignon G, Fiorani J M, et al. Aging and overaging processes in Pb-0.08%Ca-x%Sn alloys using transmission electron microscopy and differential scanning calorimetry[J]. Materials Science and Engineering A,2003 (340):103-113.
    [23]苏向东,罗宏,李鹏,等.电积铜用惰性Pb基合金阳极的工业试验[J].有色金属,2002,(4):43-45.
    [24]李宝松,林安,甘复兴Ti/IrO2+Ta2O5阳极的制备及其析氧电催化性能研究[J].稀有金属材料与工程,2007,36(2):245-249.
    [25]姚书典,沈嘉华,孙娟,等IrO2+Ta2O5系钛基改性涂层阳极和失效特点[J].稀有金属材料与工程,2006,35(12):1916-1919.
    [26]纪红,周德瑞,王丽,等.钛基Ru-La-Sn涂层阳极的电催化性能[J].稀有金属材料与工程,2004,33(8):877-880.
    [27]Devilliers D, Mahe E. Modified titanium electrodes:Application to Ti/TiO2/PbO2 dimensionally stable anodes [J]. Electrochimica Acta,2004,49(22-23):4027-4034.
    [28]Hrussanova A, Mirkova L, Ts D, et al. Influence of temperature and current density on oxygen overpotential and corrosion rate of Pb-Co3O4, Pb-Ca-Sn, and Pb-Sb anodes for copper electrowinning[J]. Hydrometallurgy,2004, (72): 205-213.
    [29]潘君益.锌电积用Al基Pb-WC-ZrO2复合电极材料的研究[D].昆明:昆明理工大学,2005.
    [30]曹建春,郭忠诚,潘君益,等.新型不锈钢基PbO2/PbO2-CeO2复合电极材料的研制[J].昆明理工大学学报,2004,29(5):38-41.
    [31]王桂清,刘敏娜.塑料基体上化学镀二氧化铅[J].电镀与环保,1995,15(3):20-21.
    [32]Chen L C, Glasnera R, Casasb J M. Aspects of the development of a copper electrowinning cell based on reactive electrodialysis[J]. Chemical Engineering Science 2004 (59):1087-1101.
    [33]Cifuentes L, Castro J M, Crisostomo G, et al. Modelling a copper electrowinn-ing cell based on reactive electrodialysis[J]. Applied Mathematical Modelling, 2007 (31):1308-1320.
    [34]Panda B, Das S C. Electrowinning of ectrolyte in presence of sulfurous acid[J]. Hydrometallurgy,2001(59):55-67.
    [35]Huang Hui, Zhou Jiyu, Chen Burning, et al. Polyaniline anode for zinc electrowinning from sulfate electrolytes [J]. Transactions of nonferrous metals society of china,2010,(20):s288-s292.
    [36]Jing X B, Tang J S, Wang Y, et al. Science in China, Ser B(Eng),1990,33(7): 787-794.
    [37]Zhou Yuqing, Lei Liangcai, Jing Xiabin, et al. Acta Polymefica Sinica,1992,(4): 438-443.
    [38]李具康.聚苯胺/碳化硼复合材料制备及在锌电积中应用[D].昆明:昆明理工大学,2010.
    [39]Habib M A. Electrogravimetric characterization of the electrochromic polyaniline film surface, Langmuir,1988,4:1302-1304.
    [40]Marianna G, Mikolaj D. Metal ion-driven synthesis of polyaniline composite doped with metallic nanocrystals at the boundary of two immiscible liquids[J]. J Solid Electrochem,2010,14:1303-1310.
    [41]Cai Jiejian, Zuo Pengjian, Cheng Xinqun, et al. Nano-silicon/polyaniline composite for lithium storage [J]. Electrochemistry Communications,2010, 12(11):1572-1575.
    [42]John M K, Neloni R W, Justin H. Chemical and electrochemical synthesis of polyaniline/platinum composites [J].Electrochimica Acta,2006,51(14-15): 2825-2835.
