高分子材料表面修饰的分子动力学模拟研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,随着聚合材料和现代医学的高速发展,药物控释与靶向定位技术逐渐成为材料和药学领域的研究热点。聚合物药物控释系统就是利用天然或合成的聚合物作为药物的载体或介质,制成一定的剂型,控制药物在人体内的释放度,使药物按设计的剂量、在要求的时间范围内把药物运到特定的病理部位后以一定的速度在人体内缓慢释放,以达到高效和定向治疗的目的。本工作主要进行以下几个方面的研究:高分子材料在水溶液中最低临界溶解温度的研究、聚乙烯晶体表面接枝聚环氧乙烷、表面活性剂在微胶束表面吸附性质的模型化研究。主要成果为:
     1.利用分子连接性指数分别建立了估算聚苯乙烯等8种聚合物在不同种有机溶剂中的低临界溶解温度的模型,及适用于任何聚合物的通用模型。对于某种特定聚合物的模型,其预测误差在3%以内,而通用模型,其预测误差一般也在10%以内。对于特定聚合物的低临界溶解温度的预测模型,只需知道溶剂的分子的分子连接性指数,对通用模型,则也只需加入聚合物分子的分子连接性指数,计算方便适用,同时拓宽了分子连接性指数的应用。
     2.采用全原子动力学模拟方法,结合先进的COMPASS(Condensed-phase Optimized Molecular Potential for AtomisticSimulation Studies)力场,对聚乙烯(Polyethylene,PE)晶体表面接枝聚环氧乙烷(Poly(ethylene oxide),PEO)的接枝层表面形态及接枝层对PE表面润湿性的改善进行了研究。研究表明,随着接枝长度及接枝密度的增加,表面接枝的形态由“蘑菇”形逐步变化为“重叠的蘑菇”形,最后变为“刷子”形。PEO的接枝密度对PE表面润湿性的改善有较大影响,接枝根数为8和16根时,对PE表面的润湿性有较大改善;当接枝根数为24和32时,对PE表面的影响最小;但接枝密度达到一定大小如48以上后,对改善表面润湿性效果又变得明显起来。而就长度而言,憎水表面接枝亲水性高分子时接枝长度在一定范围内,即接枝单体数为10-15时,其润湿效果最好。
     3.采用耗散粒子动力学(Dissipative Particle Dynamics,DPD)模拟方法,研究了表面活性剂在接枝型两亲性共聚物形成的微胶束表面的吸附情况。本文主要对亲水性聚合物的接枝密度和长度对表面活性剂吸附的影响进行了研究。结果表明,接枝亲水性聚合物能有效的阻止表面活性剂在微胶束表面的吸附,当接枝长度不变时,接枝根数在2-5根枝时既能有效的阻止表面活性剂的吸附,又能保持微胶束的形状,此时,亲水部分与憎水部分的体积比在0.1667-0.4167之间;当接枝密度固定时,接枝长度大于4个beads时就能有效的阻止表面活性剂的吸附。当亲水枝的长度在4-6个beads,即体积分率在0.1667-0.25时,微胶束表面能最为有效的摆脱表面活性剂的吸附和包围,即此时,表面活性剂在微胶束表面的吸附不仅吸附最少,而且不改变微胶束的形状。
     4.采用耗散粒子动力学模拟方法,研究了水溶液中的微胶束在接枝前后,存在剪切外场的情况下,其形貌及流变性质。微胶束在接枝前,被表面活性剂吸附甚至形成包围。且在剪切作用下也较为稳定,难以在药物运输和靶向定位中起到作用。而接枝后的微胶束不仅能摆脱表面活性剂的吸附甚至包围,同时由于其在不同的剪切外场的作用下变得不稳定,因此选取相应的剪切流下的稳定结构或者根据不同的剪切流来达到运输和靶向定位的目的。从而从分子水平上说明了两亲性微胶束与表面活性剂在水溶液中复杂的流变性质,为药物的控释制剂的制备提供了有用的信息。
With the development of polymers and modern medicine science, drug controlled release and targeting technologies have received much attention. Polymer drug controlled release systems are drug carriers based on natural or synthetic polymers that can control drug release and targeting. With the fast development of science and technology, smart drug controlled release systems are receiving more and more attention, which can improve the therapeutic efficiency as well as to reduce negative effects. As a result, it is very important to study technologies that can improve the controlled release of drugs. In this work, correlations for the estimation of theθ(lower critical solution temperature, LCST) for polymer solutions were developed, and morphology and wettability of polyethylene surface grafting poly(ethylene oxide) as well as surfactant adsorption on the surface of polymeric micelles in aqueous solution were investigated. The main results obtained are:
     1.Correlations for the estimation of theθ(lower critical solution temperature, LCST) for Polystyrene, Polyethylene, Polypropylene, Polybutene-1, Polyisobutylene, Polypentene-1, Poly(4-methylpentene-1) and Polydimethylsiloxane solutions were proposed based on the molecular connectivity index. And a general model ofθ(LCST) for polymer solutions was also proposed based on the molecular connectivity index. The correlations give satisfactory estimation of theθ(LCST), with the overall average errors smaller than 3 % and 10 % for the two kinds of models, respectively. Since only connectivity indices were used in the newly proposed correlations, they are general models with better predictive capability.
