湖北省区域耕地地力评价及其应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
耕地是土地的精华,是农业生产最重要的资源。耕地地力的好坏直接影响到农业的可持续发展和粮食安全。开展耕地地力评价,摸清耕地地力及其影响因子的变化和条件,是加强耕地质量建设和合理利用土地的重要基础。
     本研究采用传统土壤调查方法与现代“3S”(GIS、GPS、RS)技术相结合,选择鄂东沿江丘陵区(鄂州市)、鄂中丘陵区(钟祥市)、江汉平原区(江陵县、荆州区)等3个主要农作区的4个县(市、区)作为评价区域,对3个试区两个时段(1980-1981年和2003-2005年)的耕地地力及其时空变化特征进行了研究与探索。同时,利用耕地地力评价成果,开展了土壤养分空间插值与取样密度比较、土壤速效磷丰缺指标修订、农田精细农作氮素营养快速诊断等应用研究,获得了以下结果:
     1.在GIS支持下,利用土壤图、土地利用现状图叠置划分法确定区域耕地地力评价单元,分别建立了鄂州、江陵(荆州)、钟祥等3个地貌类型区耕地地力评价指标体系及其模型,运用层次分析法和模糊数学方法对耕地地力进行了综合评价。结果表明,鄂州市现有耕地共划分为1-6等,其中高产地(1、2等)占耕地的22.57%,而低产地(4等以下)占38.22%;江陵县(含荆州区)和钟祥市现有耕地划分为1-4等,其中高产地(1、2等)分别占77.75%和72.12%,中低产地(3、4等)占22.25%和27.88%。不同区域间表现出江汉平原及鄂中丘陵区,高产田面积大(占70%以上),而鄂东沿江丘陵区中低产田所占比例大(占75%以上)。20年间不同区域耕地地力变化表现出,丘陵区耕地面积大幅减少,耕地质量明显下降;平原区耕地面积虽有所减少,但减幅不大,耕地数量和质量保持基本稳定。
     2.对不同地貌类型区、水田、旱地和菜地耕层土壤主要理化属性及其时空变化特征进行了分析,比较、归纳了试区不同土壤属性的变化规律,发现20年间水田土壤养分变化特征为,土壤OM、全N和速效K含量呈下降趋势,而土壤有效P则明显上升;旱地则表现为土壤OM、全N、有效P和速效K含量呈升高趋势;不论水田还是旱地均表现出明显的土壤酸化趋势。研究按照土类进行了变异特征分析,获得了不同土壤主要理化属性的变化规律。对菜地的研究考虑了养分在耕层(0-20cm)和亚耕层(20-40cm)的分布特征,发现土壤OM、全N、有效P、速效K和有效B、Zn、Fe、Mn、Mo等营养元素的含量呈现较明显的垂直分布规律,耕层大于亚耕层;而pH则呈现相反特征,耕层pH平均值为6.65,亚耕层则为7.14。
     3.通过对kriging(克吕格)插值法、样条函数法、距离权重倒数法在不同空间尺度下土壤养分含量的插值效果及按不同土壤特性对合理采样密度的分析,发现kriging插值法与距离权重倒数法的插值精度要比样条函数法高,插值结果的离散程度比实际测定值小,样条函数法插值结果的离散程度较大;合理的采样密度与土壤利用类型和养分元素含量的变异大小有关;土壤质地影响养分元素的插值误差,旱地的插值误差较水田要大;土壤有效P的插值误差最大,pH的插值误差最小,铵态N和速效K的插值误差居中。本研究样区中,随着采样密度增加,有效P和pH的插值结果变化不明显,铵态N和速效K的插值误差则随着采样密度的增加而减小。
     4.针对耕地土壤有效P含量大幅上升的现状,于2003-2005年在湖北省油菜主产区进行了27个油菜施磷试验,对当前土壤速效P的分级标准进行了研究,发现湖北省油菜施磷增产效果显著,有92.6%的试验施磷增产5%以上,每千克P_2O_5平均增收油菜籽6.2kg,产投比平均达3.10;以不施磷对照处理产量占施磷处理产量的50%、75%和90%作为判断土壤缺磷标准,则土壤速效P极度缺乏、严重缺乏和缺乏的指标分别为9.9 mg/kg、14.3 mg/kg和20.2 mg/kg,约高出20年前推荐指标的1倍。试验结果表明,研究修订的新指标可用于指导当前的油菜生产。
     5.通过田间氮肥小区试验,结合离子树脂膜和数码相机快速获取土壤和水稻氮素营养状况,配合图象处理技术进行叶色和封行指数提取及相关分析研究,结果表明水稻叶色指数与施氮量、封行指数与施氮量的相关均达到显著水平,离子交换树脂法获得的土壤有效养分与最高分蘖数的相关达到显著水平;初步建立了水稻生长过程氮素营养田间诊断模式,为后续利用GIS软件对这些信息进行动态管理,进而建立鄂东沿江丘陵区精细农作模式进行了有益探索。
Farmland is the most important resource of agricultural production and the prime of land, fertility of which has a direct influence on food security and sustainable development of agriculture. Therefore, it is fundamental work of improving quality of farmland and properly making use of it to evaluate farmland fertility grade and analysis the factors and their change conditions affecting on soil fertility.