    [43]Souhila A, Belkacem N, Rabah B. Electrosynthesis and analysis of the electrochemical properties of a composite material:Polyaniline+titanium oxide [J]. Thin Solid Films,2011,519(11):3596-3602.
    [44]Nirmalya B, Mukul B. Conductive composites of polyaniline and polypyrrole with MoO3 [J]. Materials Letters,2006,60(4):514-517.
    [45]F J Anaissi, G J Demets, R Timm. Hybrid polyaniline/bentonite/vanadium(V) oxide nanocomposites [J]. Materials Science and Engineering:A,2003,347(1-2): 374-381.
    [46]Elzanowska H, Birss E M. Electrochemical formation of Ir oxide/polyaniline composite films [J]. Electrochimica Acta,2008,53(6):2706-2715.
    [47]Yan Jun, Wei Tong, Fan Zhuangjun, Qian Weizhong. Preparation of graphene nanosheet/carbon nanotube/polyaniline composite as electrode material for supercapacitors[J]. Journal of Power Sources,2010,195(9):3041-3045.
    [48]房晶瑞,王玮,鲍玉胜,等.聚苯胺修饰活性炭电极电化学性能[J].功能材料,2007,38:1312-1315.
    [49]Javed A, Ufana R, Sharif A. Effect of ferrofluid concentration on electrical and magnetic properties of the Fe3O4/PANI nanocomposites [J]. Journal of Magnetism and Magnetic Materials,2007,314(2):93-99.
    [50]Sangshetty K, Anilkumar R K, Revansiddappa M. Dielectric spectroscopy of polyaniline-Dy2O3 composites [J]. Physica B:Condensed Matter,2009, 404(14-15):1883-1886.
    [51]Wang Yajun, Xu Jing, Zong Weizheng. Enhancement of photoelectric catalytic activity of TiO2 film via Polyaniline hybridization [J]. Journal of Solid State Chemistry,2011,184(6):1433-1438.
    [52]Marcos M, Guy L. Redox behavior of nanohybrid material with defined morphology:Vanadium oxide nanotubes intercalated with polyaniline [J]. Power Sources,2006,156:533-540.
    [53]姚素薇,刘春松,张卫国.双脉冲电沉积制备Ni-聚苯胺复合电极及其析氢性能的研究[J].电镀与涂饰,2006,25(2):1-4.
    [54]Souhila A, Belkacem N, Rabah B. Electrochemical synthesis and characterization of TiO2-polyaniline composite layers[J].Thin Solid Films,2011,519(11):3596-3602.
    [55]Ren Gaorui, Qiu Hong, Wu Qing. Thermal stability of composites containing HCl-doped polyaniline and Fe Nanoparticles[J].Materials Chemistry and Physics, 2010,120(1):127-133.
    [56]Li Yong, Zhao Qing, Wang Yingang, et al. Synthesis and characterization of Bi2Te3/polyaniline composites[J].Materials Science in Semiconductor Processing,2011.
    [57]Ding Hangjun, Liu Xianming, Wan Meixiang, et al. Electromagnetic functionalized cage-like polyaniline composite nanostructures[J]. Phys.Chem. B, 2008,112,9289-9294.
    [58]Chen Weimin, Huang Yunhui, Yuan Lixia. Self-assembly LiFePO4/polyaniline composite cathode materials with inorganic acids as dopants for lithium-ion batteries[J]. Journal of Electroanalytical Chemistry,2011,660(1):108-113.
    [59]Qiao Yan, Li Changming, Bao Shujuan. Carbon nanotube/polyaniline composite as anode material for microbial fuel cells [J]. Journal of Power Sources,2007, 170(1):79-84.
    [60]Anna N, Agnieszka S, Anna A. Investigations of polyaniline-platinum compocomposites prepared by sodium borohydride reduction[J]. European Polymer Journal,2008,44(6):1594-1602.