     2.Morphology of grafting poly(ethylene oxide) chain and wettability of polyethylene surface were investigated when poly(ethylene oxide) was grafted to polyethylene surface using molecular dynamics simulation with the COMPASS (Condensed-phase Optimized Molecular Potential for Atomistic Simulation Studies) force field. With the increase of the density of the graft chain, morphology of graft chain showed the "mushroom", the "overlapping mushroom" or "brush" respectively. The density of the graft chain had great effects on the wettibillity of the PE. When the number of the graft chain was 8 and 16, the PE surface had better wettability than the pristine PE surface. When the number was 24 and 32, it had little effect on the wettability of the PE surface. When the number of the graft chain was more than 48, it had more effect on the wettabillity of the PE surface. When the number of the graft chain monomer was 10-15, it had the best effect on the PE surface.
     3.Dissipative particle dynamics simulation was performed to study surfactant adsorption on the surface of polymeric micelles in aqueous solution. The graft hydrophilic polymer could effectively prevent surfactant from adsorbing on the surface of micelles. If the length of the graft chain was unchanged and the number of the graft chain was between 2 and 5, 0.1667-0.4167 volume fraction of hydrophilic polymer, polymeric micelles could effectively prevent surfactant from adsorbing on their surface. It was effective for polymeric micelles to prevent surfactant from adsorbing on their surface when the length of the graft chain was longer than 4 beads.
     4.Dissipative particle dynamics simulation was performed to study the morphologies and rheological properties of surfactant adsorption on the surface of amphiphilic polymeric micelles in aqueous solution under various shear rates. Some important information on drug controlled released agent was proposed.
引文
[1] Langer R. New methods of drug delivery[J]. Science, 1990, 249:1527-1533
    [2] Brindley A, Davis SS, Davies MC, Watts JF. Polystyrene Collodis with Surface-Grafted Polyethylene Oxide as Model Systems for Site-Specific[J]. Drug Delivery, 1995,171: 150-161
    [3] Krister H, Fredick T, Martin M, Carina B. Grafting with hydrophilic polymer chains to prepare protein-resistant surfaces[J]. Colloids Surfaces A: Physicochemical and Engineering Aspects 1997,123-124:297-306
    [4] Ikada Y. Surface modification of polymers for biomedicalapplication[J].Biomaterials 1994,15:725-736
    [5] Rather B D, Hoffman A S, Hanson S R, Harker L A, Whiffen J D. Blood compatibility—water-content relationships forradiation-grafted hydrogels[J]. J Polym Sci, Polym Symp 1979, 66:363-375
    [6] Horbett T A. Protein adsorption to hydrogels. In: Peppas NA,editor. Hydrogels in medicine and pharmacy: fundamentals,vol. 1[M]. Boca Raton, FL: CRC Press; 1979. p. 95-126
    [7] Klee D, Hocker H. Polymers for biomedical applications: improvement of the interface compatibility[J]. Adv Polym Sci, 1999,149: 1-57
    [8] Langer R. Drug delivery and targeting[J]. Nature, 1998, 392: 5-10
    [9] Langer R. Drug Delivery: Drugs on Target[J].Science, 2001, 293:58-59
    [10] Peppas N A, Langer R. Origins and development of biomedical engineering within within chemical engineering[J].AlChE Jorrnal, 2004,50:536-546
