锑、锰掺杂二氧化锡固溶体及其相图研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
掺杂二氧化锡涂层钛阳极是一类活性高、成本低的耐酸阳极,在电化学合成、废水处理等方面具有较好发展前景。但目前该类阳极在强酸性溶液中使用存在的明显问题是:①阳极放出的活性氧与钛基体形成二氧化钛绝缘层使导电能力降低;②钛基体与活性层结合力差,活性层易脱落,导致阳极失活。通过添加晶体结构相似,能形成有限或连续固溶体结构的组分来增强阳极的稳定性。其中锑、锰掺杂二氧化锡固溶体(Sn1-XSbXO2和Sn1-XMnXO2)是增强阳极导电性与稳定性的有效组分。但目前对该类固溶体形成作用机制的理论研究还甚少,阻碍了钛阳极的进一步发展。
     本文系统研究了Sn1-XSbXO2和Sn1-XMnXO2固溶体及其相图。①采用化学共沉淀法制备了一系列Sn1-XSbXO2和Sn1-XMnXO2固溶体,采用热分解法制备了Ti/SnO2+MnOx+Y/PbO2阳极;②利用XRD、TG-DTA和XPS技术对固溶体在600℃~1000℃退火温度下的物相组成进行了分析;③根据XRD和TG-DTA的分析结果绘制了固相线下Sn1-XSbXO2和Sn1-XMnXO2固溶体相图;④利用交流阻抗技术分析了Ti/SnO2+MnOx+Y/PbO2阳极的导电性和稳定性。结果表明:
     1.采用化学共沉淀法制备的Sn1-XSbXO2和Sn1-XMnXO2固溶体颗粒均是纳米级的,颗粒细小且均匀。
     2.在600℃~1000℃退火温度下,Sn0.95Sb0.05O2只存在单一的四方金红石型SnO2物相,锑主要以Sb2O5的形式进入SnO2晶格内形成有限固溶体,固溶的方程式为: ;Sn0.95Mn0.05O2和Sn0.9Mn0.1O2固溶体也只检测到四方金红石型SnO2物相,锰主要以Mn2O3的形式进入SnO2晶格内形成有限固溶体,固溶的方程式为:。
     3.固相线下Sn1-XSbXO2(x = 0~1)固溶体相图大致分为三个区域:四方SnO2单相区、SnO2+Sb2O4两相区和斜方Sb2O4单相区,四方SnO2单相区是(Sn, Sb)O2ss固溶体(锑主要以Sb2O5的形式进入SnO2晶格内,并达到饱和);Sn1-XMnXO2(x = 0~1)固溶体相图也大致分为三个区域:四方SnO2单相区,SnO2+Mn2O3和SnO2+Mn3O4两相区,立方方铁锰矿型Mn2O3单相区(或四方黑锰矿型Mn3O4单相区),四方SnO2单相区是(Sn, Mn)O2ss固溶体(锰主要以Mn2O3的形式进入SnO2晶格内,并达到饱和)。(Sn, Sb)O2ss和(Sn, Mn)O2ss固溶体均可作为导电性好和耐腐蚀的耐酸阳极材料。
     4.热分解法制备的Ti/SnO2+MnOx+Y/PbO2阳极在2 A·cm-2的电流密度下,0.5 mol·L-1 H2SO4溶液中的预期使用寿命可达70 h。
Titanium anodes have good prospects for development in electrochemical synthesis and wastewater treatment. They are a type of high activity and low-cost acid-proof anodes. However, the disadvantage is that the evolving oxygen diffusing into the substrate to form an insulator (TiO2) can cause a reduction of conductivity and weaken the binding of activated layer to the substrate, the former will detach from the titanium support, especially in a strong acid electrolyte. Addition of oxides as an intermediate layer, such as Sn1-XSbXO2 or Sn1-XMnXO2, all form of a solid solution, can enhance the conductivity and stability. However, the formation and effects mechanism of solid solution on the performance of anode has been rarely studied, so the theory has lagged behind and hindered titanium anodes further development.