     Adopting traditional method of soil survey and geological information system (GIS), geological position system (GPS), remote system (RS) techniques, choosing 4 counties (or cities) in 3 agricultural areas, including Ezhou City in Edong hilly area along Yangtze River located at eastern Hubei province, Zhongxiang City in central area of Hubei province, both Jiangling County and Jingzhou District in Jianghan Plain located at south Hubei province, investigate and study farmland fertility and its variation characters with time and space within period of 1980-1981 and 2003-2005. Using farmland fertility evaluation achievements, it is also to carry out special study to such research hotspots as soil nitrogen testing and fertilizer recommendation, indexes of abundance and shortage of soil available P, models of precision farming in south China, improvement and utility of middle-and-low-yield cropland, food security, compare soil nutrient interpolation with different sampling density. Conclusions were as follows:
     1. The evaluating units of farmland fertility established by overlapping soil maps and soil utilizing maps with GIS, index system and evaluation model were set up respectively according to the physiognomy of three areas above, and the farmland fertility grade was comprehensively evaluated. The result showed that farmland in Ezhou City could be divided into one to six grades, in which grade one to grade two (high-yield farmhmd) accounted for 22.57% and grade four or below (low-yield farmland)38.22% in area. The farmland in Jiangling County (including Jingzhou District) and Zhongxiang City could be divided into one to four grades, in which mid-and high-yielding farmland took up 77.75% and 72.12%, and mid- and low-yielding farmland 22.25% and 27.88%. However, in near twenty years, farmland in different areas had an obvious change that the amount and quality of farmland in hill district decreased obviously, while the area in plain district had a little bit decrease, and the quantity and quality were almost stable.
     2. Soil physico-chemical properties and variability in space and time in tillaged-layer of paddy, dry field and vegetable field in different physiognomic areas were analyzed. The variation characteristics for various soil nutrient elements in the three different types of farmland before and after twenty years were explored and compared. It were revealed that content of soil OM, total N, available K showed a decline in paddy fields, soil available P increase obviously, that contents of soil OM, total N, fast K exhibited an increase in dry fields. And the same trend of soil acidification was showed in both paddy and dry fields. For vegetable field, the distribution properties of soil nutrients in both tillaged-layer(0-20cm) and sub-tillaged-layer (20-40cm) were studied. The research discovered that contents of OM, alkali-hydrolyzable N, available P and K, and available B、Zn、Fe、Mn、Mo took on vertical distribution (tillaged-layer>sub-tillaged-layer), while pH value showed reverse development (tillaged-layer<sub-tillaged-layer)-pH6.65 in tillaged-layerand and pH7.14 in sub-tillaged-layer. So, the above results indicated that soil nutrient elements accumulated in tillaged-layer and acidification developed into under-layer. According to the various types of soil classification, the main variation rules of chemic.-physical properties of them were gained at the same time.
     3. By using interpolation methods of Kriging, spline function, distance-and-weight-countdown, comparing interpolation effects for contents of soil nutrient in different space, and analyzing proper sampling density in line with soil properties, the research found out that interpolation methods of Kriging and distance-and-weight-countdown was more precise than method of spline function, the dispersion degree of interpolation results lower than actually, that of method of spline function higher, proper sampling density had relation to soil utility types and variability of contents of soil nutrient elements, and that soil texture had influence on interpolation error—the interpolation error of dry farmland was larger than of paddy field, and that of soil available P was the largest, that of pH the smallest, and that of NH_4~+—N and available K in middle. The interpolation error of available P and pH had little change with the increase of soil sampling density and that of NH_4~+—N and available K decreased as sampling density increasing in the study area.
     4. In light of fact that content of available P in farmland soil rose to a great extent, twenty-seven rape applying P experiments were carried out in year 2003-2005 in the main rape plantation area of Hubei province to examine grading standard for current soil available P. The results showed that application of P to rape could markedly increase its production, 92.6% experiments for fertilizing P got 5% increase of production, each kilogram of P_2O_5 could produce 6.2 kg of rapeseed and output/input ratio reach 3.10 in average. If taking 50%, 75% and 90% of CK production (no application of P) as standard for P deficiency, the indexes of extreme lack, serious lack and lack were 9.9 mg/kg, 14.3 mg/kg和20.2 mg/kg, respectively, which showed the new indexes could be taken as a guidance for present rape production.
