深海用全固态参比电极的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在海洋工业中,存在许多的金属结构,它们的腐蚀程度检测是安全检测的重要内容之一。在海洋金属结构的阴极保护系统中,需要对多种电化学参数进行测量,而精度高、稳定性强的参比电极是进行电化学测量的重要部件之一。由于海水中的压差变化大等特性以及海洋环境的复杂性,目前,在进行电化学测试时银/氯化银电极被公认为海水中最为理想的参比电极。但是,市售的银/氯化银参比电极并不适用于阴极保护系统,也不能长期在海水中使用。本论文针对目前使用参比电极存在的不耐高压、长期稳定性差、精度低等问题,并结合深海高压使用环境的具体特点,研制了全固态的银/氯化银参比电极,并对电极的性能进行了测试,证明了本论文所研制的银/氯化银电极具有耐高压、稳定性好、精度高等特性。
    采用粉末压片法制备的银/氯化银参比电极满足了深海高压环境的使用要求。参比电极的主体部分由纯银粉和自制的氯化银粉末按一定的比例混合均匀后,在粉末压片机上高压压制而成,实验结果证明,在1~10吨/厘米2的压力范围内,压制压力对参比电极性能没有明显的影响,因此,为了简化电极制备工艺和防止电极在深海高压环境下脱粉,选用了较高的压制压力10吨/厘米2。当氯化银粉末含量小于20%时,银粉含量过大,构成了银电极和银/氯化银电极的混合电极,电位差别较大;当氯化银粉末含量大于70%时,氯化银粉末含量过大,电极不导通,无法测量电极电位;当氯化银粉末含量在20%~70%之间时,电极性能没有明显的差别。采用室温固相法自制的氯化银粉末,通过扫描电子显微镜观察,其粒径在2~3微米左右,这种细小氯化银粉末的使用有利于增加电极表面的活性中心,有利于提高参比电极的电化学性能。研制成型的银/氯化银参比电极在海水中具有良好的长期稳定性、Nernst响应特性和温度响应特性,长期海水浸泡电极电位漂移为±0.5mV。
    由于海水中含有多种离子,所以本论文还针对所制备电极的具体应用环境研究了干扰离子,如Br-,SO42-等,对参比电极电位的影响,结果表明Br-的存在会使电极表面形成氯化银和溴化银的固溶体,使电极电位变小,但是并不影响电极电位的稳定性;SO42-不会明显影响参比电极的电极电位。同时,通过模拟水流实验装置模拟了参比电极在实际使用过程中受水流流动的影响情况,研究了海水流速与参比电极电位的关系,结果表明,当水流速度小于5m/s时,电极电位几乎不受影响。此外,还采用了电化学阻抗谱技术,对电极的动力学参数进行了测量,对比了不同情况下的电极表面状态,结果表明本文所研制的银/氯化银电极具有较小的极化电阻,并具有良好的可逆电极过程的特征。
    
    
    本论文所研制的银/氯化银全固态参比电极已经申请了发明专利,专利申请号为03138856.6;同时制作电极的模具也已申请了实用新型专利,专利申请号为03271344.4。本论文所研制的银/氯化银全固态参比电极最终将被应用于国家863课题的“不接触测量阴极保护电位技术”,制作成腐蚀检测探头,应用于海底管线的腐蚀监测。
In the industry of marine exploration, there are many subsea metal structures. Corrosion monitoring is the most important of safety monitoring. In cathodic protector system for subsea metal structures, measuring electrical chemistry parameters is needed. It is necessary to have a reference electrode that is exact and stability. Due to the changes of pressure and the complicate properties of marine environment, nowadays, Ag/AgCl reference electrode often is used in electrical chemistry measurement, which is regarded as the best reference electrode. However, the Ag/AgCl reference electrode bought from market cannot be used for cathodic protector system and marine environment for a long time. In this paper, in order to deal with the problems of reference electrode used now, a Ag/AgCl all-solid-state reference electrode was studied, according to the conditions of deep marine environment. The results show that the reference electrode studied is characteristic of precision, stability, and enduring high pressure.
    In order to endure the high-pressure of deep marine, the reference electrode was made by using Press Powder Method. The main part of reference electrode composed of pure silver powder and silver chloride powder was made by high pressure. The effect of the pressure of pressing the electrode was studied, the result of which shows that when the pressure is between 1T/cm2 and 10T/cm2, it did not effect the properties of electrode. But in order to simplify the manufacture and endure the high-pressure, high pressing pressure, 10T/cm2, was chosen. When the percent content of AgCl is less than 20%, masses of Ag bring on quite difference of electrical potential. When the percent content of AgCl is more than 70%, superfluous AgCl did not conduct electricity. When the percent content of AgCl is between 20% and 70%, the properties of electrode had not changes obviously. Silver chloride powder was made by solid-phase reactions at room temperature. Their structure and particle size were characterized with SEM. It was found that the particle size is 2~3μm. The very small powder can increase the active center of electrode surface and enhance the electrical chemistry properties of reference electrode. Ag/AgCl all-solid-state reference electrode studied had good properties such as long stability in seawater, Nernst response property, temperature response property and antipolarization. Electrode potential drifts±0.5mV for long time test.
