层流小火焰模型在柴油机湍流燃烧中的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
柴油机中的燃烧过程是典型的湍流扩散燃烧,湍流扩散燃烧是一种极其复杂的带有化学反应的流动现象。要对其工作过程进行模拟,目前使用最多的办法就是将湍流与化学反应解耦,分别进行求解,然后再将两部分结果耦合到一起。由于柴油机中在高雷诺数和高Damkoeler数的情况下,燃烧反应区厚度小于湍流耗散尺度,火焰极薄,其微元保持层流结构,因此,湍流火焰可视为嵌入湍流流场内局部具有一维结构的薄的层流小火焰的系综,这便构成了层流小火焰模型主导思想,同时也使层流小火焰模型模拟柴油机湍流燃烧过程成为可能。
     层流小火焰模型在近年来得到了广泛的应用,但是,在内燃机上的应用却不多,国内关于此方面的研究基本上仍是空白。本文作为初步尝试,将层流小火焰模型应用于典型的柴油机扩散燃烧过程,以一台直喷式柴油机为对象,分别以碳十二烷与空气的单步反应和正庚烷与空气的多步反应为机理,以混和分数为自变量,以标量耗散率为参数,建立相空间中组分质量分数瞬时值及温度瞬时值的二维层流小火焰数据库。以KIVA-3程序为基础,摒弃其原有的化学反应模型,模拟内燃机缸内多维湍流流场,并补充求解混合分数的时均值及其脉动均方值的湍流输运方程,得出各曲轴转角下混合分数的时均值及其脉动均方值的缸内空间分布。将两部分结果通过Beta概率密度函数进行耦合积分,得到组分质量分数和温度等参数时均值在柴油机工作过程中的时间、空间分布。
     将对这台直喷式柴油机所得到的计算结果与文献中相同类型发动机的实验及计算结果进行比较,其缸内平均温度曲线和放热率曲线在总体趋势上比较一致,表明小火焰模型应用于柴油机湍流燃烧模拟的可行性及其在预测燃烧过程细节方面所具优势。但对瞬态过程而言,为达到满意的预测精度,小火焰模型还有改进的必要和潜力。
The combustion process in diesel engine is a typical turbulent diffusion combustion, which is an extremely complicated flow phenomenon coupled with chemical reactions. To simulate the diesel engine working process, the most used models decouple the turbulent flow and the chemical reaction into two parts. Firstly, the two parts are solved separately, and the results are then coupled together. Because the thickness of the combustion reaction zone at high Re and Da numbers is less than the turbulent diffusion scale in diesel engines, the flame is extremely thin, its micro-structure keeps the laminar structure, so the turbulent flame can be regard as the ensemble of locally one dimensional, thin laminar flamelet embedded within the turbulent flow field. This builds up the fundamental of the flamelet model, and makes it possible to use the laminar flamelet model to simulate the complicated turbulent combustion process in diesel engines.The laminar flamelet model has been widely used in the recent years, but its application to the internal combustion engine is still scarce. The domestic investigation in this aspect is almost blank. As the first attempt, this paper applies the laminar flamelet model to the typical diffusion combustion in diesel engines. A database of the laminar flamelet for a DI engine is built up in the phase space of the mixture fraction with the scalar dissipation rate as parameter. Based on the KIVA-3 code, deactivating its original chemical reaction module, the in-cylinder multidimensional turbulent flow field is numerically computed; to which two transport equations for the mean mixture fraction and its variance are solved additionally. By utilizing an assumed Beta function formed probability density function (PDF), the results obtained from the laminar flamelet database and the KIVA-3 code are coupled and integrated, the time history and space distribution of parameters, such as the species mass fraction and temperature through the engine working processes can be then determined.Comparing the results of the DI engine to the experimental and computational results for a similar engine from the literature, the temperature curve and the heat release rate curve are in accordance with each other in general. This indicates the feasibility of applying the laminar flamelet model to the engine simulation, and the results of this paper can be a reference for further investigation.
引文
[1] 解茂昭.内燃机计算燃烧学(第二版).大连:大连理工大学出版社,2005.
