农田温室气体排放通量与土壤碳汇研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文研究了华中地区典型旱地农田的温室气体排放通量动态变化,及其与作物生长、土壤中C、N元素和其它管理因子(施肥、灌溉)和环境因子(如温度、水分等)之间的相互关系:以及晒田和不同类型肥料对北京单季稻田甲烷和N_2O排放的影响及其相互关系;并对我国和发达国家关于京都议定书3.3和3.4条款有关活动的碳汇潜力进行了计算、分析和比较;还计算和总结出我国土壤碳储量及其地理分布特征。研究的主要结果如下:
     1.旱地农田土壤CO_2排放通量与作物生长状况密切相关,在作物旺盛生长和成熟期的排放量较高,这可能与根系分泌物和土壤中残留有机物料较多有关;
     2.土壤CO_2排放通量与土壤可溶性有机碳之间没有直接的关系。可能是由于土壤可溶性有机碳是土壤碳转化过程中的中间产物,它一方面是土壤微生物分解复杂有机物的降解产物,另一方面又会被其它微生物继续分解和利用;
     3.旱地农田N_2O排放与施肥及土壤中无机氮含量密切相关,N_2O排放通量与土壤无机氮含量呈正相关;N_2O排放在施肥后显著增加,尤其在气温和土温较高的季节更为显著;
     4.旱地土壤是一弱的甲烷汇(汇强度为-0.003~-0.026 mgCH_4/m~2/h),较高的土壤湿度和施用氮肥会减弱土壤甲烷汇的强度;
     5.本试验条件下,稻田在水稻分蘖末期短期晒田可减少甲烷排放量16.1%,而同时增加的N_2O当量较小,仅为7.3%(500年时间尺度内);
     6.关于京都议定书3.4条款的7项主要活动中,我国未来的固碳潜力为85.6MMtC/y(范围为40.0~218.3 MMtC/y),其中潜力大小依次为森林>草地>农田;全球的潜力为637 MMtC/y,其中草地的潜力最大(占41%),森林和农田管理次之;
     7.附件Ⅰ国家(34个工业化程度较高的国家)和美国可以通过“京都议定书”3.3和3.4条款完成其减排承诺的50~70%。可见,京都议定书引入温室气体吸收汇,为发达国家提供了更多的减排选择;
     8.我国80年代的土壤碳储量为107.5 Gt,约占全球土壤碳储量的6~7%。其中,,0-20cm、0-51cm和0~84cm土层的碳储量分别占到0~94cm土层碳总量的38%、77%和98%;
     9.我国土壤碳储量的地理分布规律为:东部森林土壤系列由南到北,随纬度的增加土壤有机质和碳密度呈增加的趋势;北部草原土壤系列从东到西,随经度的减小,土壤有机质和碳密度呈逐渐降低的趋势。
Global change resulted mainly from increased concentration of atmospheric greenhouse gases has becoming the worldwide concrn. 70-90% of atmospheric CH_4 and N_2O are produced from soil microbial processes, and the land use and land-use change resulted CO_2 emissions also contribute to climate warming. The agroecosystem contributed to climate change through emission N_2O from dryland soils and CH_4 from paddy soils. While available mitigation options could debate these trends. Based on these backgrounds, this paper focus on the follow aspects, they are:ⅰ) The seasonal variation of greenhouse gases (CO_2, CH_4, N_2O) and their relationships with relative soil indexes such as soil inorganic nitrogen, and soil humidity and other management activities such as fertilization and irrigation etc. from typical dryland soils and paddy soils,ⅱ) The soil carbon stocks and its distribution characters in geographical spaces in China.ⅲ) The carbon sequestration potential of activities under Article 3.3 and 3.4 of Kyoto Protocol in China and some implications of these activities on the implementation of commitment of Annex-I countries since sinks were introduced by the Kyoto Protocol. The results are as follows:
     (1). The soil CO_2 emission flux correlated with the growth status of crops: at the stages when plants and roots grew quickly and when the amount of plant debris was more, soil CO_2 emission flux showed higher due to the large amount of root exudations and organic material as the substrate of soil microorganisms;
