香溪河流域土地利用与水土流失的关系研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着社会和经济的发展,区域土地利用状况发生了变化,这也给水土流失的产生和发展带来影响。将“3S”技术应用于水土流失快速调查,可及时、准确掌握水土流失现状,通过对土地利用与水土流失变化关系的研究,探索其耦合机理,对了解水土流失变化规律,有效防治水土流失有着积极的理论和现实意义,同时也为研究区水土流失防治思路和目标的确定,加快生态建设工作步伐提供了技术支撑。
     长江是我国流域面积最大的河流,但是长期以来,由于自然和人为因素的影响,流域水土流失问题十分严重,而且主要集中在上游地区。本文以上游的三峡库区香溪河流域为研究对象,综合运用“3S”技术、景观生态学、灰色系统理论、Mann-Kendall秩次趋势分析法等,开展了土地利用动态变化与水土流失时空变化过程关系的研究,取得如下结论:
     (1)提出了区域土壤侵蚀强度及其影响因子有效提取的技术途径和方法。基于“3S”技术,通过人机交互结合计算机半自动解译、绿色生物量指标结合野外标志校正、土壤侵蚀强度空间分析等技术手段,可实现土地利用类型、植被覆盖度、土壤侵蚀强度的有效提取,野外复核正确率达89.1%。
     (2)建立了土地利用状况动态变化评价方法体系。利用空间动态度分析、马尔可夫转移模型计算、景观格局分析等方法,可系统地评价土地利用状况的动态变化。研究表明:1988至1999年间,土地利用各类型都存在着相互转移,其中以耕地向林地、草灌、园地转移和草灌向林地、耕地转移为主,陡坡地退耕还林100.73 km2,转为草灌65.18 km2,改为园地48.44 km2等;土地利用类型景观破碎度在增加,土地利用格局由简单向复杂转变,景观斑块平均密度由1.73增到16.19。
     (3)建立了土壤侵蚀时空变化过程评价方法体系。利用土壤侵蚀强度变化速率分析、空间重心转移分析、空间结构分形特征及稳定性分析等,可有效地分析土壤侵蚀强度时空变异过程。研究表明:各侵蚀强度等级年变化率由大到小排列次序为微度、极强度、强度、剧烈、中度、轻度;各强度等级斑块平均重心呈纬度变化幅度大于经度变化幅度的空间变化特征;除微度侵蚀外,其余侵蚀等级图斑的稳定性指数均呈增加趋势,表明各侵蚀等级在朝微度方向发展,水土流失状况趋于好转。
     (4)初步阐明了不同土地利用类型与土壤侵蚀强度的耦合关系。研究表明:不同土地利用类型具有不同的土壤侵蚀率,侵蚀率较大的是园地、耕地、林地与草灌,而居民点、交通用地、水域等侵蚀率较小;景观格局平均形状指数和图斑数对土壤侵蚀结构的分维影响最大,而平均图斑面积对水土流失结构的分维影响较小。
     (5)初步探讨了流域水土流失驱动因素及其定量分析方法。研究表明:自二十世纪八十年代末以来,香溪河支流高岚河小流域的径流量和输沙量均呈5a平均值下降趋势;香溪河流域输沙量变化中人为作用贡献率为53.8%,而自然因素贡献率为46.2%,引起香溪河流域输沙量变化的主要原因为人为因素。
With the development of the economy and society, land use condition changed and has affected the soil erosion process. Applied the“3S”technology to the soil loss fast investigate can help the government to hold the soil loss actuality in time and exactly. Through the study on the relationships between land use and soil loss variation, exploring the couple mechanism of the land use and soil loss variation, analyzing the soil loss development trend and rule, has the very important theory and practical meaning to learn the soil loss variation disciplinarian and soil and water conservation, at the same time, it can be support definitude the train of thoughts of soil and water conservation and expedite the ecosystem construction.
     Changjiang River is the longest and largest basin in China. But, its soil erosion problem is very serious due to the dual effects of natural and artificial factors, according to investigation, soil erosion is mainly distributing in the up-stream of the Changjiang River. Taken Xiangxi River watershed of three gorges region as research object, using 3S technology, landscape ecology, gray system theory, and Mann-Kendall order trend analysis method, research on the coupling relation between dynamic change of land use and the spatial-temporal change process of soil and water loss was implemented, and the conclusions were as following:
     (1) The technique approach and method for distilling regional soil erosion intensity and its factors were put forward. On the basic of 3-S technology, and by human-machine alternation and combined with half automatic interpretation of computer, and by biology biomass index combined with field indication calibration, and spatial analysis of soil erosion intensity, the effective extraction of land use type, vegetation cover index, soil erosion intensity could be realized, and the accuracy of field check amounted to 89.1%.