     5. Nutrition status of N in soil and rice plant was quickly obtained from plot trial for N-fertilizer treatment. By membrane of ion-exchange resin and digital camera, the data of leaf color index and vegetation Index were collected and studied with the help of image manipulation technique, which indicated that indexes for both leaf color and vegetation had significant correlation with amount of fertilization and so did soil available nutrients obtained by method of ion-exchange resin with the maximum number of tillering. Furthermore, diagnosing model for N-nutrient was preliminarily established, which laid foundation for establishing precision farming model in Edong hilly area along Yangtze River by making use of GIS software to manage these information dynamically.
引文
1.白军红,余国营,王国平.地统计学在湿地土壤养分空间异质性研究中的应用.农业环境保护,2001,20:311—314
    2.毕如田,王镔,王晋民.基于MAPGIS的耕地地力评价系统的建立及应用.山西农业大学学报,2005,25:97—101
    3.毕于运.中国土地占用八大问题.资源科学,1999,21:30—35
    4.蔡运龙.我国经济快速发展中的耕地问题。国家土地管理局科技宣教司等编。土地用途管制与耕地保护.北京:北京大学出版社,1997,1-12
    5.曹志洪,周健民.土壤质量演变规律与持续利用.中国科学院院刊,2002,1:45—46
    6.曹志洪.解释土壤质量与持续环境.世界科技研究与发展.2003,23:28-32
    7.陈百明.区域土地可持续利用指标体系框架构建与评价.地理科学进展,2002,21(3):204-215
    8.陈荣毅,朱建军.试论新疆精准农业实施中的几个问题.新疆农业科学,2003,40:87—89
    9.杜红悦,李京.土地适宜性评价方法研究与系统实现—以攀枝花为例.资源科学,2001,23:41-45
    10.范立春,彭显龙,刘元英,宋添星.寒地水稻实地氮肥管理的研究与应用.中国农业科学,2005.38:1761-1766
    11.封志明.耕地与粮食安全战略:藏粮于土,提高中国土地资源的综合生产能力.地理学与国土研究,2000,16:1-5
    12.封志明,杨艳昭,丁晓强,林忠辉.气象要素空间插值方法优化.地理研究,2004,23:357-364
    13.傅伯杰,陈利顶,马诚.土地可持续利川评价的指标体系与方法.自然资源学报,1997,12:112-118
    14.傅伯杰.黄土区农业景观空间格局分析.生态学报,1995,15:113-120
    15.傅伯杰.土地评价研究的回顾与展望.自然资源,1990,3:1-7
    16.傅伯杰.美国土地适宜性评价方法的新进展.自然资源学报,1987,2:92-95
    17.傅寿仲,戚存扣,浦惠明,张沾夫.中国油菜栽培科学技术的发展.中国油料作物学报,2006,28:86-91
    18.高祥照,胡克林,郭焱,李保国,马韫韬,杜森,王运华,土壤养分与作物产量的空间变异特征与精确施肥,中国农业科学,2002,35:660-666
    19.官乔云.改变冬油菜栽培方式,提高和发展油菜生产.中国油料作物学报,2006,28:83-85
    20.郭庆元,李志玉,涂学文.我国南方红黄壤地区优质油菜营养特性与施肥效应研究Ⅰ.不同油菜品种的氮磷营养特性,中国油料作物学报,2000,22(4):43-47
    21.郭旭东,傅伯杰,马克明,陈利顶,杨福.基于GIS和地统计学的土壤养分空间变异特征研究,应用生态学报,2000,11:555-563
    22.何宇纳,翟凤英,王志宏,王惠君,胡以松,杨晓光.中国居民膳食能量、蛋白质、脂肪的来源结构及变化.营养学报,2005,27:358-361,365