     (2). Soil dissolved organic carbon (DOC) could not exactly reflect the soil respiration intensity. This is perhaps because DOC is not only one of the intermal products of decomposition process of complicated plant material, but also it could be decomposed further by microorganisms and this process is quickly happened under higher temperature and proper soil water content;
     (3). The N_2O flux was positively correlated with soil inorganic N content mostly resulted from applications especially under higher temperature and proper soil humidity conditions;
     (4). The typical cropland was a weak net CH_4 sink with the average flux of-0.003~-0.025 mg CH_4/m~2/h, and the higher soil humidity could decrease the methane absorption intensity of dryland soils;
     (5). Under the condition of this experiment, aeration at later tillering stage of single rice growth period could decrease methane emission by 16.1%; while the increased N_2O production only accounted for 7.3% of the total GWP (methane+N_2O) (in the 500years time scale);
     (6). The carbon sequestration potential of the seven items of activities under Article 3.4 of Kyoto Protocol is 104.9 MMtC/y with the range of 62.7~233.2 MMtC/y in China in the future. Among these potentials, their contributions are in the order: forest management>grassland management>cropland management.
     (7). Annex-I countries could complement 50~70% of their mitigation commitments when activities under Article 3.3 and 3.4 were adopted.
     (8). The total carbon stocks of Chinese soils in the 0~94cm soils were 107.5 Gt in the 1980's. And the carbon stocks of 0~20, 0~51, and 0~84cm soil depths accounted for 38%, 77%, and 98% of the total stocks respectively.
     (9). The geographical distribution rules of soil carbon stocks in China were: with the increase of latitude along the East China, the soil carbon density increased; And with the decrease of longitude along the North China, the soil carbon density decreased.
引文
Achtnich C, Bak F, Conrad R. Competition for electron donors among nitrate reducers, and methanogens in anoxic paddy soil. Biology and Fertility of Soils, 1995, 19(1): 65-72.
    Atjay GL, Ketner P, Duvigeaud P. Terrestrial primary production and phytomass. In: Bolin B, Degens E T, Kempe S, et al. eds The Global Carbon Cycle. SCOPE 13. Chichester, New York: Wiley, 1979. 129-182.
    Batjes N H, Sombroek W G. Possibilities for carbon sequestration in tropical and subtropical soils. Global Change Biology, 1997, 3: 161-173.
    Biazar AP, Mc Nider RT. Regional estimate of lightning production of nitrogen oxides. J Geophys Res, 1995, 100(22): 861-22874.
    Blackmer AM, Cerrato ME. Soilproperties affecting formation of nitric oxide by chemical reaction of nitrites. Soil Sci Soc Am J, 1986, 50: 1215-1220.
    Boeckx P, Cleemput-O-van. Methane oxidation in a neutral landfill cover soil: influence of moisture content, temperature, and nitrogen-turnover. Journal of Environmental Quality, 1996,25(1): 178-183.
    