    [2] Udayakumar R. (Department of Mechanical Engineering, Regional Engineering College), Sundaram S. Computer simulation of a four-stroke CI engine using a zero dimensional global model Journal of the Institution of Engineers (India): Mechanical Engineering Division, v 83, n JUL., July, 2002, p 92-95
    [3] Agarwal A. (Univ of Michigan), Filipi Z. S., Assanis D. N. et al. Assessment of single-and two-zone turbulence formulations for quasi-dimensional modeling of spark-ignition engine combustion, Combustion Science and Technology, v 136, n 1-6, 1998, p 13-39
    [4] Belardini P. (Istituto Motori CNR), Bertoli, C. Multi-dimensional modeling of combustion and pollutants formation of new technology light duty diesel engines, Revue de l'Institut Francais du Petrole, v 54, n 2, Mar-Apr, 1999, p 251-257
    [5] 周力行.湍流两相流动与燃烧的数值模拟.北京:清华大学出版社,1989
    [6] Spalding D. B. Mixing and chemical reaction in steady confined turbulent flames. 13th. Symp. (Int.) on Combust.,1971
    [7] Amin, Emad M. (West Virginia Univ), Celik et al. Application of a variable EBU coefficient for turbulent combustion modeling in a direct injection diesel engine American Society of Mechanical Engineers, Internal Combustion Engine Division (Publication) ICE, v 30, n 1, 1998, 98-ICE-77, p 7-14
    [8] Magnassen B. F., Hjertager B. H. On mathematical modeling of turbulent combustion with special emphasis on soot formation and combustion. 16th. Symp. (Int.) on Combust.,1977
    [9] Pope S. B. PDF methods for turbulent reactive flows. Prog Energy Combust. Sci., 1985, (11):119
    [10] Pope S. B., Chen, Y. L. The velocity-dissipation probability density function model for turbulent flows Physics of Fluids A; Aug90, Vol. 2 Issue 8, p1437, 13p
    [11] Gao, Feng An analytical solution for the scalar probability density function in homogeneous turbulence Physics of Fluids A: Apr91, Vol. 3 Issue 4, p511, 3p
    [12] Maurizi A. a, Tampieri F. Velocity probability density functions in Lagrangian dispersion models for inhomogeneous turbulence a. FISBAT-CNR, via Gobetti 101, Ⅰ-40129 Bologna, Italy
    [13] Alipchenkov V. M., Zaichik L. I. Modeling of the Motion of Particles of Arbitrary density in a Turbulent Flow on the Basis of a Kinetic Equation for the probability density function Fluid Dynamics 0015-4628 35卷6期 200011/12
    [14] Dreeben, Thomas D. Pope, Stephen B. Probability density function and Reynolds-stress modeling of near-wall turbulent flows Physics of Fluids; Jan97, Vol. 9 Issue 1, p154, 10p, 1 chart, 11 graphs
    [15] Simoens Sergea, Michelot Christophea, Ayrault Michela et al. A time continuous stochastic mixing model: differential approximation of the concentration probability density function equation and its solution for the case of homogeneous turbulence Comptes Rendus de 1Academie des Sciences Series ⅡB Mechanics Physics Chemistry Astronomy Vol: 324, Issue: 11, June, 1997
    [16] Valino Luis. A Field Monte Carlo Formulation for Calculating the probability density function of a Single Scalar in a Turbulent Flow Flow, Turbulence and Combustion 1386-6184 60卷2期 1998
    [17] 赵海波.柳朝晖.郑楚光等.湍流两相流的脉动速度联合pdf输运方程.力学学报,2002年05期
    [18] Durand P., Gorokhovski M., Borghi R. Application of probability density function model to diesel spray combustion SAE Special Publications. Advances in Multi-Dimensional Modeling, v 1329, 1998Feb, , 980134, p 115-123