    Because there are many ions in seawater, the effect of these ions to electrode
    
    potential must be studied. The result shows that Br- can make the electrode potential decrease and still remains stable for a long time, and SO42- cannot affect the electrode potential apparently. At the same time, according to simulate the real conditions of using the reference electrode in marine, the relationship between velocity and electrode potential was studied by using the analog testing equipment. Additionally, The result shows that the influence of seawater flow on the electrode potential is slight when the velocity is less than 5m/s. The simple kinetics parameters of reference electrode were measured by using Electrochemical Impedance Spectroscopy (EIS). The result shows that the reference electrode is characteristic of reversible electrode.
    Ag/AgCl all-solid-state reference electrode studied has applied for invention patent, and the number is 03138856.6. At the same time, the mould that making electrode has applied for applied new type patent, the number is 03271344.4. Ag/AgCl all-solid-state reference electrode studied will be applied in 863 project, the technique of detecting cathodic protection potential without touch. It will be made into the probe for corrosion monitoring and be used to monitor the corrosion potential of seabed pipes.
引文
[1] Bound G. P. et al. J. Sci. Fd. Agric. 28.1977.431
    [2] JOSEF POLAK. The Use of Multipurpose Measuring Probes to Assess the Adequacy of Cathodic Protectiong of Buried Piplines. Materials Periormance. 1983.8. 12-20
    [3]M.J.Robinson, J.E.Strutt, J.A.Richardson. A new probe for on-line corrosion monitoring. Materials Periormance. 1984.5. 46-49
    [4] 郑忠立,许世力,石小燕,邱富荣. 用于海洋钢筋混凝土结构阴极保护的永久性参比电极. 材料保护. 1994. 27(2)16-19
    [5] 任中华,王福斌. 用于评价地上沥青储罐罐低外壁阴极保护效果的腐蚀测试探头. 国外油田工程. 2000. (4). 42-43
    [6] 刘玲莉,陈春建,刘严强,李红旗. 冻土区阴极保护用参比电极. 油气储运. 2002. 21(9). 33-35
    [7] Yoon HJ, Shin JH, Lee SD, Nam H, Cha GS, Strong TD, Brown RB. Solid-state ion sensors with a liquid junction-free polymer membrane-based reference electrode for blood analysis. SENSORS AND ACTUATORS B-CHEMICAL. 2000. 64 (1-3). 8-14
    [8] K.Roubik, B.Palan. Reference Microelectrodes Design Evaluation for On-Chip ISFET-Based Microsensors for "in vivo" Blood Measurements. Analytica Chimica Acta 387. 1999.103-111
    [9] 唐宝玲. 海水管阴极保护装置的现状及其改造方案. 材料保护. 2002. 35(1). 37-39
    [10] Jermann R, Tercier Ml, Buffle J. Pressure Insensitive Solid-State Reference Electrode For Insitu Voltammetric Measurements In Lake Water. ANALYTICA CHIMICA ACTA . 1992. 269 (1). 49-58
    [11] Muller B, Hauser PC. Effect of pressure on the potentiometric response of ion-selective electrodes and reference electrodes. ANALYTICA CHIMICA ACTA . 1996 . 320 (1). 69-75
    [12] 刘永辉. 电化学测试技术. 北京航空航天学院出版社. 1989. 269
    [13] Nolan MA, Tan SH, Kounaves SP . Fabrication and characterization of a solid state reference electrode for electroanalysis of natural waters with ultramicroelectrodes. ANALYTICAL CHEMISTRY . 1997. 69 (6). 1244-1247
    [14] T. Matsumoto, A. Ohashi, N. Ito. Development of a micro-planar Ag/AgCl quasi-reference electrode with long-term stability for an amperometric glucose sensor. Analytica Chimica Acta 462 . 2002. 253-259