    Boeckx P, Cleemput-O-van. Methane oxidation in a neutral landfill cover soil: influence of moisture content, temperature, and nitrogen-turnover. Journal of Environmental Quality, 1996,25(1): 178-183.
    Bohn H.L. Estimates of organic carbon in world soils. Soil Sci Soc Am J, 1976, 40: 468-470.
    
    Bohn HL. Estimates of organic carbon in world soils:II. Soil Sci Soc Am J, 1982, 46: 1118-1119.
    Bouwman AF. Conclusions and recommendations of the Conference Working Groups. In:Bouwman A F, ed. Soils and the Greenhouse Effect. Chichster: John Willey & Sons, 1990. 1-21.
    Brasseur GP, Muller JF, Granier C. Atmospheric impact of Nox emissions by subsonic aircrafts: A three dimensional model study. J Geophys Res,1996,101: 1423-1428.
    Brown S, Lugo AE. The storage and production of organic matter in tropical forests and their role in the global carbon ctcle. Biotropic,1982,14: 161-187.
    Byrnes BH, Austin ER, Tays bK. Methane emission from flooded rice soils and plants under controlled conditions. Soil Biology and Biochemistry, 1995,27: 331-339
    Chapman SJ, Kanda KI, Tsuruta H. Minami Influence of temperature and oxygen availability on the flux of methane and carbon dioxide from wetlands: a comparison of peat and paddy soils. Soil Science and Plant Nutrition, 1996, 42(2):269-277.
    Cole C V, Flach K, Lee J, et al. Agricultural sources and sinks of carbon. Water, Air and Soil pollution, 1993, 70:111-122.
    Davidson EA. Fluxes of nitrous oxide and nitric oxide from terrestrial ecosystems. In: Rogers JE et.al.,eds., Microbial Production and Consumption of Greenhouse Gases: Methane, Nitrogen Oxides, and Field Conditions. American Society for Microbiology, Washington. 1991pp219-235.
    
    De Datta SK. Principles and practices of rice production. New York: John Wieley ,1981
    Degens ET, Kempe S, et al. Eds. The Global Carbon Cycle. SCOPE 13. Chichester, New York: Wiley, 1979. 129-182.
    Denier van der Gon HAC, van Bremen N, Neue HU et al. Release of entrapped methane from wetland rice fields upon drying. Global Biogeochemical Cycles,1996,10: 1-9.
    Detwiler R P. Land use change and the global carbon cycle: the role of tropical soils. Biogeochemistry, 1986,2:67-93
    
    Dorr H, Katruff L, Levin I. Soil texture parameterization of the methane uptake in aerated soils. Chemosphere, 1993, 26(1-4): 697-713.
    
    Duxbury JM, Mosier AR, 1993. States and issues concerning agricultural emissions of greenhouse gases. In: Kaiser HM & Drennen TE (eds.), Agriculyural Dimensions of Global Climate Change. St Louis Press.Delray Beach,FL,USA.pp229-258.
    Ehhalt Dh, Rohrer F, Wahner A. Sources and distribution of NOx in the upper tropsphere at northern mid-altitudes. J Geophys Res,1992, 97: 3725-3738.
    EPA. Inventory of US greenhouse gas emissions and sinks: 1990-1993. EPA , 1994230-R-94-014, US EPA, Cincinnati, USA.
    Flessa H, Pfau W, Dorsch P, et al. The influence of nitrate and ammonium fertilization on N_2O release and CH4 uptake of a well-drained topsoil demonstrated by a soil microcosm experiment. Zeitschrift fur Pflanzenernahrung und Bodenkunde, 1996, 159(5):499-503.
    Goulding KWT, Willison TW, Webster CP, et al. Methane fluxes in aerobic soils. Environmental Monitoring and Assessment, 1996,42(1 -2):175- 187.
    Greenland DJ. Land use and soil carbon in different agroecological zones. In: R Lal J Kimble et al eds, Soil Management and Greenhouse Effect. Lewis Publishers, Boca Raton, Florida, ,1995.USA. pp9-24.
    Holzapfel-Pschorn A, Cornrad R, Seiler W. Effects of vegetation on the emission of methane from submerged paddy soil. Plant and Soil,1986,92: 223-233.
    Houghton R A. Changes in storage of terrestrial carbon since 1859. In: Lal R, Kimbkle J, Levine E, et al. Soils and Global Change.Boca Raton:CRC Press, 1995.45-65
    Hurst DF, Griffith DWT, Cook GD, 1994b. Trace gas emissions from biomass burning in tropical Australia savannas. J Geophys Res , 93: 7180-7192.
    Hutsch BW, Russell P, Mengel K. CH4 oxidation in two temperature arable soils as affected by nitrate and ammonium application. Biology and Fertility of Soils, 1996, 23(1):86-92.
    Hutsch BW, Webster CP, Powlson D . Methane oxidation in soil as affected by land use, soil pH and N fertilization. Soil Biology and Biochemistry, 1994b, 26(12): 1 613-1 622.
    Hutsch BW, Webster CP, Powlson DS, et al. Effects of soil pH and nitrogen fertilization on methane oxidation in a grassland soil. Proceedings of the third congress of the European Society for Agronomy. Abano-Padova, Italy:Padova University, 1994a. 810-811.
    