     The solid solutions (Sn1-XSbXO2 and Sn1-XMnXO2) and their phase diagrams were systematically studied in this paper. Firstly, a series of solid solutions were prepared using chemical coprecipitation method and Ti/SnO2+MnOx+Y/PbO2 anodes were prepared using thermal decomposition method. Secondly, phase composition of the solid solutions at 600℃~1000℃annealing temperatures were analysed using XRD, TG-DTA, and XPS. Thirdly, subsolidus phase diagram of the solid solutions were drawed according to analysis results. Finally, the conductivity and stability of Ti/SnO2+MnOx+Y/PbO2 anodes were analysed using AC impedance method. The conclusions are as follows:
     1. The nano-particles of Sn1-XSbXO2 and Sn1-XMnXO2 are small and uniform.
     2. Only quartet rutile SnO2 exists in Sn0.95Sb0.05O2 at 600℃~1000℃annealing temperatures. Antimony is mainly in the form of Sb2O5 incoporated into SnO2 lattice to form a limited solid solution. The equation is . Only quartet rutile SnO2 exists in Sn0.95Mn0.05O2 and Sn0.9Mn0.1O2. Manganese is mainly in the form of Mn2O3 incoporated into SnO2 lattice to form a limited solid solution. The equation is .
     3. Subsolidus phase diagram of Sn1-XSbXO2 is divided into three regions: quartet SnO2 single-phase region, SnO2+Sb2O4 two-phase region, oblique Sb2O4 single-phase region. Quartet SnO2 single-phase region is (Sn, Sb)O2ss (Antimony is mainly in the form of Sb2O5 incoporated into SnO2 lattice). Subsolidus phase diagram of Sn1-XMnXO2 is divided into three regions: quartet SnO2 single-phase region, SnO2+Mn2O3 and SnO2+Mn3O4 two-phase regions, cubic Mn2O3 bixbyite single-phase region (quartet Mn3O4 hausmannite single-phase region). Quartet SnO2 single-phase region is (Sn, Mn)O2ss (Manganese is mainly in the form of Mn2O3 incoporated into SnO2 lattice). (Sn, Sb)O2ss and (Sn, Mn)O2ss can be used as good electrical conductivity and corrosion resistance of acid-proof anode materials.
     4. The expected service life of Ti/SnO2+MnOx+Y/PbO2 anode can reach 70 h in 0.5 mol·L-1 H2SO4 solution under the condition of 2 A·cm-2 current density.
引文
[1] Beer H. B. The invention and industrial development of metal anodes [J]. Journal of the Electrochemical Society, 1980, 127: 303C-307C.
    [2]张招贤,赵国鹏,胡耀红.应用电极学[M].北京:冶金工业出版社, 2005: 146-335.
    [3] Conway B. E. Electrochemical Supercapacitors, Kluwer-Plenum, New York, 1999: 1539-1548.
    [4] Izumiya K., Akiyama E., Habazaki H., et al. Effects of additional elements on electrocatalytic properties of thermally decomposed manganese oxide electrodes for oxygen evolution from seawater [J]. Materials Transactions, JIM, 1997, 38(10): 899-905.
    [5] Forti J.C., Manzo-Robledo A., Kokoh K.B., et al. Electrooxidation of acetaldehyde on platinum-modified Ti/Ru0.3Ti0.7O2 electrodes [J]. Electrochimica Acta, 2006, 51: 2800-2808.
    [6] Zeng Y., Chen K.N., Wu W., et al. Effect of IrO2 loading on RuO2-IrO2-TiO2 anodes: A study of microstructure and working life for the chlorine evolution reaction [J]. Ceramics International, 2007, 33: 1087-1091.
    [7] Forti J.C., Olivi P., De Andrade A.R. Characterisation of DSA-type coatings with nominal composition Ti/Ru0.3Ti0.7-xSnxO2 prepared via a polymeric precursor [J]. Electrochimica Acta, 2001, 47: 913-920.
    [8]王欣,唐电,周敬恩.添加SnO2的RuO2+TiO2/Ti钛阳极的组织形貌[J].稀有金属材料与工程, 2004, 33(1): 31-34.