    [15] 李柏林. 粉压型银-氯化银电极的研究. 1979年腐蚀与防护学术报告会议论文集(海水、工业水和生物部分). 科学出版社. 1979. 238-246
    [16] 王庆璋等. 海水中银-卤化银固溶体参比电极. 海洋与湖沼. 1990. 22(4). 347-351
    [17] 石小燕,邱富荣,郑伟希. 海水中高稳定性参比电极的研制. 中国海洋平台. 1999. 14(3).13-16
    [18] 张自英. 全固态参比电极的试制. 轻工环保. 1990. 12(1). 43-45
    [19] 赵叔睎,胡宁. 固体参比电极的研究.中国科学技术大学学报. 1988. 18(3). 312-317
    [20] 杨云喜,陈范才等. 腐蚀检测用探头的研究. 四川化工与腐蚀控制. 1999. 2(1). 6-9
    [21] 黄超伦,任聚杰,徐达峰. 新型固体参比电极的研制. 分析化学研究简报. 1996. 24(7). 816-819
    [22] Rehm D, Mcenroe E, Diamond D. An All-Solid-State Reference Electrode Based On A Potassium-Chloride Doped Vinyl Ester Resin. ANALYTICAL PROCEEDINGS. 1995. 32 (8). 319-322
    [23] A.K.AGRAWAL, R.W.STAEHLE. A Silver-Silver Chloride Reference Electrode for the High Temperature and High Pressure Electrochemistry. CORROSION-NACE. 1977. 33(11). 418-419
    [24] K.-M.Mangold, S.Sch?fer, K.Jüttner. Reference electrodes based on conducting polymers. Fresenius J Anal Chem. 2000.367. 340-342
    [25] Lee HJ, Hong US, Lee DK, Shin JH, Nam H, Cha GS. Solvent-processible polymer membrane-based liquid junction-free reference electrode. ANALYTICAL CHEMISTRY. 1998. 70 (16). 3377-3383
    [26] Kristin Eine, Signe Kjelstrup, Kalman Nagy and Kristin Syverud. Towards a solid state reference electrode, Sensors and Actuators B: Chemical. 1997. 44( 1-3). 381-388
    [27] Donal Desmond, Bill Lane, John Alderman, J. D. Glennon, Dermot Diamond and D. W. M. Arrigan. Evaluation of miniaturised solid state reference electrodes on a silicon based component, Sensors and Actuators B: Chemical. 1997. 44( 1-3). 389-396
    [28] Mroz A, Borchardt M, Diekmann C, Cammann K, Knoll M, Dumschat C. Disposable reference electrode. ANALYST . 1998. 123 (6). 1373-1376
    [29] Thomas JM. Student construction of a gel-filled Ag/AgCl reference electrode for use in a potentiometric titration. JOURNAL OF CHEMICAL EDUCATION. 1999. 76 (1). 97-98
    [30] 唐红卫,杨林楚等. 固体参比电极的研制. 分析仪器. 1993.(4). 13-16
    [31] I-Yu Huang and Ruey-Shing Huang. Fabrication and characterization of a new planar solid-state reference electrode for ISFET sensors. Thin Solid Films. 2002. 406( 1-2). 255-261
    [32] 卢阿平、郭津年等. 海水和海泥中长效参比电极的研究. 海洋科学. 1990.(4).15-22
    [33] 彭乔,殷正安,郭建伟. 高纯锌参比电极电化学行为研究. 全面腐蚀控制. 2001. 9(3)22-25
    [34] 胡士信. 阴极保护工程手册. 化学工业出版社. 1999.1. 66-67,295
    [35] 孙建斌. 20000m^3金属储罐阴极保护试验及效果分析. 油气储运. 2001. 20(1). 23-24
    [36]过梦飞、陈学江. 储罐网状阳极阴极保护系统中的若干问题. 油气储运. 2001. 20(11). 35-38
    [37] 李妍、刘忠斌. 海洋平台的阴极保护.海洋工程学术会议论文集. 2002.162-164
    [38] Steve Nikolakakos. Cathodic protection system design for steel pilings of a wharf structure. ASTM STP. 1999. 1370
    [39] 孙宁松, 路国章, 孙虎元. 海洋固定采油平台新型腐蚀监测系统的功能及研究. 海洋工程学术会议论文集. 2001.53-59
    [40] 徐如人,庞文琴. 无机合成与制备化学. 高等教育出版社. 2001. 6. 59
    [41] 李清文,曹雅丽,李娟,夏熙. 室温固相反应制备AgX纳米粉末. 化学物理学报. 1992. 12(1).99-102
    [42] 俞建群,徐政,方明豹. 一步室温固相化学反应法合成CuO纳米粉体. 同济大学学报. 2000. 28(3).364-367
    [43] 王国平,石晓波,汪德先. 室温固相反应制备纳米氧化锌. 合肥工业大学学报. 2002. 25(1). 32-35
    [44] 周益明, 忻新泉. 低热固相合成化学. 无机化学学报. 1999. 15(3).273-292
    [45] 傅献彩. 物理化学. 高等教育出版社.1995. 589-594
    [46] 朱元保. 电化学数据手册. 湖南科学技术出版社. 1985.4. 31
    [47] 化学工业部化工机械研究院. 腐蚀与防护手册(腐蚀理论、试验及监测). 化学工业出版社. 1997.142
    [48] 海洋百科全书编委会. 海洋百科全书.2001. 52
    [49] 曹楚南,张鉴清. 电化学阻抗谱导论. 科学技术出版社. 2002.7. 21.2-10

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700