    Hutsch BW, Webster CP, Powlson DS. Long-term effects of nitrogen fertilization on methane oxidation in soil of the Broadbalk wheat experiment. Soil Biology and Biochemistry, 1993, 25(10):1307-1315.
    Inubushi K, Muramatsu Y, Umebayashi M. Influence of percolation on methane emission from flooded paddy soil. Japanese Journal of Soil Science and Plant Nutrition, 1992,63: 184-189.
    IPCC. Climate Change 1995- The Science of Climate. Contribution of Working Group to the Second Assessment Report of the Intergovermental Panel on Climate change. Cambridge, New York: Cambridge University Press. 1996a
    IPCC. Climate Change 1995-Impacts,Adaptations and Mitigation of Climate Change : Scientific-technical Analyses. Contribution of Working Group II to the 'second Assessment Report of the Intergovermental panel on Climate Change. Cambridge, New York: Cambridge University Press. 1996b
    IPCC. IPCC Sepecial Report on Land Use, Land-Use Change, and Forestry. 2000. (in press)
    IPCC. IPCC Supplement: Full Scientific Report. Working Group 1: Scientific Assessment of Climate Change. Intergovernmental Panel on Climate Change. VMO/UNEP,1992
    Jacob DJ, Wofsy SC. Budget of reactive nitrogen, hydracarbons and ozone over the Amazon forest during the wet season. J Geophys Res,1990, 95(16): 737-16456.
    Jenkonson DS, Rayner JH. The turnover of soil organic matter in some of the Rothamsted classical experiments. Soil Sci, 1977.123: 298-305.
    Jonson MC, Kerns JS. Sequestratering carbon insoils: A workshop to explore the potential for mitigating global climate change. USEPA Rep. 600/3-91/031. Environ Res Lab, Corvallis, OR. ,1991
    Juma NG, McGill W M. Decomposition and nutrient cycling in agro-ecosystems. In: Mitchell M J, Nakas J P, eds. Microfloral and Faunal Interactions in Natural and Agro-ecosystems. 1986.
    
    Kaisibhatla PS, Levy HII, Moxim WJ et.al.. The relative impact of stratospheric photochemical production on Noy levels: A model study. J Geophys Res, 1993 98:7165-7180.
    Kimble JM, Eswaran H, Cook T. Organic carbon on a volume basis in tropical and temperate soils. Trans Int Congr Soil Sci, 1990,5: 248-253.
    Lauren JG and Duxbury JM,1993. Methan emissions from flooded rice amended with a green manure. In: Agricultural Ecosystem Effects on Trace Gases andGlobal Climate Change. ASA Special Publication No.55:183-192.ASA,Madison,WI,USA.
    Logan JA. Nitrogen oxides in the troposphere, global and regional budgets. J Geophys Res,1983, 88(10): 785-10807.
    
    Mackenzie FT. Global climate change: climatically important biogenic gases and feedbacks. In: Biotic Feedbacks in the Global Climatic System(Woodwell GM and Mackenzie FT eds.). Oxford University Press. ,1995
    
    Mann L K. Changes in soil carbon storage after cultivation. Soil Sci,1986,142: 279-288.
    
    Masscheleyn PH, Delaune RD, Patrick WH. Measurements of rice soil suspention effect of soil oxidation-redution status. Chemosphere,1993, 26: 251-260.
    Minami K, Fukushi S. Methods for measuring N_2O flux from water surface and N_2O disssolved in water from agricultural land. Soil Sci Plant Nutr, ,1984,30: 495-501
    Minami K, Goudriaan J, Lantinga EA, et al. Significance of grasslands in emission and absorption of greenhouse gases. Grasslands for Our World, 1993, 444-450.
    Mosier AR, Delgado JA, Cochran VL, et al. Impact of agriculture on soil consumption of atmospheric CH_4 and a comparison of CH_4 and N_2O flux in subarctic, temperate and tropical grasslands [J] . Nutrient Cycling in Agroecosystems, 1997, 49:71 -83.
    Murphy DM, Fahey DW,1995. An estimate of the flux of stratospheric reactive nitrogen and ozone into the troposphere. J Geophys Res,99: 5325-5332.
    