    23.何毓蓉,周红艺,张保华,何毓蓉.长江上游典型区的耕地地力与农业结构调整—以川江流域及其周边地区为例.水土保持学报,2003,17:86-92
    24.贺立源,项雅玲.农业环境中土壤取样误差研究.应用生态学报,1999,10:353-356
    25.侯伟,张树文,李晓燕,张惠琳.黑土区耕地地力综合评价研究.农业系统科学与综合研究,2005.21:43-46
    26.侯文广,江聪世,熊庆文,熊庆文,陈继祥.基于GIS的土壤质量评价研究。武汉大学学报(信息科学版),2003,28:60-64
    27.胡慧萍.土壤特性的空间差异及其空间插值方法研究.湘潭师范学院学报(自然科学版),2001,9:25-29
    28.胡月明,万洪富,吴志峰.基于GIS的土壤质量模糊变权评价.土壤学报,2001,38:226-238
    29.黄河.GIS支持下的莆田县耕地基础地力评价与可持续利川对策,福建农林大学学报(自然科学版),2004,33:245-249
    30.黄健,张惠琳,傅文玉.东北黑土区土壤肥力变化特征的分析.土壤通报,2005,36:659-663
    31.黄纠文,金继运.土壤持性空间变异研究进展.土壤肥料,2002:8-14
    32.黄绍文,金继运.县级区域粮田土壤养分空间变异与分区管理技术研究.土壤学报,2003,40:79-88
    33.黄绍文,金继运,县级区域土壤养分空间变异与分区管理技术研究.精准农业与土壤养分管理.北京:中国大地出版社,2001a,227-240
    34.黄纠文,金继运.乡(镇)级区域土壤养分空间变异与分区管理技术研究.精准农业与土壤养分管理,北京:中国大地出版社,2001b,248-259
    35.黄纠文,金继运,左余宝,杨俐苹,程明芳.农田土壤养分平衡状况及其评价的试点研究.土壤肥料,2000,6:14-19
    36.黄杏元,地理信息系统支持区域土地利用决策的研究,地理学报,1993,48:114-121
    37.姜城.不同经营体制下土壤养分空间变异规律及管理技术的研究.北京:中国农业科学院博士研究生学位论文,2000
    38.姜城.农田土壤养分空间变异特性及评价.中国土壤学会脆弱生态系统恢复与新世纪农业发展学术研讨会论文,2000
    39.蒋文伟,向其伯.层次分析法在干旱区园林树木评选中的应用.南京林业大学学报,2000,24:63-67
    40.金继运,张宁,梁鸣早.土壤养分状况系统研究法在土壤肥力研究及测土施肥中的应用.植物营养与肥料学报,1996,2:8-14
    41.邝朴生,蒋文科,刘刚.精确农业基础.北京:中国农业大学出版社,1999
    42.雷志栋,杨诗秀.土壤特性空间变异性初步研究.水利学报,1985,9:10-20.
    43.梁春祥,姚贤良,华中斤陵红壤物理性质空间变异性的研究,土壤学报,1993,30:69-77
    44.雷咏雯,危常州,李俊华,候振安,冶军,鲍柏杨,不同尺度下土壤养分空间变异特征的研究,土壤,2004.36:376-381
    45.李新,程国栋,卢玲.空间内插方法比较.地球科学进展,2000,15:260-265
    46.李志林,朱庆。数字高程模型(第二版).武汉:武汉大学出版社,2003,96-97
    47.林葆,林继雄,李家康.关于合理施用磷肥的几个问题.土壤学报,1992,24):57-61
    48.林碧堋,汤建东,张满红.广东省耕地地力等级研究与评价.生态环境,2005,14:145-149
    49.林忠辉,莫兴国,李宏轩,李海滨.中国陆地区域气象要素的空间插值.地理学报,2002,57:47-56
    50.刘付程,史学正,潘贤章,于东升.太湖流域典型地区土壤磷素含量的空间变异特征.地理科学,2003.23:77-81
    51.刘钦普.GIS和SPSS技术支持下的许吕市耕作土壤肥力综合评价.土壤,2002,2:94-98
    52.刘友兆,王峻,刘吉军,姚翠巧,杨建海,吴俊品.地理信息系统支持下的县城耕地分等研究.南 京农业大学学报,2001,24:106-110
    53.刘岳.梁启章,沈洪全.土地信息系统及其试验研究—以北京十三陵地区为例.中国地理学会,地理学与农业.北京:科学出版社,1983,86-93
    54.楼文高.基于人工神经网络的三江平原土壤质量综合评价与预测模型.中国管理科学,2002.10:19-23
    55.鲁剑巍,陈防,余常兵,李剑夫,张竹青,刘冬碧。油菜施钾效果及十壤速效K临界值初步判断。中国油料作物学报,2003,25:107-112
    56.鲁剑巍,陈防,张竹青,刘冬碧,李剑夫,陈健.磷肥用暈对油菜产量、养分吸收及经济效益的影响.中国油料作物学报,2005,27:73-76
    57.鲁奇.中国耕地资源开发、保护与粮食安全保障问题.资源科学,1999,21:5-8
    58.马文杰,冯中朝.粮食综合生产能力与耕地流失的关系研究.农业现代化研究,2005,26:353-357