    [11] Kato K, Uchida E, Kang ET, Uyama Y, Ikada Y. Polymer surface with graft chains[J]. Prog. Polym. Sci,2003, 28:209-259
    [12] Savic R, Luo R L,Eisenberg A, Maysinger D. Micellar NanocontainersDistribute to DefinedCytoplasmic Organelles[J]. science, 2003, 300:615-618
    [13] Chert K S. Uyama Y, Ikada Y. Adhesive interaction betweenpolymer surfaces grafted with water-soluble polymer chains[J]. Langmuir 1994, 10:1319-1322
    [14] Fan Y L. Hydrophilic lubricious coatings for medicalapplications[J]. Am Chem Soc, Polym Mater Sci Engng 1990, 63:709-716
    [15] Michielsen S. The effect of grafted polymeric lubricantmolecular weight on the frictional characteristics of nylon 6,6 fibers[J].J Appl Polym Sci 1999, 73:129-136
    [16] Ndoni S. Jannasch P, Larsen N B. Almdal K. Lubricatingeffect of thin films of styrene-dimethylsiloxane blockcopolymers[J]. Langmuir 1999, 15:3859-3865
    [17] Ratway R J, Balik C M. Surface modification of chlorobutylrubber by plasma polymerization[J]. J Polym Sci, Polym Phys 1997, 35: 1651-1660
    [18] Adamson A W. Physical Chemistry of Surfaces,5th ed [M].Wiley. New York. 1982
    [19] Rowlinson J S, Widom B. Molecular Theory of Capillarity[M]. Clarendon, Oxford, 1982
    [20] De Gennes P G. Wetting: statics and dynamics[J].Rev. Mod. Phys.,1985, 57:827-863
    [21] Zisman W, in Contact Angle, Werttability and Adhesion. Edited by F. M. Fowkes, Advances in Chemical Series Vol. 43[M]. American Chemical Society, Washington DC. 1964
    [22] Good R J, In: Good R J, Stromberg R R, editors. Surface andcolloid science, vol.11[M]. New York: Plenum Press; 1979
    [23] Andrade J D, Smith L M, Gregonis D E. The contact angle andinterface energetics. In: Andrade JD, editor. Surface and interfacial aspects of biomedical polymer[M].vol. 1. New York:Plenum Press; 1985. p. 249-292
    [24] Nagaoka S, Mori Y. Takiuchi H. okota K Y. Tanzawa Ⅱ. Nishiumi S, in: Shalaby S W. Hoffman A S. Ratner B D, Horbett T A. (Eds.), Polymers as Biomaterials[M].Plenum Press. New York, 1985, p.361
    [25] Ryle A P.Behaviour of Polyethylene Glycol on Dialysis and Gel-filtration[J].Nature 1965,206: 1256-1257
    [26] Herold D A, Keil K, Bruns D E.Oxidation of polyethylene glycols by alcohol dehydrogenase[J].Biochem. Pharmacol. 1989.38:73-76
    [27] Abuchowski A, Davis F F, in: Holsenber J. g, Roberts J. (Eds.), Enzymes as Drugs. Wiley[M].New York, 1981, p.367
    [28] Albertsson P A. Partition of Cell Particles and Macromolecules. third ed.[M]. Wiley. New York. 1986
    [29] Winblade N D, Nikolic I D, Hoffman A S, Hubbell J A. Blocking Adhesion to Cell and Tissue Surfaces by the Chemisorption of a Poly-L-lysine-graft-(poly(ethylene glycol); phenylboronic acid) Copolymer[J].Biomacromolecules 2000,1:523-533
    [30] Zalipsky S, Gilon C, Zilka A.Attachment of drugs to polyethylene glycols[J].Eur.Polym. 1983,19:1177-1183
    [31] Klibanov A L. Maruyama K, Beckerleg A M. Torchilin V P. Huang L.Activity of amphipathic poly(ethylene glycol) 5000 to prolong the circulation time of liposomes depends on the liposome size and is unfavorable for immunoliposome binding to target [J].Biochim. Biophys. Acta1062 (1991) 142-148
    [32] Allen T M.The use of glycolipids and hydrophilic polymers in avoiding rapid uptake of liposomes by the mononuclear phagocyte system[J].Adv. Drug Delivery Rev. 1994, 13:285-309