     (2) Evaluation method system on dynamic change of land use situation was established. By analysis of spatial dynamic degree, calculation of Markov diversion model, and landscape pattern analysis, the dynamic change of land use situation could be systematically evaluated. The research showed that, from 1988 to 1999, mutual diversion existed among different land use types, in which, the diversion from farmland to woodland, grassland and horticulture, and the diversion from grassland to woodland and farmland were dominating; steep slope field was changed to woodland, grassland, and garden plot with the area of 100.73 km2, 65.18 km2, and 48.44 km2 respectively; the fragment index of landscape for different land use types was increasing, and its structure became complex from simple; the figure spot density of landscape increased from 1.73 to 16.19, the diversity index decreased from 1.69 to 1.56.
     (3) The evaluation method system for spatio-temporal change process of soil erosion was established. By analysis of change velocity of soil erosion intensity, analysis of spatial barycenter diversion, analysis of fractal characteristic and its stability of spatial structure, spatio-temporal change process of soil erosion intensity could be analyzed effectively. The research showed that, the annual change ratio of erosion intensity class was ranked as tiny, intense, tempestuously, moderate, and light; the change of average figure spot barycenter of each soil erosion intensity class at longitude was bigger than that at latitude; except tiny erosion, the figure spots of other erosion intensity class had the increasing trend, which showed that each erosion class developed toward tiny erosion, and the situation of soil and water loss was becoming better.
     (4) The coupling relation between land use type and soil erosion intense was initially clarified. Research showed that different soil erosion types had different soil erosion ratio; the soil erosion ratio of horticulture, farmland, forest, grass land and bush land, was bigger, while that of residential area, traffic land, and water area was small; the dimension effect of average figure index and figure spots of landscape pattern on soil erosion structure was most, however, that of average figure area was small.
     (5) The driving factors and its quantitative analysis method for soil and water loss were initially discussed. Which showed that the 5-year average of the runoff and sandiness in Gaolanhe small watershed, the branch of Xiangxi River, took on a decline trend since the end of 1980; and that the contribution rate of artificial action to the sediment transfer in Xiangxi River watershed was 53.8%, and that of natural factors was 46.2%, therefore, the main reasons that aroused the sandiness transfer change of Xiangxi River watershed were artificial factors.
引文
[1] 蔡强国,王贵平,陈永宗. 黄土高原小流域侵蚀产沙过程与模拟[M]. 北京:科学出版社,1998.
    [2] 蔡强国,吴淑安. 紫色土陡坡地不同土地利用对水土流失过程的影响[J]. 水土保持通报,1998,18(2):1-8
    [3] 曹银贵,王静,刘正军,等. 三峡库区近 30 年土地利用时空变化特征分析[J]. 测绘科学,2007,32(6):167-170
    [4] 长江水利委员会长江流域水土保持监测中心站,嘉陵江流域水土保持减沙效益研究报告,2006.8
    [5] 陈文波,崔丽娟,赵小汎.江西新建县土地利用时空动态特征分析[J].应用生态学报,2006,17 (5):873—877.
    [6] 陈显维. 嘉陵江流域水库群拦沙量估算及拦沙效应分析[J]. 水文,1992,(4):34-38
    [7] 陈显维,郭海晋. 长江宜昌站年悬移质输沙量均值估计[J]. 泥沙研究,1991,(1):10-14
    [8] 陈泽方,许全喜. 岷江流域水沙变化特性分析[J]. 人民长江,2006,37(12):65-67
    [9] 陈利顶,傅伯杰. 农田生态系统管理与非点源污染控制[J]. 环境科学,2000, 21(2):98-100
    [10] 陈先德. 黄河水文[M]. 郑州:黄河水利出版社,1996
    [11] 陈明华. 闽东南地区水土流失动态变化初探[J]. 福建水土保持.1999,11(1)45-49
    [12] 程天文,赵楚年.我国沿岸人海河川径流量与输沙量的估算[J].地理学报,1984,39(4):418-427
    [13] 程学军,谭德宝. 三峡库区湖北片土地利用动态变化研究[J]. 长江科学院院报,2004,21(3):32-35.
    [14] 丁建丽,塔西甫拉提·特依拜. 3S 技术在绿洲土地覆盖变化研究中的应用研究---以新疆于田绿洲为例[J]. 生态学杂志,2005,24(11):1277-1282
    [15] 丁文峰,李占斌,丁登山. 稀土元素示踪法在坡面侵蚀产沙垂直分布研究中的应用[J]. 农业工程学报, 2003,19(2):65-69
    [16] 丁文峰,李占斌,丁登山等. 坡面细沟侵蚀产沙时空分布规律试验研究. 水科学进展,2004,15(1):19-23
    [17] 杜榕恒,史得明,袁建模等.长江三峡库区水土流失对生态与环境的影响[M]. 北京:科技出版社:1994
    [18] 邓居礼. 祖厉河流域水沙时空分布及变化分析[J]. 水文.2001,21(2):47-50
    [19] 邓悦,王铮,熊云波等. 上海市城市空间结构演变及预测[J]. 华东师范大学学报(自然科学版),2002,2;67-72.