    59.闵宗殿.中国农史系年要录。北京:中国农业出版社,1989
    60.倪绍祥.土地类型与土地评论概论.北京:高等教育出版社,1999
    61.农业部行业标准.全国耕地类型区、耕地地力等级划分.1996
    62.农业部行业标准.全国中低产田类型划分与改良技术规范.1996
    63.全国农业技术推广服务中心.耕地地力调查与质暈评价.北京:中国农业出版社,2005
    64.欧刚进良,宁振荣。基于GIS的县域不同作物土地综合生产力评价.农业现代化研究,2002.23:97-101
    65.潘峰,梁川,付强.基于层次分析法的物元模型在土壤质量评价中的应用.农业现代研究,2002.32:92-96
    66.钱佩源.离子交换树脂及其在农业和坏境科学研究中的应用.植物营养与肥料学报,1995.1:21-24
    67.秦耀东.土壤空间变异研究中的半方差问题.农业工程学报,1998,12:42-47
    68.秦江林.中国特色的精细农作的技术支持体系初探.农业工程学报,2001,17:1-6
    69.秦明周,赵杰.城乡结合部土壤质量变化与可持续利川对策—以开封市为例.地理学报,2000.55:545-554
    70.全国土壤普查办公室.中国土壤.北京:中国农业出版社,1995
    71.任可爱,肖和艾,李玲.洞庭湖区稻田土壤OM利氮磷钾含量的变化—以湘阴县为例.农业现代化研究,2005,26:150-153
    72.闫晓明.土壤化学性状空间变异研究.中国土壤学会脆弱生态系统恢复与新世纪农业发展学术研讨会论文,2000
    73.石声汉.从齐民要术看中国古代的农业科学知识.北京:科学出版社,1957
    74.史志华,蔡崇法,丁树文,张光远.GIS在三峡库区土壤肥力综合评价中的应用.土壤侵蚀与水土保持学报,1999,3:74-79
    75.史舟,管彦良,王援高,吴曙雯.基于GIS的县级柑橘适宜性评价咨洵系统研制.浙江大学学报(农业与生命科学版),2002,28:492-494
    76.石常蕴,周慧珍.GIS技术在土地质量评价中的应用—以苏州市水田为例.土壤学报,2001.38:248-255.
    77.苏立新,肖健,王淑琴,赵亚利.北京市海淀区农田耕层土壤养分现状与变化趋势.土壤肥料,2004.5:17-20
    78.苏伟,聂宜民.胡晓沾,张西刚.利用Kriging插值方法研究山东龙口北马镇农田土壤养分的空间变异.安徽农业大学学报,2004,31:76-8
    79.孙波,张桃林,赵其国。我国东南丘陵区土壤肥力的综合评价.土壤学报,1996,32,567-562
    80.孙艳玲,郭鹏,刘洪斌,武伟.基于GIS的土壤肥力综合评价.西南农业大学学报,2003.25:176-179
    81.谭术魁,彭补拙.我国粮食供给安全与耕地资源变化.世界地理研究,2002,11:12-17
    82.唐少琛.粮食安全与耕地的关系.生态环境,2004,13:149-150
    83.田晓兰,李念奎,张付新,马利厂,刘国清.山东省嘉祥县20年来土壤养分水平变化,土壤,2005,37:341-343
    84.田有国,任意.GIS在我国农业上的应用.农业现代化研究,2005,24:253-257
    85.同延安,邓锦兰,韩稳社.用阴离子交换树脂测定土壤中的有效P.陕西农业科学,1992,6:41-42
    86.涂运吕,周平贞,谢立华.油菜的氮磷营养对及其经济施肥暈.土壤学报,1996,33:428-432
    87.汗华斌,李江凤,吕贻峰,汪丙国.清江流域旅游资源多层次灰色评价.系统工程理论与实践,2000(4):127-131
    88.王汉中.中国油料产业发展的现状、问题与对策.中国油料作物学报,2005,27:100-105
    89.王宏庭,金继运.农业养分资源精准管理研究进展.山西农业科学,2005,33:66-72
    90.王激清,刘全清,马文奇,江荣风,张福锁.中国养分资源利用状况及调控途径.资源科学,2005.27:47-53
    91.王建国.模糊数学在土壤质量评价中的应用研究.土壤学报,2001,38:176-185
    92.王建国,单艳红,杨林章.我国农用地分等定级理论与方法探讨.农业系统科学与研究,2002,18(2):84-88
    93.王智敏.黑龙江省农垦农业机械化与精准农业技术装备.现代化农业,2005:23-25
    94.王令超,王国强,王国灵.农用土地定级的总分值计算模型研究,地域研究与开发,2001,20(3):10-12,38
    95.王蓉芳,曹富有,彭世琪.中国耕地的基础地力与土壤改良.北京:中国农业出版社,1996
    96.王瑞燕,赵庚星,李涛,岳玉德.GIS支持下的耕地地力等级评价.农业工程学报,2004,20(1):307-310