    [61]王怡,贾梦秋.分散铂修饰聚苯胺电极的制备及其催化性能[J].稀有金属材料与工程,2008,37(12):2211-2215.
    [62]韩桂梅,高飞,李建玲.电化学合成y-MnO2/PANI复合材料及性能研究.第 28届全国化学与物理电源学术年会,2009.
    [63]Zou Benxue, Liang Ying, Dermot Dianmond, et al. Electrodeposition and pseudocapacitive properties of tungsten oxide/polyaniline composite[J]. Journal of Power Sources,2011,196(10):4842-4848.
    [64]Sanjeev K, Vaishali S, Saroj A. Bimodal Coo.5Zno.5Fe204/PANI nanocomposites: Synthesis, formation mechanism and magnetic properties[J]. Composites Science and Technology,2010,70(2):s249-254.
    [65]苏碧桃,左显维,胡常林.导电聚苯胺与磁性CoFe2O4纳米复合物的合成及其电磁性能[J].物理化学学报,2008,24(10):1932-1936.
    [66]Asif A K, Inamuddin. Applications of Hg(II) sensitive polyaniline Sn(IV) phosphate composite cation-exchange material in determination of Hg2+ from aqueous solutions and in making ion-selective membrane electrode[J]. Sensors and Actuators B:Chemical,2006,120(1):10-18.
    [67]Ma Xingfa, Wang Mang, Li Guang. Preparation of polyaniline-TiO2 composite film with in situ polymerization approach and its gas-sensitivity at room temperature [J]. Materials Chemistry and Physics,2006,98(2-3):241-247.
    [68]Khadijeh G, Mir F M. Synthesis of polyaniline/graphite composite as a cathode of Zn-polyaniline rechargeable battery [J]. Journal of Power Sources,2007, 170(2):513-519.
    [69]He Yongjun. Synthesis of polyaniline/nano-CeO2 composite microspheres via a solid-stabilized emulsion route[J]. Materials Chemistry and Physics,2005,92(1): 134-137.
    [70]Ali O, Mohammad B, Hamidreza S. Conductivity and anticorrosion performance of polyaniline/zinc composites:Investigation of zinc particle size and distribution effect [J]. Progress in Organic Coatings,2011.
    [71]Chen Wemin, Qie Long, Yuan Lixia. Insight into the improvement of rate capability and cyclability in LiFePO4/polyaniline composite cathode[J]. Electrochimica Acta,2011,56(6):2689-2695.
    [72]Bong G C, Seok P, Hun S I. Influence of oxidation state of polyaniline on physicochemical and transport properties of Nafion/polyaniline composite membrane for DMFC[J]. Journal of Membrane Science,2008,324(1-2):102-110.
    [73]庄稼,迟燕华,王曦,等.室温固相反应制备纳米C0304粉体[J].无机材料 学报,2001,16(6):1203-1206.
    [74]朱学文,廖列文,崔英德.均匀沉淀法制备纳米四氧化三钴微粉[J].无机工业,2002,34(1):3-4.
    [75]蔡振平.锂离子蓄电池负极材料Co3O4的制备及性能[J].电源技术,2003,27(4):370-372.
    [76]Li Anhua, Huang Kelong, Yao Zufu. Co3O4 thin film prepared by a chemical bath deposition for electrochemical capacitors[J]. Electrochimica Acta,2011,56(5): 2140-2144.
    [77]Li Yunling, Zhao Jingzhe, Dan Yuanyuan. Low temperature aqueous synthesis of highly dispersed Co3O4 nanocubes and their electrocatalytic activity studies[J]. Chemical Engineering Journal,2011,166(1):428-434.
    [78]Chen Youcun, Zhang Yuanguang, Fu Shengquan. Synthesis and characterization of Co3O4 hollow spheres [J].Materials Letters,2007,61(3):701-705.
    [79]Xu Juan, Gao Lan, Cao Jianyu, Wang Wenchang. Preparation andelectrochemical capacitance of cobalt oxide (Co3O4) nanotubes as supercapacitor material[J]. Electrochimica Acta,2010,56(2):732-736.