    [19] 郭治民.张会强.王希麟等.湍流燃烧的简化的联合PDF模拟.北京:清华大学学报(自然科学版),2001年08期
    [20] Lee, Daniel Rutland, Christopher J. Probability density function combustion modeling of diesel engines Combustion Science and Technology, v 174, n 10, October, 2002, p 19-54
    [21] Guo, Z. M., Zhang, H. Q., Chan et al. Presumed joint probability density function model for turbulent combustion Fuel; Jun2003: Vol. 82 Issue 9, p1091, 11p
    [22] Jones W. P., Sheen D.-H. A probability density function Method for Modelling Liquid Fuel Sprays Flow. Turbulence and Combustion. 2000,63卷1/4期 1386-6184
    [23] Van Slooten P. R., Pope S. B. Application of pdf Modeling to Swirlingand Nonswirling Turbulent Jets Flow, Turbulence and Combustion 1999,62卷4期 1386-6184
    [24] Hsu A. t. a, He, G. B. a, Probability density function method for turbulent hydrogen flames International Journal of Hydrogen Energy 1999 January 1, Vol : 24, Issue: 1,
    [25] Mazumder Sandipa, Modest Michael F. b, A probability density function approach to modeling turbulence- radiation interactions in nonluminous flames International Journal of Heat and Mass Transfer 1999 March 1, Vol: 42, Issue: 6,
    [26] Landenfeld C., Sadiki A., Janicka J. A Turbulence-Chemistry Interaction Model Based on a Multivariate Presumed Beta-pdf Method for Turbulent Flames Flow, Turbulence and Combustion. 2002 68卷2期 1386-6184
    [27] Shirolkar J. S. a, McQuay M. Q. a, Probability density function propagation model fo turbulent particle dispersion. International Journal of Multiphase flow. 1998 June, Vol: 24, Issue: 4
    [28] Verzicco R., Camussi R. Structure function exponents and probability density function of the velocity difference in turbulence Physics of Fluids. Feb2002, Vol. 14 Issue 2, p906, 4p, 3 graphs
    [29] Chornyi A. D Numerical Solution of the Equation for the single&dash point probability density function of turbulent fluctuations of a scalar field. Journal of Engineering Physics and Thermophysics 74卷3期 1062-0125
    [30] Anand M. S., Hsu A. T. Calculations of swirl combustors using joint velocity-scalar probability density function method AIAA Journal; Jul97, Vol. 35 Issue 7, p1143, 8p, 2 diagrams, 12 graphs
    [31] Wall, Clifton Boersma, Bendiks Jan Moin et al. An evaluation of the assumed beta probability density function subgrid-scale model for large eddy simulation of nonpremixed, turbulent combustion with heat release Physics of Fluids; 10/01/2000, Vol. 12 Issue 10, p2522, 8p, 5 charts, 12 graphs
    [32] Bilger, R. W. Conditional moment closure for turbulent reacting flow. Physics of Fluids A; Feb93, Vol. 5 Issue 2, p436, 9p
    [33] Klimenko, A. Yu. Note on the conditional moment closure in turbulent shear flows Physics of Fluids Feb95, Vol. 7 Issue 2, p446, 3p, 1 graph
    [34] Mastorakos E., Bilger R. W. Second-order conditional moment closure for the autoignition of turbulent flows Physics of Fluids; Jun98, Vol. 10 Issue 6, p1246, 3p, 3 graphs
    [35] Kendal Bushe, W. Steiner, Helfried. Conditional moment closure for large eddy simulation of nonpremixed turbulent reacting flows Physics of Fluids; Ju199, Vol. 11 Issue 7, p1896, 10p, 15 graphs
    [36] 刘涛,刘刚,方韧等.条件矩封闭模型应用于非预混湍流反应流动 北京:北京航空航天大学学报1999年04期
    [37] 邹春,郑楚光,周力行 有辐射热损射流扩散火焰条件矩模型数值模拟 燃烧科学与技术 2002年05期
    [38] Kim, Seung Hyun Huh, Kang Y. Use of the conditional moment closure model to predict NO formation in a turbulent CH4/H2 flame over a bluff-body Combustion & Flame; Jul2002, Vol. 130 Issue 1/2, p94, 18p