    97.王万茂.土地定级与估计.徐州:中国矿业出版社,1993,33-35
    98.王新忠,林仪,于磊.天然草地类型综合评价中的数据处理及灰色关联度分析.系统工程理论与实践,2000,2:131-135,140
    99.韦衍标,高泽翔.崇左县早耕地土壤肥力演变状况及培肥对策.广西农业科学,2003,6:44-45
    100.邬伦,刘瑜,张晶,马修军,韦中亚,田原.地理信息系统原理方法和应用。北京:科学出版社,2001:184-185
    101.吴克宁,郑义,康鸳鸯,中眺,程道全,李玲,葛树齐,李继明,穆兰,赵华甫,吕巧灵.河南省耕地地力调查与评价.河南农业科学,2004,9:49-52
    102.肖玉,谢高地,安凯.土壤速效磷含量空间插值方法比较研究.中国生态农业学报,2003.11:55-57
    103.许红卫.田间土壤养分与作物产量的时空变异及其相关性研究[D].杭州:浙江大学,博士学位论文,2004
    104.薛正平,杨星卫,段项锁,陆贤.土壤养分空间变异及合理取样数研究.农业工程学报, 2002,18:1-2
    105.姚丽贤,周修冲,蔡永法,陈婉珍.不同采样密度下土壤特性的空间变异特征及其推估精度研究.土壤,2004,36:538-542
    106.冶军,吕新.主成分分析在棉田质量评价中的应用.石河子大学学报(自然科学版),2004,22:289-291
    107.詹庆明,周婕.用GIS进行农用地适宜性评价的研究.武汉测绘科技大学学报,1996.21:167-171
    108.张凤荣.中国耕地资源数量与质暈变化分析.资源科学,1998,20:32-39
    109.张凤荣,安萍莉,王军艳.耕地分等的土壤质量指标体系与分等方法.资源科学,2002.24:71-75
    110.张海涛,周勇,汗善勤,唐红华,柳洪,雷新美,王德华.利用GIS和RS资料及层次分析法综合评价江汉平原后湖地区耕地自然地力.农业工程学报,2003,19:219-223
    111.张金恒,王坷,王人潮.叶绿素计SPAD-502在水稻氮素营养诊断中的应用.西北农林科技大学学报(自然科学版),2003,31:177-180
    112.张萍,刘高焕,邢立新.农业土地资源动态评价模型研究.国土资源遥感,2000,1:51-56
    113.张勤争,何振立,王校常.土壤速效磷含量对油菜土壤施磷反应的影响.浙江农业学报,1992.4:154-158
    114.张敏,陆宏,赵军先,厉仁安.慈溪市旱地土壤肥力变化的比较研究.土壤通报,2004,35:91-93
    115.张有山,林启美.大比例尺区域土壤养分空间变异定量分析.华北农学报,1998,5:122-123
    116.张维理,田哲旭,张宁,我国北方农用氮肥造成地下水硝酸盐污染的调查.植物营养与肥料学报,1995,1:80-87
    117.张维理,武淑霞,冀宏杰,H Kolbe.中国农业面源污染形势估计及控制对策Ⅰ.21世纪初期中国农业面源污染的形势估计.中国农业科学,2004,37:1008-1017
    118.张锡洲,李廷轩,周建新,张仁绥.梓潼县农田养分平衡与土壤养分变化研究.四川农业大学学报,2004,22:53-57
    119.赵其国.我国土壤凋查制图及土壤分类工作的回顾与展望.土壤,1992,6:281-284
    120.赵其国,孙波,张桃林.土壤质理与持续环境Ⅰ.土壤质量的定义及评价方法.土壤,1997,3:113-120
    121.曾志远.用土壤信息系统评价土地种植机动性的数学模型及应用.土壤学报,1993,30:312-323
    122.郑一,王学军,刘瑞民,陶澍.天津地区土壤多环芳烃的克里格插值与污染评价.中国环境科学,2003,23:113-116
    123.中国21世纪议程:中国21世纪人口、环境与发展白皮书.北京:中国环境科学出版社,1994,120
    124.中国科学院南京土壤研究所.土壤理化分析.上海:上海科学技术出版社,1978
    125.钟永红,彭世琪,崔勇.全国土壤监测论文集。北京:中国农业出版社,2003
    126.周红艺,熊尔红,杨忠,何毓蓉,曾云英.长江上游典型地区基于SOTER数据库的耕地地力评价。土壤通报,2005,36:145-148
    127.周慧珍,龚子同,LAMP J.土壤空间变异性研究.土壤学报,1996,33:232-241
    128.周勇,李倩,魏忠海.RS和GIS支持的农用土地物元综合评价.土壤侵蚀与水土保持学 报,1999,5:75-80
    129.周勇,田有国.基于GIS的区域土壤资源管理决策支持系统.系统工程理论与实践,2003.4:140-144
    130.邹加明,单沛翔,李文壁,徐发华,郑璧,李雪峰.大理烟区土壤肥力现状与演变趋势.中国烟草科学,2002,4:35-39.