    [33] Leckbend D, Sheth S, Halperin A, Grafted poly(ethylene, oxide) brushes as nonfouling surface coating[J].J.Biomater. Sci. Polymer Edn.10 (1999) 1125-1147
    [34] Holland N B, Qiu Y, Ruegsegger M, Marchant R E.Biomimetic engineering of non-adhesive glycocalyx-like surfaces using oligosaccharide surfactant polymers[J].Nature 1998,392:799-801
    [35] Szleifer I. Protein Adsorption on Surfaces with Grafted Polymers: A Theoretical Approach[J].Biophys.J. 1997, 72:595-612
    [36] Mori Y, Nagaoka S, Takiuchi H, et al., A new antithrombogenic material with long polyethyleneoxide chains[J].Trans.Am.Soc. Artif. Intern. Organs 1982,28:459-463
    [37] Nagaoka S, Mori Y, akiuchi H T, Yokota K, Tanzawa H, Nishiumi S.in: Shalaby S, Hoffman A S, Rather B D, Horbett T A. (Eds.), Polymers as Biomaterials[M]. Plenum Press, New York,1984, p.361
    [38] Golander C G, Herron J N, Lim K, Claesson P, Stenius P, Andrade J D, in: Harris J.M. (Ed.),Poly(Ethylene Glycol)Chemistry, Biotochnological and Biomedical Applications[M].Plenum Press,New York, 1992, Chapter 15
    [39] Gombotz W R, Guanghui W, Horbett T A, Hoffman A S. Protein adsorption to poly(ethylene oxide) suffaces[J] J.Biomed.Mater. Res. 1991,25:1547-1562
    [40] Kim S W, Jacobs H, Lin J Y, Nojori C, T.Okano. Nonthrombogenic bioactive surfaces[J].Ann.NY Acad.Sci.1987, 516:116-130
    [41] Park K D, Kim Y S, Han D K, et ai. Bacterial adhesion on PEG modified polyurethane suffaces[J].Biomaterials 1998,19:851-859
    [42] Vacheethasane K, Merchant R E. Surfactant polymers designed to suppress bacterial (staphylococcus epidermidis)on biomaterials[J]. J Biomed Mater Res, 2000, 50(3):302-312
    [43] Kwon O H, Nho Y C, Park K D, Kim Y H. Graft copolymerization of polyethylene glycol methacrylate onto polyethylene film and its blood compatibility[J].J. Appl. Polym. Sci. 1999,71: 631-641
    [44] Lee J, Martic P A, Tan J S. Protein adsorption on pluronic copolymer-coated polystyrene particles [J].J.Colloid Interface Sci. 1989,131:252-266
    [45] Schroen C G P H, Cohen Stuart M A, Van der Voort Maarschalk K, Van der Padt A, Van't Riet K. Influence of Preadsorbed Block Copolymers on Protein Adsorption: Surface Properties, Layer Thickness, and Surface Coverage[j] Langmuir 1995,11: 3068-3074
    [46] Huang N P, Michel R, Voros J, et al. Poly(L-lysine)-g-poly(ethylene glycol) Layers on Metal Oxide Surfaces: Surface-Analytical Characterization and Resistance to Serum and Fibrinogen Adsorption[J]. Langmuir 2001, 17:489-498
    [47] Sofia S J, Premnath V, Merrill E W. Poly(ethylene oxide) Grafted to Silicon Surfaces: Grafting Density and Protein Adsorption[J].Macromolecules 1998, 31 :5059-5070
    [48] Prime K L, Whitesides G M.Adsorption of proteins onto surfaces containing end-attached oligo(ethylene oxide): a model system using self-assembled monolayers[J]. J. Am.Chem.Soc. 1993, 115:10714-10721
    [49] Schwendel D, Dahint R, Herrwerth S, Schloerholz M, Eck W. M.Grunze.Temperature Dependence of the Protein Resistance of Poly- and Oligo(ethylene glycol)-Terminated Alkanethiolate Monolayers[J]. Langmuir 20O1, 17:5717-5720
    [50] Hat der P, Grunze M, Dahint R, Whitesides G M, Laibinis P E. Molecular Conformation in Olige(ethylene glycol)-Terminated Self-Assembled Monolayers on Gold and Silver Surfaces Determines Their Ability To Resist Protein A dsorption[J]. J.Phys, Chem. B 1998, 102:426-436