    [39] Devaud, C. B. Bray, K. N. C. Assessment of the applicability of conditional moment closure to a lifted turbulent flame: first order model Combustion & Flame: Jan2003, Vol. 132 Issue 1/2, p102, 13p
    [40] 刘涛,张堪,孟鹍等.椭圆型条件矩封闭模型在湍流扩散火焰中的应用 航空动力学报 2003年06期
    [41] Fairweather, M. Woolley, R. M. First-order conditional moment closure modeling of turbulent, nonpremixed hydrogen flames Combustion & Flame; Jun2003, Vol. 133 Issue 4, p393, 13p
    [42] Fairweather M., Woolley R. M. First-order conditional moment closure modeling of turbulent, nonpremixed methane flames Combustion & Flame; Jul2004, Vol. 138 Issue 1/2, p3, 17p
    [43] Kim, Seung Hyun Huh, Kang Y. Second-order conditional moment closure modeling of turbulent piloted Jet diffusion flames Combustion & Flame: Sep2004, Vol. 138 Issue 4, p336, 17p
    [44] 邹春,郑楚光,周力行 用于模拟湍流射流扩散燃烧的条件矩模型 华中科技大学学报 2001年11期
    [45] 邹春,郑楚光,周力行 条件矩模型对CH_4-空气扩散燃烧及其NO_x生成的数值模拟 化工学报2002年05期
    [46] 邹春,郑楚光,周力行 条件矩模型模拟湍流扩散燃烧 力学学报 2002年06期
    [47] Martin, S. M. Kramlich, J. C. Kosaly, G. Riley, J. J. The Premixed Conditional Moment Closure Method Applied to Idealized Lean Premixed Gas Turbine Combustors Journal of Engineering for Gas Turbines & Power; Oct2003, Vol. 125 Issue 4, p.895, 6p, 1 diagram, 2 graphs
    [48] Cha, Chong M. Kosa'ly, George Pitsch, Heinz Modeling extinction and reignition in turbulent nonpremixed combustion using a doubly-conditional moment closure approach Physics of Fluids; Dec2001, Vol. 13 Issue 12, p3824, 11p, 1 chart, 34 graphs
    [49] Kim, Seung Hyun On the conditional variance and covariance equations for second-order conditional moment closure Physics of Fluids; Jun2002, Vol. 14 Issue 6, p2011, 4p
    [50] Brethouwer G Nieuwstadt F. T. M.. DNS of Mixing and Reaction of Two Species in a Turbulent Channel Flow: A Validation of the Conditional Moment Closure Flow, Turbulence and Combustion 1386-6184.66 卷3期
    [51] Williams, F. A. Turbulent Mixing in Non-Reactive Flows. S. N. B. Murthy, Ed., p189, 1975
    [52] Peters N. Laminar Diffusion Flamelet Models in Non-Premixed Turbulent Combustion [J]. Progress in Energy and Combustion Science, 10:319-339 1984
    [53] Peters, N. Laminar Flamelet Concepts In Turbulent Combustion, Progress in Energy and Combustion Science 10, 319-339. 1984
    [54] Emerson, Roy G. Rutland, Christopher J. Flamelet modeling of diesel engine combustion 1999 ICE Spring Technical Conference of the ASME Internal Combustion Engine Division, Apr 24-Apr 28 1999, Columbus, IN, USA
    [55] Barths, H. Hasse, C. Bikas, G. Peters, N. Simulation of combustion in direct injection diesel engines using a Eulerian particle flamelet model Symposium (Internertional) on Combustion, v 28, n 1, 2000, p 1161-1167
    [56] 杨成仁,侯凌云,傅维标.预混湍流燃烧的level-set小火焰库方法研究.航空动力学报.2003年03期
    [57] Chakravarthy V. K. Menon S. Subgrid Modeling of Turbulent Premixed Flames in the Flamelet Regime Flow, Turbulence and Combustion 1386-6184 65卷2期
    [58] Hossain M. Jones J. C. Malalasekera W. Modelling of a Bluff-Body Nonpremixed Flame using a Coupled Radiation/Flamelet Combustion Model Flow, Turbulence and Combustion 1386-6184 67卷3期
    [59] 王海峰,陈义良,董刚等.拉伸层流扩散火焰面结构及熄火的研究 工程热物理学报 2003年04期
    [60] 侯凌云,杨成仁,傅维标.小火焰模型在贫燃预混火焰中的研究 工程热物理学报 2003年05期