    Neff JC, Bowman WD, Holland EA, et al. Fluxes of nitrous oxide and methane from nitrogen-amended soils in a Colorado alpine ecosystem. Biogeochemistry, 1994, 27(1):23-33.
    Nesbit S P, Breitenbeck G A. A laboratory study of factors influencing methane uptake by soils. Agric Ecosyst Environ, 1992, 41:39-54.
    
    Neue HU, Boonjawat J. Methane emissions from rice fields. In: Galloway JN and Melillo JM eds, Asian Change in the Contex of Global Climate Change. Cambridge University Press, UK, 1998.
    Neue HU, Wassmann R, Kludze HK et al. Factors and processes controlling methane emissions from rice fields. Fertilizer research., 1997
    
    Nugroho SG, Kuwatsuka S. Effect of farmyard manure on ammonification, nitrofication, denitrofication and N2-fixation at different levels of soil moisture. Soil Sci Plant Nutr, 1992, 38: 597-600.
    
    Ojima DS, Valentine DW, Mosier AR, et al. Effect of land use change on methane oxidation in temperate forest and grassland soils. Chemosphere, 1993, 26(1-4):675- 685.
    Parkin TB, Tiedje JM. Application of soil core method to investigate the effect of oxygen concentration on denitrofication. Soil Biol Biochem, 1984,16: 331-334.
    Parton WJ, Schimel DS, Cole CV, et al. Analysis of factors controlling soil organic matter levels in Great Plains grasslands. Soil Sci Soc Am J, 1987,51:1173 - 1179.
    Post WM, Emanuel WR, Zinke J, et al. Soil carbon pools and world life zones. Nature,1982, 298:156-159.
    Post WM, Peng TH, Emanuel WR et al. The global carbon cycle. Am Sci, 1990,78: 310-326.
    Potter CS, Davidson EA, Verchot LV. Estimation of global biogeochemical controls and seasonality in soil methane consumption. Chemosphere, 1996, 32(11): 2219-2246.
    Pradeep KP, Manohar GK, Kandalganonkar SS. Global distribution of nitric oxide produced by lightning and its seasonal variation. J Geophys Res,1995, 100(11): 203-11208.
    
    Robertson LA, Kuenen JG. Physiology of nitrofying and denitrofying bacteria. In: Rogers JE and Whitman WB (eds.), Microbial Production and Consumption of Greeenhouse Gases: Methane, Nitrogen oxides and Halomethanes. American Society for Microbiology Washington D.C.. ,1991 pp189-199.
    
    Ryden JC. Denitrofication loss from a grassland soil in the field receiving differents rate of nitrogen as ammonium nitrate. J Soil Sci,1983,198: 355-365.
    Ryden JC.N_2O exchange between agrassland soil and atmosphere. Nature, 1981,292: 235-237.
    
    Schutz H, Holzapfel-Pschorn A, Conrad R et. al. A three-year continuous record on the influence of daytime,season,and fertilize treatment on methane emission rates from an Italian rice paddy. J. Geophys. Res. ,1989b,94:16405-16416.
    Seiler W, Holzapfel-Pschorn A, Conrad R et al. Methane emission from rice paddies. Journal of Atmospheric Chemistry, ,19841: 241-268.
    
    Serca D, Lacome JM, Delmas R et.al. Nitrogen oxides behaviour in African equatorial rainforest and savanna: A study of NO-NO2-O3 system and Nox deposition ,1996b. (Submitted to Atm Env).
    