    [51] Wang R L C, Kreuzer H J, Grunze M.Molecular Conformation and Solvation of Oligo(ethylene glycol)-Terminated Self-Assembled Monolayers and Their Resistance to Protein Adsorption[J].J. Phys. Chem. B 1997, 101:9767-9773
    [52] Harris J M. (Ed.).Poly(Ethylene Glycol) Chemistry, Biotechnological and Biomedical Applications. Plenum Press, New York, 1992, Chapter
    [53] Goldstein R E, On the theory of lower critical solution points in hydrogen-bonded mixtures[J].J Chem Phys, 1984,80:5340-5341
    [54] Razatos A, Ong Y L, Boulay F, et al. Force Measurements between Bacteria and Poly(ethylene glycol)-Coated Surfaces[J]. Langmuir 2000, 16:9155-9158
    [55] Efremova N V, Sheth S R, Leckband D E.Protein-induced Changes in Poly(ethylene glycol) Brushes: Molecular Weight and Temperature Dependence[J].Langmuir 2001, 17:7628-7636
    [56] Halperin A. Compression induced phase transitions in PEO brushes: the n-cluster model[J].Eur.Phys. J. B 1998, 3:359-364
    [57] Genzer J, Efimenko K.Creating long-lived superhydrophobic polymer surfaces through mechanically assembled monolayers[J]. Science 290(Dec. 15):2130-2133
    [58] Maas J, Cohen Stuart M A, Leermakers F A M, Besseling N A M. Wetting Transition in a Polymer Brush: Polymer Droplet Coexisting with Two Film Thicknesses[J].Langmuir 2000, 16: 3478-3481
    [59] Winblade I D, Nikolic A S, Hoffman J A, Hubbell. Blocking Adhesion to Cell and Tissue Surfaces by the Chemisorption of a Poly-L-lysine-graft-(poly(ethylene glycol); phenylboronic acid) Copolymer[J]. Biomacromolecules 2000, 1: 523-533
    [60] Yerushalmi-Rozen R, Klein J, Fetters L J.Suppression of Rupture in Thin, Nonwetting Liquid Films[J].Science 1994,263:793-795
    [61] Shull K R.Wetting autophobicity of polymer melts[J].Faraday Discuss. 1994,98, 203-218
    [62] Matsen M W, Gar diner J W.Autophobic dewetting of homopolymer on a brush and entropic attraction between opposing brushes in a homopolymer matrix[J]. J. Chem.Phys. 2001. 115: 2794-2804
    [63] Carignano M, Yerushalmi-Rozen R, Dan N. Polymer-Induced Wetting Transitions in Liquid Films[J].Macromolecules 2000,33:3453-3460
    [64] Gay C.Wetting of a Polymer Brush by a Chemically Identical Polymer Melt [J]. Macromolecules 1997,30:5939-5943
    [65] Dan N, Yerushalmi-Rozen R.Wetting of Brush covered Surfaces by Polymeric iiquids[J].Trends Polym.Sci. 1997,5:46-49
    [66] Maas J H, Fleer G J, Leermakers F A M, Cohen Stuart M A. Wetting of a Polymer Brush by a Chemically Identical Polymer Melt: Phase Diagram and Film Stability [J].Langmuir 2002, 18: 8871-8880
    [67] Halperin A, Leckband D. From ship hulls to contact lenses: repression of protein adsorption and the puzzle of PEO[J].C.R.Acad.Sci.Paris, t. l, Serie IV 2000, 1171-1178
    [68] Hester J F. Banerjee P, Mayes A M.Preparation of Protein-Resistant Surfaces on Poly(vinylidene fluoride) Membranes via Surface Segregation[J].Macromolecules 1999,32: 1643-1650
    [69] Zhulina E B, Borisov O V, Brombacher L. Theory of a planar grafted chain layer immersed in a solution of mobile polymer[J]. Macromolecules 1991,24:4679-4690
    [70] Good R J. In: Good RJ, Stromberg RR, editors. Surface andcoiloid science, vol. 11[M]. New York: Plenum Press; 1979
    [71] Andrade J D, Smith L M, Gregonis D E. The contact angle andinterface energetics, In: Andrade JD, editor. Surface andinterfacial aspects of biomedical polymer, vol. 1[M]. New York:Plenum Press; 1985. p. 249-92