    131.朱求安,张万吕,余均辉.基于GIS的空间插值方法研究.江西师范大学学报(自然科学版),2004,28:183-188
    132.庄锁法.基于层次分析法的综合评价模型.合肥工业大学学报,2000,23:582-590
    133. Aleme M H, Azari A B and Nielsen D R. Kriging and univariate modeling of a spatial comelates date. Soil Technology, 1988, 1:117-132
    134. Baumgardner M F.Transaction of 14th ICSS.1990(5):114-119
    135. Batjes N H and Bridges E M. Potential emission of radiatively active gases from soil to atmosphere with special reference to methane: Development of a global database (W1SE) . Journal of Geophysical Research, 1994, 99:16479-16489
    136. Beroteran J and Zinck A. Criteria and Indicators of Agricultural Sustainability at National Level Gelinfomation for Sustainable Land Management. ITC.Enschede, Netherlands. 1997
    137. Borges R and Mallarino A P. Field-scale variability of phoshorus and potassium uptake by no-till corn and soybean.Sail Sci. Soc.Am. J, 1997, 61:846-853
    138. Bouma J and Finke P A. Origin and nature of soil resource variability. Soil Specific Crop Management, Robert PC, Rust RH and Larson WE, (Eds), Madison, Wisconsin, ASA, CSSA, SSSA, 1993, 3-14
    139. Bron. The development of Soil information system. J Soil Sci., 1987, 38:267-277
    140. Brown L R. Who Will Feed China? Wake-Up Call for Small Planet. The World Watch Institute. New York: W W Norton and Company, 1995
    141. Burgess T M and Webster R. Optimal interpolation and issrithmic mapping of soil properties. The searivariogram and punctual Kriging [J] J. Soil Sci., 1980(3):315-331
    142. Burrough P A. Multiscale sources of spatial variation in soil. I.The application of fractal concepts to nested levels of soil variation .J.Soil Sci., 1983, 34:577-597.
    143. Burrough P A. Soil variability: a late 20th Century view. Soils and Fertilisers, 1993, 56:529-562
    144. Burgess T M and Webster R. Optimal interpolation and isarithmic mapping of soil properties.I.The semivariogram and punctual kriging .J. Soil Sci.,1980,31:315-331.
    145. Cahn M D, Hummel J W and Brour B H. Spatial analysis of soil fertility for Site specific crop management.Soil Sci.Soc.Am. J, 1994, 58:1240-1248
    146. Campbell J B. Spatial variation of sand content and pH within a single contiguous delineation of two soil mapping units. Soil Sci. Soc. Am. J, 1978, 42:460-464
    147. Cate R B and L A Nelson. A simple statistical procedure for partitioning soil test correlation data into two classes. Soil Sci. Soc. Am. J, 1971, 35(2): 658-660
    148. Chung C H, Chong et al. Sampling strategies for fertility on a stoy siltloam. Soil Com. Soil Sci. Plant Anal, 1995, 26(5&6):714-763
    149. Dumanski J, Stewart.R B. Crop Production Potentials for Land Evaluation in Canada Research Branch, Agriculture Canada ,Ottawa, 1993
    150. David G, Rossiter Ales. a Framework for Land Evaluation using a Microcomputer. Soil Use and Management, 1990,6:7-20
    151. Di H J, Trangmar B B. and Kemp R A.. Use ofgeostatics in designing sampling strategtes for soil survey.SoiI.Sci.Soc.Am.J, 1989,53:1163-167
    152.E Arge, M Dahlen and A Tveito. Approximation of Scattered Data Using Smooth Grid Functions. J. Computational and Applied Math, 1995, 59:191-205
    153.FAO. Aframework for Land Evaluation [ M.FAO, SOILS Bull. 1976,32
    154.FAO. 1971-1981,Soil Map of the World(1:5M),Voll-10,UNESCO,Paris
    155.FAO/ISRIC. Soil Database (SDB). World Soil Resources Reports, 1989,64
    156.Franzen D W,Cihacek L J,Hofman V L.Variability of soil nitrate and properties under different Landscapes[A].Proccedings of the 3th in international conference on precision agriculture[C].Minncapoils,Minnesota:ASA,CSSA,SSSA, 1996,521 -529
    157.Franzen D W, Hofman V L, Halvorson A D et al. Sampling for site-specific farming: Topography and nutrient considerations. Better Crops. 1996, 80:14-18
    158.Gotway C A, Ferguson R B, Hergert G W and Peterson T A.Comparison of Kriging and Inverse-distance methods for mapping soil parameters.Soil Sci.Soc.Am.J., 1996,60:1237-1247
    159.Gupta R K, Mostaghimi S, Mcclellan P W, Alley M M and Brann D E. Spatial variability and sampling strategies for NO_3-N,P,and K determinations for site-specific farming.Transaction of the ASAE.1997,40(2):337-343