    [9] De Faria L.A., Boodts J.F.C., Trasatti S. Electrocatalytic properties of Ru+Ti+Ce mixed oxide electrodes for the Cl2 evolution reaction [J]. Electrochimica Acta, 1997, 42: 3525-3530.
    [10]纪红,周德瑞,周育红.钛基Ru-La-Ti涂层阳极的电催化性能[J].材料保护, 2003, 36(7): 22-24.
    [11] Wang X., Tang D., Zhou J.G. Microstructure, morphology and electrochemical property of RuO270SnO230 mol% and RuO230SnO270 mol% coatings [J]. Journal of Alloys and Compounds, 2007, 430: 60-66.
    [12] Mattos-Costa F.I., De Lima-Neto P., Machado S.A.S., et al. Characterisation of surfaces modified by sol-gel derived RuxIr1-xO2 coatings for oxygen evolution in acid medium[J]. Electrochimica Acta, 1998, 44: 1515-1523.
    [13] Mercedes Villullas H., Mattos-Costa F.I., Bulhoes L.O.S. Oxygen evolution on platinum modified Ti/RuO2 sol-gel films [J]. Journal of Electroanalytical Chemistry, 2003, 545: 89-97.
    [14] Terezo A.J., Pereira E.C. Preparation and characterization of Ti/RuO2-Nb2O5 electrodes obtained by polymeric precursor method [J]. Electrochimica Acta, 1999, 44: 4507-4513.
    [15] Da Silva L.M., Boodts J.F.C., De Faria L.A. Oxygen evolution at RuO2(x) + Co3O4(1-x) electrodes from acid solution [J]. Electrochimica Acta, 2001, 46: 1369-1375.
    [16] Murakami Yasushi, Kondo Takeshi, Shimoda Yoshihiro. Effects of rare earth chlorides on the preparation of porous ruthenium oxid electrodes [J]. Journal of Alloys and Compounds, 1996, 239: 111-113.
    [17] Hu J.M., Zhang J.Q., Meng H.M., et al. Electrochemical activity, stability and degradation characteristics of IrO2-based electrodes in aqueous solutions containing C1 compounds [J]. Electrochimica Acta, 2005, 50: 5370-5378.
    [18] Da Silva L.M., Franco D.V., De Faria L.A., et al. Surface, kinetics and electrocatalytic properties of Ti/IrO2+Ta2O5 electrodes, prepared using controlled cooling rate for ozone production [J]. Electrochimica Acta, 2004, 49: 3977-3988.
    [19] Xu L.K., Scantlebury J.D. A study on the deactivation of an IrO2-Ta2O5 coated titanium anode [J]. Corrosion Science, 2003, 45: 2729-2740.
    [20]李保松,林安,甘复兴. Ti/IrO2-Ta2O5阳极的制备及其析氧电催化性能研究[J].稀有金属材料与工程, 2007, 36(2): 245-249.
    [21] Morimitsu M., Tamura H., Matsunaga M., et al. Polarization behavior and lifetime of IrO2-Ta2O5-SnO2/Ti anodes in p-phenolsulfonic acid solutions for tin plating [J]. Journal of Applied Electrochemistry, 2000, 30: 511-514.
    [22] Nijjer S., Thonstad J., Haarberg G.M. Cyclic and linear voltammetry on Ti/IrO2-Ta2O5-MnOx electrodes in sulfuric acid containing Mn2+ ions [J]. Electrochimica Acta, 2001, 46: 3503-3508.
    [23] De Pauli C.P., Trasatti S. Composite materials for electrocatalysis of O2 evolution: IrO2+SnO2 in acid solution [J]. Journal of Electroanalytical Chemistry, 2002, 538-539: 145-151.
    [24] Ye Z.G., Meng H.M., Chen D., et al. Structure and characteristics of Ti/IrO2(x)+MnO2(1-x) anode for oxygen evolution [J]. Solid State Sciences, 2008, 10:346-354.
    [25] Aquino Neto S., De Andrade A.R. Electrooxidation of glyphosate herbicide at different DSA compositions: pH, concentration and supporting electrolyte effect [J]. Electrochimica Acta, 2009, 54: 2039-2045.