    [20] 樊胜岳,徐健华. 水土流失和沙漠化系统中人文作用定量分析的通用数学模型初探[J]. 地理科学,1992,12(4):305-311
    [21] 方学敏. 土壤侵蚀及其环境影响和控制模式的研究[D],1998,中国水利水电科学研究院博士学位论文:3-40
    [22] 冯国章,李瑛等.河川径流年内分配不均匀性的量化研究[J].西北农业大学学报,2000,28(4):50-53
    [23] 傅伯杰,陈利顶,马克明,等.景观生态学原理及应用[M].北京:科学出版社,2003.
    [24] 符素华,段淑怀,李永贵等. 北京山区土地利用对土壤侵蚀的影响[J]. 自然科学进展,2002,12(1):108-112
    [25] 高志强,刘纪远,庄大方.基于遥感和 GIS 的中国土地利用/土地覆盖的现状研究[J].遥感学报,1999,3(2):134-139.
    [26] 贡璐,潘晓玲,师庆东,等. 塔里木河上游土地利用 格局变化及其影响因子分析[J]. 资源科学,2005,27(4):71-75.
    [27] 眭国平,徐锴,陈宝林等. 中子活化分析技术在野外红壤侵蚀研究中的应用[J]. 核技术,2000,23(4):285-288
    [28] 郭丽英,刘彦随,任志远. 生态脆弱区土地利用格局变化及其驱动机理分析—以陕西榆林市为例[J]. 资源科学,2005,27(2):128-133.
    [29] 郭索彦,许峰,李智广. 土壤侵蚀宏观监测[J].中国水土保持科学,2003,1(4):6-9
    [30] 韩书成,谢永生,濮励杰. 黄土高原沟壑区小流域土地利用特征变化分析——以长武王东沟为例[J]. 干旱区资源与环境,2006,20(4):73-77
    [31] 郝慧梅,任志远,薛亮等. 基于 3S 的榆林市土地利用/覆盖变化生态效应定量研究[J]. 地理科学进展,2007,26(3):96-106
    [32] 侯喜禄等. 不同植被类型小区的径流泥沙观测分析[J]. 水土保持通报,1985,6:35-38
    [33] 华绍祖,李卓,于德广. 径流小区试验研究(A).孟庆枚.黄土高原水土保持(C).郑州:黄河水利出版社,1996.269-292
    [34] 黄忠恕. 波谱分析方法在水文上的应用[J]. 水文,1983,3:113-20
    [35] 黄进勇,严力蛟,王兆騫. 红壤小流域不同土地利用方式下的水土流失特征[J]. 浙江大学学报(农业与生命科学版),2002,28(1):78-82
    [36] 黄文义,陈刚,胡成. RS 技术在实时区域土壤侵蚀评价中的应用[J]. 中国地质灾害与防治学报,2003,14(2):116-124
    [37] 何浩,潘耀忠,朱文泉等. 中国陆地生态系统服务价值测量[J].应用生态学报,2005,16(6):1122-112
    [38] 何政伟,黄润秋,贺奋琴等. 攀枝花地区水土流失动态变化研究[J]. 成都理工大学学报(自然科学版),2005,32(3):301-307
    [39] 胡续礼,杨树江. 开发建设项目水土流失监测技术与发展趋势[J]. 治淮,2007,1:32-34(166)
    [40] 惠阳,张晓华,陈珠金. 香溪河流域资源环境状况及开发策略探讨[J]. 长江流域资源与环境,2000,9(1):27-33
    [41] 江忠善,王志强,刘志. 黄土丘陵区小流域土壤侵蚀空间变化定量研究[J]. 土壤侵蚀与水土保持学报,1996,2(1):1-9
    [42] 蒋晓辉,刘昌明,黄强.黄河上中游天然径流多时间尺度变化及动因分析[J].自然资源学报,2003,18(2):142-147
    [43] 焦菊英,王万忠,郝小品. 1998.黄土高原侵蚀产沙的年际变化特征[J]. 水土保持通报.1998,17(2):80-84
    [44] 金蓉玲. 长江宜昌悬移质输沙量来源的成因分析[J]. 水文,1991,(2):17-23
    [45] 李德仁.论 RS、GPS 与 GIS 集成的定义、理论与关键技术[J].遥感学报,1997,1(1):65-69
    [46] 李德仁.“3S”技术与农业发展[J].中国测绘,1998(2):6-9
    [47] 李登科,刘安麟,邓凤东等. 黄土高原丘陵沟壑区坡耕地 3S 技术调查[J]. 遥感信息,2002,6:15-18
    [48] 李雅素. GPS 功能及其在水土保持中的应用[J]. 陕西林业科技,2001,3:59-62
    [49] 李建国,刀红英,张亮等. 滇池流域水土流失监测[J]. 水土保持研究,2004,11(2):75-77
    [50] 李少龙,苏春江,白立新等,小流域泥沙来源的 226Ra 法研究[J],山地研究,1995,13(3):199-202
    [51] 李雅琦,田均良,刘普灵等. 可活化稳定核素示踪法在土壤侵蚀研究中的应用[J]. 核技术,1997,20(7):418-422
    [52] 李玉珍. 3S 技术支持下的土地利用/覆被变化动态监测[J]. 农机化研究,2007,1:197-199
    [53] 李金昌,姜文来,靳乐山等. 生态价值论[M].重庆大学出版社,1999,1-251.