    [61] Pitsch H., Barths H., Peters N. Three-dimensional modeling of NOx and soot formation in DI-diesel engines using detailed chemistry based on the Interactive Flamelet approach SAE Special Publications, Modeling and Diagnostics in Diesel Engines, 1996, Oct, v 1205, p 103-117
    [62] Hergart C., Peters N. Applying the representative interactive flamelet model to evaluate the potential effect of wall heat transfer on soot emissions in a small-bore direct-injection diesel engine Journal of Engineering for Gas Turbines and Power, 2002, October, v 124, n 4, p 1042-1052
    [63] Zhang Y., Rogg B., Bray, K. N. C. 2-D simulation of turbulent autoignition with transient laminar flamelet source term closure. Combustion Science and Technology, 1995, v 105, n 4-6, p 211-227
    [64] Xia Xinglan, Li Detao, Wu Zhixin et al. Quasi-dimensional coherent flamelet model in a swirl chamber diesel engine Ranshao Kexue Yu Jishu/Journal of Combustion Science and Technology, 1997, v 3, n 4, p 417-423
    [65] 范维澄.计算燃烧学.合肥:安徽科学技术出版社,1987
    [66] 洛强斯基,液体与气体力学(上).北京:人民教育出版社,1959
    [67] K.K.肯尼斯,郑楚光,燃烧原理.武汉:华中理工大学出版社,1991
    [68] Saitoh. T. and Otsuka. Y., Combust. Sci. Technol. 1976, 12,135
    [69] R. J. Kee, J. A. Miller, G. H. Evans, in Proceedings of the Twenty-Second Symposium (International)on Combustion, The Combustion Institute, Pittsburgh, Pennsylvania, 1988, p. 1479.
    [70] T. V. Karman, A. Angew. Math. Mech. 1:233 (1921).
    [71] S.V.帕坦卡,传热与流体流动数值计算,北京:科学出版社,1984
    [72] G. sugiyama. H. Ryu, Computational simulation of diesel combustion with high pressure fuel injection, COMODIA, 94
    [73] 陶文铨,数值传热学.西安:西安交通大学出版社,1988
    [74] Ulf Christian MAuller. Reduzierte Reaktionsmechanismen fAur die ZAundung von n-Heptan und iso-Oktanunter motorrelevanten Bedingungen. PhD thesis, RWTH, Aachen, Aachen, Germany, 1993
    [75] 赵坚行.燃烧的数值模拟.北京:科学出版社,2002
    [76]H. Barths, C. Hasse, N.Peters, Computational fluid dynamics modeling of non-premixed combustion in direct injection diesel engines Int J Engine Research 2000 Vol.1 no. 3
    [77]Amsden, A. A., KIVA-3: A KIVA Program with Block-Structured Mesh for complex Geometries, LA-120503-MS. 1993.
    [78]0ssi Kaario, Martti Larmi, Franz Tanner, Relating intergral length scale to turbulent time scale and comparing k-ε and RNG k-ε turbulence models in diesel combustion simulation. SAE Paper 2002-01-1117,2001
    [79]Pitsch H, Wan Y P, Peters N. Numerical investigation of soot formation and oxidation under diesel engine conditions. SAE-Paper 952357,1995
    [80]Barths H, Hasse C, Bikas G et al. Simulation of combustion in direct injection diesel engines using a Eulerian particle flamelet model. Twenty-Eighth Symposium (International) on Combustion. 2000. 1161-1168
    [81]Hergart C, Peters N. Simulating the Combustion in a DI Diesel Engine applying a New Model for the Conditional Scalar Dissipation Rate. SAE Paper 2001-01-1001,2001
    [82]Barths H, Hasse C, Peters N, Computational fluid dynamics modeling of non-premixed combustion in direct injection diesel engines. Int J Engine Research, 2000, 1: 249-267
    [83]Hergart C, Hasse C, Peters N, Modeling the Combustion in a Small-Bore Diesel Engine Using a Method Based on Representative Interactive Flamelets. SAE Paper 99-01-3550, 1999
    [84]Kima S, Yub Y, et al. Numerical investigation of the autoignition of turbulent gaseous jets in a high-pressure environment using the multiple-RIF model, Fuel, 2004, 83: 375-386

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700