    [26] Grupioni A.A.F., Arashiro E., Lassali T.A.F. Voltammetric characterization of an iridium oxide-based system: the pseudocapacitive nature of the Ir0.3Mn0.7O2 electrode [J]. Electrochimica Acta, 2002, 48: 407-418.
    [27] Correa-Lozano B., Comninellis Ch., De Battisti A. Service life of Ti/SnO2-Sb2O5 anodes [J]. Journal of Applied Electrochemistry, 1997, 27: 970-974.
    [28] Lipp L., Pletcher D. The preparation and characterization of tin dioxide coated titanium electrodes [J]. Electrochimica Acta, 1997, 42: 1091-1099.
    [29] Chen A.Ch., Nigro S. Influence of a nanoscale gold thin layer on Ti/SnO2-Sb2O5 electrodes [J]. Journal of Physical Chemistry B, 2003, 107: 13341-13348.
    [30]梁镇海,张福元,樊彩梅,等.钛基二氧化锡电极的制备及性能研究[J].稀有金属材料与工程, 2007, 36(2): 278-281.
    [31] Comninellis Ch., Pulgarin C. Electrochemical oxidation of phenol for wastewater treatment using SnO2 anodes [J]. Journal of Applied Electrochemistry, 1993, 23: 108-112.
    [32] Li X.Y., Cui Y.H., Feng Y.J., et al. Reaction pathways and mechanisms of the electrochemical degradation of phenol on different electrodes [J]. Water Research, 2005, 39: 1972-1981.
    [33] Chen X.M., Chen G.H. Stable Ti/RuO2-Sb2O5-SnO2 electrodes for O2 evolution [J]. Electrochimica Acta, 2005, 50: 4155-4159.
    [34] Chen G.H., Chen X.M., Yue P.L. Electrochemical behavior of novel Ti/IrOx-Sb2O5-SnO2 anodes [J]. Journal of Physical Chemistry B, 2002, 106: 4364-4369.
    [35] Montilla F., Morallon E., De Battisti A., et al. Preparation and characterization of antimony-doped tin dioxide electrodes. Part1. Electrochemical characterization [J]. Journal of Physical Chemistry B, 2004, 108: 5036-5043.
    [36] Devilliers D., Baudin T., Dinh Thi M.T., et al. Selective electrodeposition of PbO2 on anodized-polycrystalline titanium [J]. Electrochimica Acta, 2004, 49: 2369-2377.
    [37]梁镇海,边书田,任所才,等.硫酸中钛基二氧化铅阳极研究[J].稀有金属材料与工程, 2001, 30(3): 232-234.
    [38] Kong J.T., Shi Sh.Y., Kong L.C., et al. Preparation and characterization of PbO2electrodes doped with different rare earth oxides [J]. Electrochimica Acta, 2007, 53: 2048-2054.
    [39]王雅琼,童宏扬,许文林.热分解法制备的Ti/SnO2+Sb2O3/PbO2电极性质研究[J].无机材料学报, 2003, 18(5): 1033-1038.
    [40]蔡天晓,鞠鹤,武宏让,等.β-PbO2电极中加入纳米级TiO2的性能研究[J].稀有金属材料与工程, 2003, 32: 558-510.
    [41] Dalchiele E.A., Cattarin S., Musiani M., et al. Electrodeposition studies in the MnO2+PbO2 system: formation of Pb3Mn7O15 [J]. Journal of Applied Electrochemistry, 2000, 30: 117-120.
    [42] Mohd Yusairie, Pletcher Derek. The fabrication of lead dioxide layers on a titanium substrate [J]. Electrochimica Acta, 2006, 52: 786-793.
    [43] Cattarin Sandro, Guerriero Paolo, Musiani Marco. Preparation of anodes for oxygen evolution by electrodeposition of composite Pb and Co oxides [J]. Electrochimica Acta, 2001, 46: 4229-4234.
    [44] Inesta J., Gonzalez-Garcia J., Exposito E., et al. Influence of chloride ion on electrochemical degradation of phenol in alkaline medium using bismuth doped and pure PbO2 anodes [J]. Water Research, 2001, 35: 3291-3300.