    [54] 李丽娟,郑红星. 华北典型河流径流演变规律及其驱动力分析——以潮白河为例[J].地理学报,2000,55(3):309-315.
    [55] 刘凤飞,樊华,王旭龙. 利用遥感技术动态监测二龙山流域水土流失[J]. 黑龙江水利科技,2003,31(4):107-108
    [56] 刘纯平,陈宁强,夏德深. 土地利用类型的分数维分析[J]. 遥感学报,2003,7(2):136-141
    [57] 刘涛,岳彩荣,黄彬. 基于“3S"的小流域土地利用变化动态监测[J]. 林业调查规划,2006,31(2):1—4
    [58] 刘瑞民,杨志峰,沈珍瑶等. 土地利用/覆盖变化对长江流域非点源污染的影响及其信息系统建设[J]. 长江流域资源与环境,2006,15(3):372-377
    [59] 刘军会,高吉喜,耿斌,等. 北方农牧交错带土地利用及景观格局变化特征[J]. 环境科学研究,2007,20(5):148-154
    [60] 刘纪远.西藏自治区土地利用[M].北京:科学出版社,1992.
    [61] 刘军会,高吉喜,耿斌,等. 北方农牧交错带土地利用及景观格局变化特征[J]. 环境科学研究,2007,20(5):148-154
    [62] 刘慧平. 基于遥感和 GIS 的城市边缘带土地利用变化和城市扩展模式研究:以北京市朝阳区为例[D]. 北京师范大学,1999
    [63] 刘昌明,成立. 黄河干流下游断流的径流序列分析[J]. 地理学报,2000,55(3):257-262
    [64] 龙花楼,李秀彬. 长江沿线样带土地利用格局及其影响因子分析[J]. 地理学报,2001,56(4):417-425
    [65] 罗先香,邓伟,何岩等. 三江平原沼泽性河流径流演变的驱动力分析[J]. 地理学报,2002,57(5):603-610
    [66] 罗鹏,俞志强,殷国庆等. 基于 3S 技术的金衢地区低丘红壤开发利用潜力评价[J]. 浙江农业学报,2007, 19(2):101-105
    [67] 路云阁,许月卿,蔡运龙. 基于遥感技术和 GIS 的小流域土地利用/覆被变化分析[J]. 地理科学进展,2005,24(1):79-86
    [68] 毛显强,胡涛.中国的可持续发展研究[M].中国环境科学出版社. 1995.8
    [69] 马建华,管华编著. 系统科学及其在地理学中的应用[M]. 科学出版社,北京:2003
    [70] 马炼,张明波,郭海晋等.嘉陵江流域水保治理前后沿程水沙变化研究[J]. 水文,2002,22(1):27-31
    [71] 马晓微. 基于 GIS 的中国潜在水土流失宏观分析与评价[D]. 中科院水利部水土保持研究所2000 届硕士论文
    [72] 倪九派. 三峡库区小流域水土流失预测评价与生态环境调控[D]. 西南农业大学硕士学位论文,2002
    [73] 倪晋仁,李英奎. 基于土地利用结构变化的水土流失动态评估[J]. 地理学报,2001,56(5):611-621
    [74] 牛银栓. 水土流失是生态环境恶化的祸根[J].甘肃环境研究与监测,2001,14(1):54-59
    [75] 潘剑君,张桃林,赵其国. 应用遥感技术研究余江县土壤侵蚀时空演变[J]. 土壤侵蚀与水土保持学报. 1990,5(4):14-18
    [76] 邵怀勇,仙巍,马泽忠等. 土地利用/土地覆被镶嵌体的分形结构模型研究[J]. 2004,18(5):155-158
    [77] 沈焕庭,王晓春,杨清书. 长江河口径流与盐度的谱分析[J]. 海洋学报。2000,22(4):17-23
    [78] 施修端,孔祥林,杨彬. 丹江口水库建库前后沿程水位流量关系变化及其对下游防洪影响的探讨[J].水利水电快报,1999,20(13):8-11
    [79] 史德明. 土壤侵蚀对生态环境的影响与防治对策[J]. 水土保持学报,1991, 5(3):1-8
    [80] 史培军,王静爱,冯文利. 中国土地利用/覆盖变化的生态环境安全响应与调控[J].地球科学进展,2006,21(2):l11-l19.