    160.Hammond M W.Comparison Of phosphorus and potassium utilization with conventional and variable fertility management.Better Crops, 1994,78:22-23
    161.J Machin,A Navas. Agrosystems in Zaragoza using an Expert Evaluation System and GIS. Land Degradation and Rehabilitation.Land Evaluation and Conservation of Semiarid .1995, 6: 203-214
    162.King J. Beyond EconomicChoices-Population and Sustainable Development. UNESCO, 1987
    
    163. Klingebiel, P H Montgomery. Land Capability Classification. Agricultural Handbook. Department of Agriculture, USA. Washington DC, 1961
    164.Laslett G M.,Mcbratney A B, Pabl P J, Hutchinson M F. Comparison of several spatial prediction methods for soil pH. J Soil Sci., 1987, 38:325-341
    
    165.Lee C K and Kaho T. Field information maps usinggeostatistics in the paddy field 2000-ASAE-Annual-Internation-Meeting, Milwaukee Wisconsin, USA July, 2000, 1-17; ASAE paper, No.00108
    166.Lowen R. Mathematies and Fuzziness (Part II)[A].Fuzzy Set and Systems .1998,111
    
    167.Matheron.G. Principles of geostatisties. Emnomic Geology, 1963, 58:1246-1266
    
    168.Mcbratncy A .B., Webster, R..How many abservation are needed for regional estimation of soil properties? Soil Sci. Am. J, 1983,135:177-183
    
    169.Mohanty B P, Kanwar R S and Horton R. A robust-resistant approach to interpret spatial behavior of saturated hydraulic conductivity of a glacial till under soil no-tillage system. Water Resour Res. 1991,27:2979-2992
    170.Odeb IOA. McBratney A B and Chittleborough D J. Fuzzy-c-means and kriging for mapping soil as a continous system. Soil Soc. Am. J, 1992, 56:1848-1854
    171.Oldeman L R and VanEngelen V W. A world soils and terrain digital database (SOTER) an improved assessment to land resources. Geoderma, 1993, 60: 309-325
    172.Schoenau J J, Huang Z Z. Ion exchange resin strips as plantroot simulators. In: Proceedings of the 1993 Soil and Crop Workshop. University of saskatcheuan, Saskatoon. S K. 1993, 392-400
    173.Schoenau J J and Greer K. Field mapping of soil nutrient supply rates. Better Crops, 1996,3: 12-17
    174.SoIie J B Raun W R and Stone M L. Subrnetre spatial variability of selected soil and bermudagrass production variables. Soil Sci Soc Am. J, 1999, 63:1724-1733
    175.Stein A.Brouwer J and Bouma J. methods for comparing spatial variability patterns of millet yield and Soil data.Soil sci. Soc. Am. J, 1997,61:861-870
    176.Thierry Blu. Complete Parameterization of Piecewise-Polynomial Interpolation Kernels. IEEE TRANSACTIONS ON IMAGE PROCESSING, 2003,12:34-36
    177.Tsegaye T and Hill R L. Intensive tillage effects on spatial variability of soil test,plant growth, and nutrient uptake measurements.J.Soil Sci.1998,163:155-165
    178.Turner M G. the Effect of Pattern on Process. Landscape Ecology. Annu. Rev. Ecol. Syst, 1998:171-197
    179.Warrick A W and Nielsen D R. Spatialvariability of soil physical"Application of siol physics"[M]. Hillel, D.Academic Presss. New York, 1980, 319-344
    180.Webster R and Burgess T M. Spatial variation in soil and the role of Kriging.Agric. Water Manag. 1983,6:111-122
    181.Webster R and Oliver MA. Statisical methods in soil and land resource survey. Oxford Univ. Press. New York Webster R and Burgess T M, 1983. Spatial variation in soil and the role of Kringing Agric. Water Manag. 1990,6:111-122
    182.White J G, Wclch RM and Norell W A. Soil Zn map of the USA using geostatistics and geographic information systems ,Soil Sci. 1997,162 (4): 291 -298
    183.Wilcke W. Small-scale variability of metal concentrations in soil leachates . Soil Sci. Soc.Am.J., 2000,64:138-143
    184. Wollenhaupt N C, Wolkowski R P and Clayton MK. Mapping soil test phosphorus and potassium for variable-rate fertilizer application.J.Pord.Agri, 1994,7:441-448
    185.Woon-Ho Yang,Shaobing Peng,Jianliang Huang,et al. Using leaf Color Charts to Estimate leaf Nitrogen status of Rice. Agronomy Journal, 2003,95:212-217
    186. Yost R S, Uehara G and Fox R J. Geostatistical analysis of soil chemical properties of large land areas. I.Semivariograms. Soil Sci. Soc. Am. J, 1982,46:1028-1037

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700