    [45] Schumann U., Grundler P. Electrochemical degradation of organic substances at PbO2 anodes: Monitoring by continuous CO2 measurements [J]. Water Research, 1998, 32: 2835-2842.
    [46] Fujimura K., Matsui T., Habazaki H., et al. The durability of manganese-molybdenum oxide anodes for oxygen evolution in seawater electrolysis [J]. Electrochimica Acta, 2000, 45: 2297-2303.
    [47]梁镇海,王森,孙彦平,等. Ti/RuO2+Sb2O3+MnOx/MnOx阳极的性能研究[J].稀有金属材料与工程, 1995, 24: 46-48.
    [48]宋晓岚,黄学辉.无机材料科学基础[M].北京:化学工业出版社, 2006: 91-92.
    [49]曾人杰.无机材料化学[M].厦门:厦门大学出版社, 2001: 215-220.
    [50]张克立.固体无机化学[M].武汉:武汉大学出版社, 2005, 91-145.
    [51] Park M., Mitchell T.E., Heuer A.H. Subsolidus equilibria in the TiO2-SnO2 system [J]. Journal of the American Ceramic Society, 1975, 58: 43-47.
    [52] Naidu H. P., Virkar A. V. Low-Temperature TiO2–SnO2 Phase Diagram Using the Molten-Salt Method [J]. Journal of the American Ceramic Society, 1998, 81:2176-2180.
    [53] Kong L.B., Ma J., Huang H. Preparation of the solid solution Sn0.5Ti0.5O2 from an oxide mixture via a mechanochemical process [J]. Journal of Alloys and Compounds, 2002, 336: 315-319.
    [54] Sun B.J., Liu Q.L., Liang J.K., et al. Subsolidus phase relations in the ternary system SnO2-TiO2-Y2O3 [J]. Journal of Alloys and Compounds, 2008, 455: 265-268.
    [55] Terrier C., Chatelon J.P., Roger J.A. Electrical and optical properties of Sb:SnO2 thin films obtained by the sol-gol method [J]. Thin Solid Films, 1997, 295: 95-100.
    [56] Zhang D.L., Deng Zh.B., Zhang J.B., et al. Microstructure and electrical properties of antimony doped tin oxide thin film deposited by sol-gel process [J]. Materials Chemistry and Physics, 2006, 98: 353-357.
    [57] Zhang D.L., Tao L., Deng Zh.B., et al. Surface morphologies and properties of pure and antimony doped tin oxide films derived by sol-gel dip-coating processing [J]. Materials Chemistry and Physics, 2006, 100: 275-280.
    [58] Xiao Y.H., Ge Sh.H., Xi L., et al. Room temperature ferromagnetism of Mn doped SnO2 thin films fabricated by sol-gel method [J]. Applied Surface Science, 2008, 254: 7459-7463.
    [59] Baker P.G.L., Sanderson R.D., Crouch A.M. Sol-gel preparation and characterization of mixed metal tin oxide thin films [J]. Thin Solid Films, 2007, 515: 6691-6697.
    [60] Pyke D.R., Reid R., Tilley R.J.D. Structures of tin oxide-antimony oxide catalysts [J]. Journal of Chemical Society, Faraday Transaction 1, 1980, 76: 1174-1182.
    [61] Dusastre V., Williams D.E. Sb(Ⅲ) as a surface site for water adsorption on Sn(Sb)O2 and its effect on catalytic activity and sensor behavior [J]. Journal of Physical Chemistry B, 1998, 102: 6732-6737.
    [62] Sun K., Liu J. Browning N.D. Correlated atomic resolution microscopy and spectroscopy studies of Sn(Sb)O2 nanophase catalysts [J]. Journal of Catalysis, 2002, 205: 266-277.
    [63]李青山,张金朝,宋鹏,等.锑掺杂浓度对二氧化锡纳米微粉的影响[J].无机材料学报, 2002, 17(6): 1283-1288.
    [64] Tian Z.M., Yuan S.L., He J.H., et al. Structure and magnetic properties in Mn doped SnO2 nanoparticles synthesized by chemical coprecipitation method [J]. Journal of Alloys and Compounds, 2008, 466: 26-30.