    [81] 史玉虎,袁克侃. 鄂西三峡库区森林变化对河川径流泥沙的影响[J]. 北京林业大学学报.1998,20(6):54-58
    [82] 石辉.小流域侵蚀产沙研究方法进展[J].西北林学院学报,1997,l2(3):102-l08
    [83] 石辉,田均良,刘普灵等. 利用 REE 示踪法研究小流域泥沙来源[J]. 中国科学(E 辑),1996,26(5):474-480
    [84] 覃爱基,陈雪英,郑艳霞. 宜昌径流时问序列的统计分析[J]. 水文,1993,5:15-21
    [85] 唐小明,李长安.土壤侵蚀速率研究方法综述[J].地球科学进展,1999,14(3):274-278
    [86] 汤立群,陈国祥.大中流域长系列径流泥沙模拟[J].水利学报,1997,(6):l9-26(2):100-112
    [87] 田均良,彭祥林等著. 黄土高原土壤地球化学[M]. 科学出版社,1994,169-178
    [88] 田均良. 侵蚀泥沙坡面沉积研究初报[J]. 水土保持研究,1997,4(2):57-62
    [89] 肖寒,欧阳志云,王效科等.GIS 支持下的海南岛土壤侵蚀空间分布特征[J]. 土壤侵蚀与水土保持学报. 1999,5(4):21-26
    [90] 徐霞,王静爱,贾海坤,等. 内蒙中部地区不同生态区土地利用格局分布特征[J]. 地理科学进展,2005,24(3):44-49.
    [91] 徐建华,艾南山. 水土流失过程的人类活动分析[J]. 水土保持学报,1988,2(4):10-16
    [92] 徐新良,庄大方,张树文. 基于 3S 技术的土地利用/土地覆盖变化野外采样框架设计-以东北地区黑龙江省为例[J]. 遥感技术与应用,2002,17(3):135-139
    [93] 徐映雪,任志远,薛亮等. 基于 3S 技术的绿洲土地覆盖变化研究-以香日德绿洲为例[J]. 水土保持通报,2007,27(4):21-25
    [94] 许俐俐,胡宝清,严志强,等. 喀斯特土地利用变化及其区域生态环境效应——以广西都安瑶族自治县为例[J]. 地域研究与开发,2005,24(6):66-71.
    [95] 谢云,林燕,张岩. 通用土壤流失方程的发展与应用[J]. 地理科学进展,2003,22(3):279-287
    [96] 杨永德,邹宁,郭希望. 汉江上游水文特性的初步分析[J]. 1997,(2):54-56
    [97] 焉莉. 基于 3S 技术的西部石羊河流域土地利用/土地覆盖变化研究[J]. 地质与资源,2003,12(3):188-192
    [98] 于剑如. 长江上游地面侵蚀与河流泥沙问题的探讨[J]. 人民长江,1987,(9):21-29
    [99] 喻锋,李晓兵,陈云浩,等. 皇甫川流域土地利用变化与土壤侵蚀评价[J]. 生态学报,2006,26(6):1947-1956.
    [100] 张志强,徐中民,程国栋.生态系统服务与自然资本价值评估[J].生态学报,2000,21(11):1919-1926
    [101] 张信宝,文安邦. 长江上游干流和支流河流泥沙近期变化及其原因[J]. 水利学报.2002,4:56-59
    [102] 张军政,惠养渝. 清涧河水沙变化分析[J]. 中国水土保持.1994,11:21-26
    [103] 张军政,惠养渝. 延河水沙变化分析[J]. 中国水土保持.1995,6:16-21
    [104] 张国辉,付洪涛,张锦玉等. 柳河泥沙变化分析[J]. 东北水利水电.1999,4:32-34
    [105] 张燕,张洪,彭补拙等. 不同土地利用方式下农地土壤侵蚀与养分流失[J]. 水土保持通报,2003,23(1):23-26)
    [106] 张利华,薛重生. “3S” 技术在土壤侵蚀研究中的应用-以湖北省东北地区为例[J]. 长江流域资源与环境,2004,13(5):503-507
    [107] 张希彪. 泾河中上游流域土地利用格局变化与驱动因子分析[J]. 水土保持学报,2005,19(6):137-140,152.