    [72] Neuman A W, Good R J. In: Good RJ, Stronberg RR, editors.Surface and colloid science, vol. 11[M]. New York: PlenumPress; 1979
    [73] Adamson A W. Physical chemistry of surface, 3rd ed[M]. New York: Wiley; 1976. chapter 1
    [74] Uyama Y. Inoue H, Ito K, Kishida A. Ikada Y. Comparisonof different methods for contact angle[J] J. Colloid Interf. Sci. 1991,141:275-279
    [75] Gregonis D E, Hsu R, Buerger D E, Smith L M, Andrade J D. In: Seymour R.B., Stahl G. A., editors. Macromolecular solutions[M]. New York: Pergamon Press; 1982
    [76] Hsieh Y L, Wu M, Andres D. Wetting characteristics ofpoly( p-phenylene terephthalate) single fibers and theiradhesion to epoxy[J]. J Colloid Interf Sci 1991, 144: 127-144
    [77] Elliott G E P, Riddiford A C. Dynamic contact angles. Ⅰ. Theeffect of impressed motion[J]. J Colloid Sci 1967,23:389-398
    [78] Newcombe G, Ralston J. Wetting dynamics studies on silicasurface of varied hydrophobicity[J]. Langmuir 1992,8:190-196
    [79] Johnson Jr R E, Dettre R H. Contact angle hysteresis (l)idealized rough surface[J].Adv Chem Ser 1964,43:112-35
    [80] Eick J D, Good R J, Neumann A W. Thermodynamics ofcontact angles. Ⅱ. Rough solid surfaces[J]. J Colloid Interf Sci1975,53:235-248
    [81] Joanny J F, de Gennes P G. A model for contact anglehysteresis[J]. J Chem Phys 1984,81:552-562
    [82] Johnson Jr R E, Dettre R H, Brandreth D A. Dynamic contactangle and contact angle hysteresis[J]. J Colloid Interf Sci 1977,62:205-212
    [83] Good R J, Kotsidas E D. The contact angle of water onpolystyrene: a study of the cause of hysteresis[J].J Colloidlnterf Sci 1978,66:360-362
    [84] Penn L S, Miller B. A study of the primary cause of contactangle hysteresis on some polymeric solids[J]. J Colloid Interf Sci 1980,78:238-241
    [85] Yasuda H, Sharma A K, Yasuda T. Effect of orientation andmobility of polymer molecules at surfaces on contact angleand its hysteresis[J].J Polym Sci, Polym Phys Ed 1981, 19:1285-1291
    [86] Tretinnikov O N, Ikada Y. Dynamic wetting and contactangle hysteresis of polymer surface studied with the modifiedWilhelmy balance method[J]. Langmuir 1994, 10:1606-1614
    [87] Morra M, Occhiello E, Garbassi F. Wettability and antistaticbehavior of surface-grafted polypropylene. J Colloid InterfSci[J] 1992,149:290-294
    [88] Takei T G, Aoki T, Sanui K, Ogata N, Sakurai Y, Okano T.Dynamic contact angle measurement of temperature-responsivesurface properties for poly(N-isopropylacrylamide) graftsurface[J]. Macromolecules 1994,27:6163-6166
    [89] Gong X, Dai L J, Griesser H, Mau A W H. Surfaceimmobilization of poly(ethylene oxide): structure andproperties[J]. J Polym Sci, Part B 2000,38:2323-2332
    [90] Song Y Q, Sheng J, Wei M, Yuan X B. Surface modificationof polysulfone membranes by low-temperature plasma-graftpoly(ethylene glycol) onto polysulfone membranes[J]. J Appl. Polym Sci 2000,78:979-985
    [91] Guo S, Shen L, Feng L. Surface characterization of bloodcompatible amphiphilic graft copolymers having uniformpoly(ethylene oxide) side chains[J].Polymer 2001,42: 1017-1022
    [92] Huang Y B, Szleifer I. and Peppas N A. Gel-gel adbesion by tethered polymers[J], J Chem Phys 2001,114,3809-3816
    [93] Huang Y B, Leobandung W, Foss A. and Peppas N A. Molecular aspects of muco- and bioadhesion:: Tethered structures and site-specific surfaces[J1. J Controled release 2000,65,63-71