    Sharpenseel HW. Sustainable land use in the light of resilience to soil organic matter fluctuations. In: DJ Greenland and I Szabolcs eds. Soil Resilience and Sustainable Land Use. CAB-International, Wallingford, UK. ,1993
    Smith KA. Greenhouse gas fluxes between land surface and the atmosphere. Progress of Physical Geography, 1990, 3:349-272.
    Torn MS, Harte J. Methane consumption by montane soils: implications for positive and negative feedback with climatic change. Biogeochemistry, 1996, 32(1):53-67.
    Van Veen JA, Paul EA. Organic C dynamics in grassland soils. 1. Background information and computer simulation. Can J Soil Sci,1981,61:185-201.
    Wallace AG, Wallace A, Cha JW. Soil organic matter and the global carbon cycle. J Plant Nut, 1990, 13:459-466
    
    Warneck P. Chemistry of the Natural Atmosphere, Academic Press, London. ,1988
    Willison TW, Webster CP, Goulding KWT, et al.Methane oxidation in temperate soils: effects of land use and the chemical form of nitrogen fertilizer. Chemosphere, 1995, 30: 3, 539-546.
    Yagi Kand Minami K. Emission and production of methane in the paddy fields of Japan. JARQ ,199125:165-171.
    Yienger JJ, Levy HIL Empirical model of global soil biogenic Nox emissions. J Geopgys Res, .1995,100 (11):447-11464.
    Yoshida S. Fundamental of rice crop science, pp269. Manila, Philippines; International Rice Research Institute. ,1981
    Bandyopadhyay BK, Sen HS,. Volatilization of nitrogen fertilizer in the coastal solonchaks soils. 1985
    Bedard C, Knowles R. Physiology, biochemistry, and specific inhibitors of CH4, NH4+ and CO oxidation by methanotrophs and nitrifiers. Microbiology Review, 1989, 53: 68-84.
    Bouwman AF. Exchange of greenhouse gases between terrestrial ceosystems and the atmosphere. In: Bouwman AF ed., Soils and the Greenhouse Effect. Chichester: John Wiley & Sons Ltd. 1990. pp61~127.
    Conrad R, Seiler W. Factors influencing the loss of the fertilizer nitrogen to the atmosphere as N2O. J Geophys Res, 1983, 88: 6709-6712.
    Freney JR, Denmead OT, Watanabe I et al. Ammonia and nitrous oxide losses following applications of ammonium sulfate to flooded rice. Aust J Agric Res, 1981. 32: 37-45.
    Hansen S, Eehlum J, Bakken IR. N2O and CH4 fluxes in soil influenced by fertilization and tractor traffic. Soil Biology Biochemistry, 1993, 25: 621-630.
    Hutsch BW, Wester P, Powlson DS. Long-term effects on of fertilization on methane oxidation in soil of the Bard Balk wheat experiment. Soil Biology Biochemistry, 1993, 25: 1307-1315.
    Mosier AR, Schimel DS, Valentine D et al. Methane and nitrous oxide fluxes in native, fertilized and cultivated grasslands. Nature, 1991, 350: 330-332.
    Mosier AR, Schimel DS. Influence of agricultural nitrogen on atmospheric methane and nitrous oxide. Chemistry and Industry, 1991, 23: 874-877.
    Schimel JP, Holland EA, Valentine. Controls on methane flux from terrestrial ecosystem. In: Agricultural Ecosystem Effects on trace Gases and Glogal Climate Change. ASA Special Publication, 1993, 55: 167-182.