    [108] 张明波,黄燕,郭海晋等.嘉陵江流域西汉水流域水土保持措施减水减沙作用分析[J]. 泥沙研究,2003,(1):70-73
    [109] 张士锋,贾绍风.降水不均匀性对黄河天然径流量的影响[J].地理科学进展,2001,12(4):354-363
    [110] 张登荣,赵元洪. 水土流失强度遥感快速调查方法[J]. 浙江大学学报(自然科学版),1997,31(6):753-759
    [111] 张信宝,汪阳春,李少龙等,蒋家沟流域土壤侵蚀及泥石流细粒物质来源的 137Cs 法初步研究[J]. 中国水土保持,1992,2:28-31
    [112] 张信宝,李少龙,王成华等. 黄土高原小流域泥沙来源的 137Cs 法研究. 科学通报,1989,3:210-213
    [113] 赵健,魏成阶,黄丽芳等.土地利用动态变化的研究方法及其在海南岛的应用[J]. 地理研究,2001,20(6):723-731
    [114] 赵晶,徐建华,梅安新. 城市土地利用结构与形态的分形研究-以上海市中心城区为例[J]. 华东师范大学学报(自然科学版), 2005.1:78-84
    [115] 赵文林. 黄河泥沙[M]. 郑州:黄河水利出版社,1996:56-92
    [116] 郑国强. 基于RS的无锡市土地利用/覆被变化信息提取及其时空演变研究[D]. 南京大学博士学位论文,2004
    [117] 曾秋云. 溆水流域的降水产沙特性及森林滞沙作用[J]. 中国水土保持.1994,9:26-27,35
    [118] 钟劭南. 长江上游重点水土流失区遥感动态监测及泥沙输移分析[J]. 国土资源遥感.2001,1:1-8
    [119] 朱晓华,蔡运龙. 中国土地利用空间分形结构及其机理[J]. 地理科学,2005,25(6):672-677
    [120] 朱晓华,色布马力. 中国沙漠化土地类型的分形研究[J]. 中国沙漠,2006,26(1):35-39
    [121] 朱兴平. 黄丘五副区小流域水土流失的时空变化[J]. 中国水土保持.1995,12:12-15
    [122] 郑泽忠,范东明,杨武年等. 3S 集成技术在土地利用动态监测中的应用[J]. 西南交通大学学报,2007,42(4):409-413
    [123] 周佩华,田均良,刘普灵等. 黄土高原土壤侵蚀与稀土元素示踪研究[J]. 水土保持研究,1997,4(2):2-9
    [124] 周乐群,孙长安,高改萍等. 长江三峡工程库区生态环境遥感动态监测[J]. 国土资源遥感,2005,1:49-52
    [125] 周乐群,杨岚. 基于“3S”技术的国土资源与生态环境动态监测[J]. 华南地质与矿产,2000,4:40-44
    [126] 杨勤科,王斌科. 中国土壤侵蚀的主要类型与区域特征[M]. 现代土壤学研究., 北京:中国农业出版社,1994:21-35
    [127] 杨勤科. 中国水土保持的迫切性评价与制图[J]. 水土保持学报. 1993,7(2): 81-88
    [128] 杨勤科,李锐.中国水土流失和水土保持定量研究进展[J].水土保持通报,1998,18(5):l3-18
    [129] 杨永德,邹宁,郭希望等. 汉江上游水文特性的初步分析[J]. 水文.1997,12:55-59
    [130] 杨明义,田均良,石辉. 核分析技术在土壤侵蚀研究中的应用[J]. 水土保持研究,1997,4,35-39
    [131] 杨山,吴勇. 无锡市形态扩展的空问差异研究[J]. 人文地理,2001,16(3):84-88
    [132] 杨德生,余新晓. 深圳市水土流失动态变化遥感监测分析[J]. 人民珠江,2002,6:55-57
    [133] 王万忠,焦菊英. 黄土高原水土保持减沙效益预测[M]. 郑州:黄河水利出版社,2002
    [134] 王万忠,焦菊英. 黄土高原降雨侵蚀产沙与黄河输沙[M]. 北京:科学出版社,1996
    [135] 王万忠,焦菊英. 黄土高原侵蚀产沙强度的时空变化特征[J]. 地理学报.2002,57(2):210-217
    [136] 王静,杨山,何挺等. 城乡结合部土地利用变化的信息提取技术与分析-以无锡市为例[J]. 地理科学进展,2004,23(2):1-9
    [137] 王飞,李锐,杨勤科等. 区域尺度土壤侵蚀研究方法[J]. 西北林学院学报,2003,18(4):74-78
    [138] 王光谦. 中国泥沙研究述评[J]. 水科学进展.1999,10(3):245-255
    [139] 王兆印,王光谦,高菁. 侵蚀地区植被生态动力学模型[J]. 生态学报,2003,23(1):98-105
    [140] 王思远,刘纪远,张增祥. 近 10 年中国土地利用格局及其演变[J]. 地理学报,2002,57(5):523-530.
    [141] 韦红波. 区域植被水土保持功能遥感评价研究[D]. 中科院水利部水土保持研究所 2001 届博士论文
    [142] 韦红波,杨勤科,任洪玉. 中国多年平均输沙模数的研究[J]. 泥沙研究,2003,1:39-44
    [143] 吴永红. 线形开发建设项目水土保持监测技术[J]. 水土保持通报,2003,23(4):33-35
    [144] American Institute of Biological Science.Global Impact of Land-cover Change (Z).Bioscience,Special Issue,1994
    [145] Batty M.Longley P A.Fractal-based description of urban form[J].Environment and Planning B:Planning and Design. 1987,14:123-134
    [146] Coulter, C.B., Kolka, R.K., Thompson, J.A., Water quality in agricultural, urban, and mixed land use watersheds[J]. Journal of the American Water Resources Association. 2004, 40, 1593-1601.