    [94] Park M, Harrison C, Chaikin P M, Register R A, Adamson D H.Block Copolymer Lithography: Periodic Arrays of~1011 Holes in I Square Centimeter[J]. Science 1997, 276:1401-1404
    [95] Collier J H, Messersmith P B.phospholipids strategies in biominer in biomineralization and biomaterials research [J]. Annu. Rev. Mater. Res. 2001, 31,237-263
    [96] Lasic D D, Papahadjopoulos D. Liposomes revisited[J].Science 1995.267, 1275-1276
    [97] Discher D E, Eisenberg A, Polymer Vesicles[J]. Science 2002,297. 967-973
    [98] Zhang L, Yu K, Eisenberg A.Ion-Induced Morphological Changes in "Crew-Cut" Aggregates of Amphiphilic Block Copolymers[J]. Science 1996,272:1777-1779
    [99] Torchilin V P. PEG-based micelles as carriers of contrast agents for different imaging modalities[J]. Adv. Drug Deliv. Rev.2002, 54:235-2:52
    [100] Saltzman W M.Drug Delivery: Engineering Principlesfor Drug Therapy[M]. Oxford Univ. Press, New York, 2001
    [101] Allen C, Eisenberg A, Mrsic J, Maysinger D. PCL-b-PEO Micelles as a Delivery Vehicle for FK506: Assessment of a Functional Recovery of Crushed Peripheral Nerve[J].Drug Deliv. 2000, 7:139-145
    [102] Kakizawa Y, Kataoka K. Block copolymer micelles for delivery ofgene and related compounds[J].Adv. Drug Deliv. Rev.2002, 54:203-222
    [103] Bures P, Huang Y B, Oral E, Peppas N A. Surface modifications and molecular imprinting of polymers in medical and pharmaceutical applications [J]. J Controled release 2001,72,25.33
    [104] Kabanov A V, Alakhov V Y. Pluronic block copolymers in drug delivery: from micellar nanocontainers to biological response modifiers[J].Crit. Rev. Ther. Drug Carrier Syst. 2002, 19: 1-72
    [105] Li Y Y, Zhang X Z, Cheng H, Kim G C, Cheng S X, Zhuo R X. Novel Stimuli-Responsive Micelle Self-Assembled from Y-Shaped P(UA-Y-NIPAAm) Copolymer for Drug Delivery[J].Biomacromolecules 2006,7:2956-2960
    [106] Liu X M, Pramoda K. Cholestery-grafted functional amphiphilic poly(N-isopropylacrylamide-co-N-hydroxylmethylacrylamide): synthesis, temperature-sensitivity, self-assembly and encapsulation of a hydrophobic agent[J].Biomaterials 2004, 25:2619-2628
    [107] Sandrine C M, Okano T. Functional and site-specific macromolecular micelles as high potential drag carriers[J]. Colloids Surf., B 1999, 16, 207-215
    [108] Chen X R, Ding X B. Intelligent Crew-Cut Aggregates Formed by Thermosensitive Block Copolymers and Their Multiple Morphologies[J].Macromol. Biosci. 2005, 5, 157-163
    [109] Zhang J X, Qiu L Y. Physicochemical characterization of polymeric micelles constructed from novel amphiphilic polyphosphazene with poly(N-isopropylacrylamide) and ethyl 4-aminobenzoate as side groups[J]. Colloids Surf. B 2005, 43, 123-130
    [110] Chung J E, Yokoyama M. Thermo-responsive drug delivery from polymeric micelles constructed using block copolymers of poly(N-isopropylacrylamide) and poly(butylmethacrylate)[J]. J. Controlled Release 1999, 62: 115-127
    [111] Kwon G S, Naito M, Yokoyama M, Okano T, Sakurai Y, Kataoka K. Physical Entrapment of Adriamycin in AB Block Copolymer Micelles[J]. Pharm. Res. 1995, 12:192-195
    [112] Kataoka K, Harada A, Nagasaki Y. Block copolymer micelles for drug delivery: design, characterization and biological significance[J]. Adv. Drug Delivery Rev. 2001,47: 113-131