    [65]陈运生.物理化学分析[M].北京:高等教育出版社, 1987, 207-223.
    [66]苏勉曾,谢高阳,申泮文.固体化学及其应用[M].上海:复旦大学出版社, 1989, 289-310.
    [67]梁镇海,张福元,孙彦平.耐酸非贵金属Ti/MO2阳极SnO2+Sb2O4中间层研究[J].稀有金属材料与工程, 2006, 35(10): 1605-1609.
    [68] Fockedey E., Van Lierde A. Coupling of anodic and cathodic reactions for phenol electro-oxidation using three-dimensional electrodes [J]. Water Research, 2002, 36: 4169-4175.
    [69] Leite E.R., Bernardi M.Ines B., Longo E., et al. Enhanced electrical property of nanostructured Sb doped SnO2 thin film processed by soft chemical method [J]. Thin Solid Films, 2004, 449: 67-72.
    [70] Terrier C., Chatelon J.P., Roger J.A., et al. Analysis of antimony doping in tin oxide thin films obtained by the sol-gol method [J].Journal of Sol-Gel Science and Technology, 1997, 10: 75-81.
    [71] Montenegro A., Ponce M., Castro M.S., et al. SnO2-Bi2O3 and SnO2-Sb2O3 gas sensors obtained by soft chemical method [J]. Journal of the European Ceramic Society, 2007, 27: 4143-4146.
    [72] Montilla F., Morallon E., De Battisti A., et al. Preparation and characterization of antimony-doped tin dioxide electrodes. Part2. XRD and EXAFS characterization [J]. Journal of Physical Chemistry B, 2004, 108: 5044-5050.
    [73]薄占满.掺Sb二氧化锡半导体导电机理的实验探讨[J].无机材料学报, 1990, 5(4): 324-329.
    [74]刘杏芹,朱海宁,沈瑜生. SbXSn1-XO2固溶体系电学性能与导电机制研究[J].无机化学学报, 1996, 12(2): 130-134.
    [75] Vicent F., Morallon E., Quijada C., et al. Characterization and stability of doped SnO2 anodes [J]. Journal of Applied Electrochemistry, 1998, 28: 607-612.
    [76] Terrier C., Chatelon J.P., Roger J.A. Sb doped SnO2 transparent conducting oxide from the sol-gel dip-coating technique [J]. Thin Solid Films, 1995, 263: 37-41.
    [77] Montilla F., Morallon E., De Battisti A., et al. Preparation and characterization of antimony-doped tin dioxide electrodes. Part3. XPS and SIMS characterization [J]. Journal of Physical Chemistry B, 2004, 108: 15976-15981.
    [78] Wang Y.Q., Gu B., Xu W.L. Electro-catalytic degradation of phenol on several metal-oxide anodes [J]. Journal of Hazardous Materials, 2009, 162: 1159-1164.
    [79] Kimura H., Fukumura T., Kawasaki M., et al. Rutile-type oxide-diluted magnetic semiconductor: Mn doped SnO2 [J]. Applied Physics Letters, 2002, 80: 94-96.
    [80] Duan L.B., Rao G.H., Yu J., et al. Structural and magnetic properties of chemically synthesized Sn1-XMnXO2 nanocrystalline powders [J]. Journal of Applied Physics, 2007, 101: 063917.
    [81] Baker P.G.L., Sanderson R.D., Crouch A.M. Sol-gel preparation and characterization of mixed metal tin oxide thin films [J]. Thin Solid Films, 2007, 515: 6691-6697.
    [82] Kuang A.L., Yuan H.K., Den T., et al. Room temperature ferromagnetism in Mn doped SnO2 [J]. Journal of Alloys and Compounds, 2006.
    [83]黄运涛,彭乔,海水电解用金属氧化物阳极的失活机理[J].稀有金属材料与工程, 2006, 35(10): 1610-1615.
    [84] Leonardo M.Da Silva, Karla C.Fernandes, et al. Electrochemical empedance spectroscopy study during accelerated life test of conductive oxides: Ti/(Ru+Ti+Ce)O2-system [J]. Electrochimica Acta, 2004, 49:4893–4906.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700