    Shepherd MF, Robbins SG. The production of atmospheric Nox and N_2O from a agricultural soil. Atmos Environ, 1991, 25a: 1961-1965.
    Steudler PA, Bowden RD, Melillo JM et al. Influence of nitrogen fertilization on methane uptake in temperate forest soils. Nature, 1989, 341: 314-317.
    Tian Guanming, Cao Jinliu, Cai Zucong et al. Ammonia volatilization from winter wheat field topdressed with urea., Pedosphere, 1998, 8(4): 331-336.
    曹一平等.不同氮肥施在石灰性土壤上氨挥发的研究.北京农业大学学报,1983,9(2):61-67.
    陈冠雄,于克伟.植物施肥N_2O的研究.应用生态学报,1990,1(1):94-96.
    黄国宏,陈冠雄,吴洁.东北典型农田N_2O和CH_4的排放.应用生态学报,1995,6(4):383-386.
    黄国宏,陈冠雄,徐慧.离体大豆植株氮氧化物排放的研究.植物学报,1992,34(11):835-839.
    李楠,陈冠雄.植物N_2O释放及施肥的影响.应用生态学报,1993,4(3):295-298.
    于克伟,陈冠雄.几种早地作物的N_2O排放及其对环境因子的反映.应用生态学报,1995,6(4):387-391.
    Cai ZC. A category for estimate of CH4 emission from rice paddy fields in China. Nutrient Cycling in Agroecosystems, 1997, 49: 171-179.
    Gambrell RP, Patrick WH. Chemical and microbiological properties of anaerobic soils and sediments. In: Plant Life in Anaerobic Environments. Ann Arbor Science Publishers, Inc, Ann Arbor. Michigan. 1978.
    IPCC-Intergovernmental Panel on Climate Change. Climate Change 1995-The Science of Climate. Contribution of Working Group to the Second Assessment Report of the Intergovermental Panel on Climate change. Cambridge, New York: Cambridge University Press. 1996.
    Kluber HD, Conrad R. Effects f nitrate, nitrite, NO and N_2O on methanogenesis and other redox processes in anoxic rice field soil. EEMS Microbiology Ecology. 1998
    Neue HU, Boonjawat J. Methane emissions from rice fields. In: JN Galloway and JM Mlillo eds Asian Change in the Context of Global Climate Change. Cambridge University Press., 1998 Cambridge, UK.
    Patrick JR, Reddy CN. Chemical changes in rice soils. In: IRRI Symposium on Soils and Rice. International Rice Research Institute, Los Banos, Philippines. 1977. p361-379.
    Raterin S, Conrad Ralf. Effects of short-term drainage and aeration on the production of methane in submerged rice soil. Global Change Biology, 1999, (4): 397-407.
    Wahlen M, Tanaka N, Henry R et al. Carbon-14 in methane sources and atmospheric methane: the contribution from fossil carbon. Science, 1989, 245: 286-290.
    陶战.不同地区稻田甲烷排放量及控制措施研究.85环能-03-07课题研究报告.农业部环境保护科研监测所.1997.天津.
    王胜春.不同母质发育的水稻土对甲烷释放的影响.华南农业大学硕士学位论文,1996.
    郑循华,王明星,王跃思等.华东稻田CH_4和N_2O排放.大气科学,1997,21(2):231-237.
    Bergkamp G, Orlando B. Wetlands and climate change exploring collaboration between the Convention on Wetlands and the UNFCCC. Rarmsar bureau, Switzerland. 1999.
    Cole CV, Flanch k, Lee J et. al.. Agricultural sources and sinks of carbon. Water, Air and Soil Pollution 1993, 70, 111-122.
    CTIC. 17th Annual Crop Residue Management Survey Report. CTIC, 1998. West Lafayette, IN.
    FAO. "FAOSTAT Agricultural Production Database". FAO, Rome.
    Lal R, Bruce JP. The potential of world cropland soils to sequester C and mitigate the greenhouse effect. Environmental Science and Policy, 1999, 2: 177. 185.