    [147] Douglas C. L, King J. K. A, and Zuzel J. F. Nitrogen and phosphorus in surface runoff and sediment from a wheat-Pea rotation in northeastern Oregon. J Environ Qual[J], 1998, 27: 1170-1177
    [148] Easton, Z.M., Petrovic, A.M., Fertilizer source effect on ground and surface water quality in drainage from turf-grass[J]. Journal of Environmental Quality. 2004. 33, 645-655
    [149] Econade O. Hill-slpoe agro-ecosystems and their implications on environmental systems in rural southern Nigeria[J]. Agri Ecosys Environ, 1996, 61: 97-102
    [150] Gilbert, J.K., Clausen, J.C., Stormwater runoff quality and quantity from asphalt, paver, and crushed stone driveways in Connecticut[J]. Water Resource Research. 2006, 40:825-832
    [151] Gorden. Analyse d’un echantillonnage en ligne dans la savane de Lamto(Cote d’lovire). Ann Univ Abidjan, Serie E,1973, 6(2):25-31
    [152] Hargrave A. P and Shaykewich C. F. Rainfall induced nitrogen and phosphorus losses from Manitoba soils. Can J Soil Sci[J], 1997, 77: 59-65
    [153] H. Y. Jia,A. L. Lei ,J. S. Lei. Effects of hydrological processes on nitrogen loss in purple soil[J]. Agricultural water management. 2007, 89(1):89-97
    [154] Knaus,R.W. and Vangent,D.L. Accretion and cancel impacts in a rapidly subsiding wetland. Ⅲ.A new soil horizon marker for measuring recent accretion[J]. Estuaries. 1989,12(4):269-283
    [155] Menzel, R.G. Transport of 90Sr in runoff[J], Science(Washiongton) 1960, 131:499-500
    [156] Meyer W B , Turner B L . Change in Land-use and Land-Cover : A Global Perspective[M].Cambridge:Cambridge University Press,1994
    [157] Petrovic, A.M., Easton, Z.M., The role of turfgrass management in the water quality of urban environments[J]. International Turfgrass Society Research Journal. 2005, 10: 55-69
    [158] Roels J.M. Estimation of soil loss at a regional scale based on plot measurements-some critical considerations[J].Earth Surface process and landforms. l985,l0(6):587-595
    [159] Schindler D. W. Evolution of phosphorus limitation in lakes[J]. Science, 1977, 195: 260-262
    [160] Sharpley A. N., Gburek W. J., Folmar G, et al. Sources of phosphorus exported from an agricultural watershed in Pennsylvania. Agricultural Water Manage. 1999, 41: 77-89
    [161] Smith, D.D., Interpretation of soil conservation data for field using. Agricultural Engineering. 1941, 22:173-180
    [162] Turner B L, David Sterson. Land-use and Land-cover Change(LUCC):Science/Research Plan (R).IGBP Reports,No. 35,1995
    [163] Turner B L, Local Faces,Global Flow :The Role of Land-use and Land-cover in Global Environmental Change [J]. Land Degradation and Rehabilitation,1994,23(5):71-78
    [164] Turner B I,Meyer W B.Land-use and Land-cover in Global Environmental Change:Considerations for Study[J].Int SocSci J,1991,130:669-680
    [165] Turner B L, Meyer W B.Skole D.Global Land-use/Land-cover Change:Towards an Integrated Program of Study [J].AMBIO,1994,23(1):91- 95
    [166] Turner B L,Moss R H,Skole D.Relating Land Use and Global Land-cover Change:A Proposal for an IG BPHDP Core Project (R). International Geosphere-Biosphere Program Report. No.24. Stockholm. 1993
    [167] White R.Engelen G.Cellular automata and fractal urban form:a cellular modeling approach to the evolution of urban landuse patterns[J].Environment and Planning. 1993,25:117-119
    [168] Wischmeier, W.H., et al., Predicting rainfall erosion losses from cropland east of the Rocky Mountains. USDA Agricultural Handbook. 1965, 282
    [169] Baban S M J, Luke C, Mapping agricultural land use using retrospective ground referenced data, satellite sensor imagery and GIS. International Journal of Remote sensors, 2000,21(8):1757-1762
    [170] Felix Herzog, Angela Lausch, Eckhard Muller, Hans-hermann Thulke, et al. Landscape Metrics for Assessment of Landscape Destruction and Rehabilitation. Environment Eanagement. 2001,27(1):91-107
    [171] Pearce M C, Pattern analysis of forest cover in southwestern Om tario. The east lakes geographer. 1992, 27: 65-76
    [172] Ramankutty N, Foley J A. Estimating historical changes in land cover:North American croplands from 1850 to 1992. Global Ecol Biogeogr. 1999, 8: 381-396
    [173] A. Gobin,R. Jones,M. Kirkby,P. Campling,G. Govers, C. Kosmas and A.R. Gentile. Indicators for pan-European assessment and monitoring of soil erosion by water .Environmental Science & Policy. 2004, 7: 25-38.
    [174] Alice Servenay, Christian Prat, Erosion extension of indurated volcanic soils of Mexico by aerial photographs and remote sensing analysis Geoderma. 2003, 117:367-375.
    [175] Goward, S.N., Prince, S, D.Transient effects of climate on vegetation dynamics satellite observations. Journal of Biogeography. 1995, 22: 549-563.
    [176] Gregory N. Nagle, Timothy J. Fahey, James P. Lassoie. Management of Sedimentation in Tropical Watersheds. Environmental Management. 1999, 23(4): 441-452.