    [80]Chou Shulei, Wang Jiazhao, Liu Huakun. Electrochemical deposition of porous Co3O4 nanostructured thin film for lithium-ion battery [J]. Journal of Power Sources,2008,182(1):359-364.
    [81]Xu Rui, Wang Jiawei, Li Qiuyu, Sun Guoying. Porous cobalt oxide(Co3O4) nanorods:Facilesyntheses,opticalpropertyand application inlithium-ionbatteries [J] Journal of Solid State Chemistry,2009,182(11):3177-3182.
    [82]王兴磊,欧阳艳,罗新泽,等.超级电容器电极材料的制备与研究[J].无机盐工业,2009,41(9):15-17.
    [83]Palmas S, Ferrara F, Mascia M, et al. Modeling of oxygen evolution at Teflon-bonded Ti/Co3O4 electrodes [J].International Journal of Hydrogen Energy, 2009,34(4):1647-1654.
    [84]Shinde V R, Mahadik S B, Gujar T P, et al. Supercapacitive cobalt oxide (Co3O4) thin films by spray pyrolysis[J]. Applied Surface Science,2006,252(20):7487-7492.
    [85]杨幼平,黄可龙,刘人生,等.水热-热分解法制备棒状和多面体状四氧化三 钴[J].中南大学学报:自然科学版,2006,37(6):1103-1106.
    [86]Kim D Y, Ju S H, Koo H Y, et al. Synthesis of nanosized Co3O4 particles by spray pyrolysis[J]. Journal of Alloys and Compounds,2006,417(1-2):254-258.
    [87]金根娣,杜诗,胡效亚.聚苯胺/钴-氧化钴膜作传感元件的pH传感器的性能[J].应用化学,2009,26(5):597-601.
    [88]Shambharkar B H, Umare S S. Production and characterization of polyaniline/Co3O4 nanocomposite as a cathode of Zn-polyaniline battery [J]. Materials Science and Engineering B,2010,175(2):120-128.
    [89]Heeger A J. Semiconducting and metallic polymers:the fourth generation of polymeric materials [J]. Synth. Met,2002,125(1-2):23-42.
    [90]Chen Y, Kang E T, Neoh K Q, et al. Intrinsic redox states of polyaniline studied by high-resolution X-ray photoelectron spectroscopy[J].Colloid and Polymer Science,2001,279(1):73-76.
    [91]Saxena V, Malhotra B D. Prospects of conducting polymers in molecular electronics[J]. Current Applied Physics,2003,3(3):293-305.
    [92]He Yongjun. Preparation of polyaniline/nano-ZnO composites via a novel pickering emulsion route [J]. Powder Technol,2004,147(1-3):59-63.
    [93]Kowsar M, Sajeela A, Singla M L. Low temperature sensing capability of polyaniline and Mn3O4 composite as NTC material [J]. Sensors and Actuators A, Physical,2007,135(1):113-118.
    [94]李文超.冶金与材料物理化学[M].北京:冶金工业出版社,2001,477-482.
    [95]阿伦J巴德,拉里R福克纳.电化学方法原理和应用[M].北京:化学工业出版社,2006:269.
    [96]Da L A, Alves V A, Trasatti S, et al. Surface and electrocatalytic properties of ternary oxides Ir0.3Ti(0.7-x)PtxO2 Oxygen evolution from acidic solution[J].Electroanal Chem,1997,427(1-2):97-104.
    [97]Ma Hongchao, Liu Changpeng, Liao Jianhui. Study of ruthenium oxide catalyst for electrocatalytic performance in oxygen evolution[J]. Molecular Catalysisi A:Chemical,2006,247(1-2):7-13.
    [98]薛彩霞,梁振海Ti/SnO2+Sb2O3+CF/PbOx电极的制备及性能研究[J].太原理工大学学报,2007,38(5):431-434.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700