    Lal R, Dumanski HM. Desertification control to sequester C and mitigate the greenhouse effect. In: Rosenberg NJ et al eds, Carbon Sequestration Soils, Science Monitoring and Beyond. Battle Press. 1999b Columbus pp83-130.
    Nabuurs GJ, Dolman AJ, Verkaik E et al. Resolving the issues on terrestrial biospheric sinks in the Kyoto Protocol. Dutch National Research Programme on Global Air Pollutin and Climate Change. Report No. 410 200 030, Wageningen, pp100.
    Oldeman LR. The global extent of soil degradation. In: Greenland DL and I Szabolcs eds, Soil Resilience and Sustainable Land Use. CAB International, Wallingford, UK., 1994. pp99-117
    Palm CA, Woomer PL, Alegre L e al. Carbon sequeatration and trace gas emission in slash and burn and alternative land uses in the humid tropics. ACB Climate Change Working Group Report. Final Report, phase Ⅱ. ICRAF, Nairobi, Kenya. Pp37. 2000
    Paustian K, Elliot ET, Killian K. Modeling soil carbon in relation to management and climate change in some ecosystems in Centural North America. In: Lal R et al eds, Soil Process and the Carbon Cycle. CRC Press, London. 1998b
    Tolenen K, Turunen. Accumulation rates of carbon in mires in Finland and implication for climate change. The Holocene, 1996, 6: 171-178.
    Xu Deying. Forestry and land use change assessment for China. In: Forestry Anf Land Use Change Assessment. Asian Development Bank, 1999, Manila.
    Zhang Bin, Zhang Taolin, Zhao Qiguo, 1996. Soil erosion of various farming systems in subtropical China. Pedosphere, 6(3): 225-233.
    窦森,陈恩凤,须湘成.施用有机肥料对土壤胡敏酸结构特征的影响—胡敏酸的光学性质.土壤学报,1995),32(1):41-49.
    杜月键,巫绪英.稻草还田对青泥土的改良培肥作用及其增产效果.土壤肥料1983,14(3):29-31.
    郭李萍.北京潮土小麦—玉米轮作条件下施肥综合效应的定位研究.中国农业大学博士学位论文.北京,1998.
    黄不凡.探讨我国肥料生产现状和发展的前景.见:中国农科院内部资料,我国粮食和经济作物发展问题研究.Pp289.
    焦彬.中国绿肥区划.贵州人民出版社.1985.
    李博.我国草地资源现状、问题及对策.中国科学院院刊,1997,1.
    李建牢,赵光耀.黄土高原地区的山坡地降雨径流利用及节水灌溉技术.水土保持研究,1998,5(4):25-28.
    林葆.充分发挥我国肥料的增产效果.见:中国投入学会主编,中国土壤科学的现状与展望.江苏科学出版社,1991.Pp29-36.
    刘立光.不同耕种方式对水土流失及产量的影响.耕作与栽培,1993,4:12-14.
    罗永藩.我国少耕与免耕技术推广应用情况与发展前景.耕作与栽培,1991,2:1-7.
    聂兴山.水土保持与黄土高原农业.山西水土保持科技.1996,1:6-8.
    农业部办公厅,农办综[1996]59号文件.
    绍达三,黄细喜,陶嘉玉等.南方水田少(免)耕法研究报告.土壤学报,1985,4(11): 305-319.
    沈洁.绿肥与土壤有机质的关系.耕作与栽培,1985,1:43-44.
    王树楼,王加,丁玉川等.旱地玉米免耕整秸秆半覆盖耕作技术研究.耕作与栽培,1994,4:11-26.
    魏朝富,陈世正,谢德体.长期施用有机肥对紫色水稻土有机无机复合性状的影响.土壤学报,1995,32(2):159-160.
    袁可能.土壤有机矿质复合体研究.Ⅱ.土壤学报,1981,18(4).
    张本家.辽宁省坡耕地低产原因与治理措施.水土保持研究,1997.4(4):54-56.
    张绍德.绿肥和厩肥对土壤有机无机复合体性质影响的试验研究.土壤通报,1983,32-35.
    肇普兴,夏海江.聚丙烯酰胺的保土保水保肥及改土增产作用.水土保持研究,1997,4(4):98-104.
    朱同相,段云,胡修岭.麦秸回田对土壤肥力的影响.山东农业科学,1988,1:12-14
    Bouwman AF. Exchange of greenhouse gases between terrestrial ecosystems and the atmosphere. In: Bouwman AF ed Soils and the Greenhouse Effect. John Wiley & Sons Ltd. England. 1990. pp61-72.
    Johnson MC, Kerns JS, 1991. Sequestratering carbon insoils: A workshop to explore the potential for mitigating global climate change. USEPA Rep. 600/3-91/031.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700