    [177] Gregory S. Okin, Bruce Murray William H. Schlesinger. Degradation of sandy arid shrubland environments: observations, process modelling, and management implications. Journal of Arid Environments. 2001, 47: 123-144.
    [178] Hassan M. Fadul, Ahmed A. Salih, Imad-eldin A. Ali,Shinobu lnanaga. Use of remote sensing to map gully erosion along Atbara River, Sudan. Journal of Application Geography. 1999, 1(4):175-180.
    [179] Martha M. Bakkera, G. G,Mark D.A. Rounsevell. The crop productivity-erosion relationship: An analysis based on experimental work. Catena. 2004, 57: 55-76.
    [180] Martha M. Bakkera, Gerard Goversb, Costas Kosmasc, et al. Soil erosion as a driver of land-use change. Agriculture, Ecosystems and Environment. 2005, 105:467-481.
    [181] De Koning G H J., Veldkam P. A,Fresco L O. Land use in ecuador: a statistical analysis at different aggregation levels. Agricultural Ecosystems & Environment. 1998, 70(3 ): 231-247.
    [182] Truman, C.C., Wauchope, R.D., Summer, H R., et al. Slope length effects on runoff and sedimentdelivery. Journal of Soil and Water Conservation. 2001,56, (3):249-256
    [183] Das, C., Capehart, W. J., Mott, H.V. Schumacher. Assessing regional impacts of conservation reserve program-type grass buffer strips on sediment load reduction from cultivated lands. Journal of Soil and Water Conservation. 2004, 59(4):134-142
    [184] Jackson, C.R., Martin., J.K. Leigh, D.S. A southeastern piedmont watershed sediment budget: Evidence for a mufti-millennial agricultural legacy. Journal of Soil and Water Conservation. 2005, 60 (6):298-311
    [185] Renschler, C.S., Lee. T. Spatially distributed assessment of short- and long-term impacts of multiple best management practices in agricultural watersheds. Journal of Soil and Water Conservation. 2005,60, (6):446-456
    [186] Savabi M R,Flanagan D C et al .Application of WEPP and GIS-GRASS to a small Watershed Indiana.Journal of Soil and Water Conservation, 1995, 50 (5):477-483.
    [187] Andy P. Dobson et al., Hope for the future: restoration ecology and conservation biology. Science, 1997, 277: 515-523.
    [188] Baker, W. L., and Y. Cai. The role programs for multiscale analysis of landscape structure using the GRASS geographical information system. Landscape Ecology. 1992,7: 291-302.
    [189] Beasley, D. B. and L.F. Huggins. ANSWERS Users Manual. EPA-905/9-82-001:USEPA. Chicago, II. 1981.
    [190] Bogaert, J., R. Rousseau, P. Van Hecke, and I. Impens. Alternative perimeter-area ratios for measurement of 2-D shape compactness of habitats. Applied Mathematics anal Computation. 2000, 111: 71-85.
    [191] Burrough, P.A. Principles of Geographical Information Systems for Land Resources Assessment. Clarendon Press, Oxford. 1986.
    [192] Christopher D.E. and Ding Y. Relative radiometric normalization of landsat multispectral scanner (MSS) data using an automatic scattergram-controlled regression. Photogrammetric Engineering & Remote Sensing, 1995, 61(10): 1015-1026.
    [193] Dale, M. R. T. Lacunarity analysis of spatial pattern: a comparison. Landscape Ecology 2000, 15: 467-468.
    [194] Davis F.M., Goetz s. Modeling vegetation pattern using digital terrain data. Landscape Ecology, 1990, 4(1): 69-80.
    [195] De Roo, A., Wesseling, C.G. et al. LISEM: A single event physical based hydrological and soil erosion model for drainage basin I: theory, input and output. Hydrological Processes, 1996, 10: 1107-1117
    [196] Desmet, P. J., Govers, G.. GIS-based simulation of erosion and deposition patterns in agricultural landscape: a comparison of model results with soil map information. Catena. 1995,25: 389-401.
    [197] Desmet, P. J., Govers, G., A GIS-procedure for the automated calculation of the USLE LS-factor on topographically complex landscape units. Journal of Soil and Water Conservation, 1996, 51:427-433.
    [198] Eastman, R. J., IDRISI for Windows: User's guide, (Version 2.0). Clark University, Graduate School of Geography, Worcester, Massachusetts, Chapters 4-17. 1997
    [199] Elkie P.C., Rempel R.S. and Carr A.P., Patch analyst user's manual, a tool for quantifying landscapes structure. Northeast Science &Technology. Ontaria, February 1999. 12.
    [200] Turner, M. G. Landscape changes in nine rural counties of Georgia. Photogrammetric Engineering & Remote Sensing, 1990, 56: 379-386.
    [201] Vandaele, K., Poesen, J. Spatial and temporal patterns soil erosion rates in an agricultural catchment, central Belgium. Catena. 1995, 25: 213-226.
    [202] Timmins, K. B. Jones, B. L. Jackson. A factor analysis of landscape pattern and structure metrics. Landscape Ecology. 1995.10: 23-40.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700