    [113] Jones M C, Leroux J C. Polymeric micelles-a new generation of colloidal drug carriers[J].Eur. J. Pharmaceut. Biopharmaceut. 1999,48: 101-111
    [114] Minatti E, Borsali R, Schappacher M. Deffieux A, Soldi V, Narayanan T, Putaux J L. Effect of Cyclization of Polystyrene/Polyisoprene Block Copolymers on Their Micellar Morphology[J].Macromol. Rapid Commun. 2002, 23, 978-982
    [115] Pispas S, Hadjichristidis N, Potemkin I, Khokhlov A, Effect of Architecture on the Micellization Properties of Block Copolymers: A2B Miktoarm Stars vs AB Diblocks[J] Macromolecules 2000, 33:1741-1746
    [116] Xu J, Zubarev E R, Supramolecular Assemblies of Starlike and V-Shaped PB-PEO Amphiphiles[J]. Angew. Chem. Int. Ed. 2004, 43:5491-5496
    [117] Fu G, Phua S J, Kang E T, Neoh K G.Tadpole-Shaped Amphiphilic Block-Graft Copolymers Prepared via Consecutive Atom Transfer Radical Polymerizations[J].Macromolecules 2005.38. 2612-2619
    [118] Allen C, Maysinger D, Eisenberg A. Nano-engineering block copolymer aggregates for drug delivery[J].Colloids Surf. B 1999,16:3-27
    [119] Persigehl P, Jordan P,, Nuyken O. Functionalization of Amphiphilic Poly(2-oxazoline) Block Copolymers: A Novel Class of Macroligands for Micellar Catalysis[J]. Macromolecules 2000,33:6977-6981
    [120] Duque D. Theory of copolymer micellization [J]. J. Chem. Phys. 2003, 119: 5701-5704.
    [121] Srinivas G, Discher D E, Klein M L. Self-assembly and properties of diblock copolymers by coarse-grain molecular dynamics[J]. Nat. Mater. 2004, 3:638-644.
    [122] Uneyama T, Doi M. Calculation of the Micellar Structure of Polymer Surfactant on the Basis of the Density Functional Theory[J]. Macromolecules 2005, 38: 5817-5825.
    [123] Leermaker s F A M, Wijmans C M, Fleer G J. On the Structure of Polymeric Micelles: Self-Consistent-Field Theory and Universal Properties for Volume Fraction Profiles[J]. Macromolecules 1995, 28: 3434-3443.
    [124] Kim K H, Kim S H, Huh J, Jo W H. Micellization behavior of π-shaped copolymers in a selective solvent: A Brownian dynamics simulation approach [J]. J. Chem. Phys. 2003, 119, 5705-5710.
    [125] Dmitry Bedrov, Chakravarthy Ayyagari, and Grant D Smith. Multiscale Modeling of Poly(ethyleneoxide)-Poly(propylene oxide)-Poly(ethylene oxide)Triblock Copolymer Micelles in Aqueous Solution[J]. J. Chem. Theory Comput. 2006, 2:598-606
    [126] Borisov OV, Zhulina E B. Reentrant Morphological Transitions in Copolymer Micelles with pH-Sensitive Corona[J]. Langmuir 2005,21: 3229-3231.
    [127] Xia J, Zhong C. Dissipative Particle Dynamics Study of the Formation of Multicompartment Micelles from ABC Star TriblockCopolymers in Water[J]. Macromol. Rapid Commun. 2006. 27: 1110-1114.
    [128] Cui Y, Zhong C, Xia J. Multicompartment Micellar Solutions in Shear:A Dissipative Particle Dynamics Study[J]. Macromol. Rapid Commun. 2006, 27:1437-1441
    [129] Xia J, Zhong C. Self-Assembly of Two Agents in a Core-Shell-Corona Multicompartment Micelle Studied by Dissipative Particle Dynamics Simulations[J]. Macromol. Rapid Commun. 2006, 27:1654-1659
    [130] Li T, Lin, J P, Chen T, Zhang S N. Polymeric micelles formed by polypeptide graft copolymer and its mixtures with polypeptide block copolymer Polymer 2006, 47: 4485-4489.
    [131] 刘志平,黄世萍,江文川 分子计算科学——化学工程新的生长点[J].化工学报 2003,54:464-475.
    [132] Frenkel D, Smit B. Understanding molecular physics: from algorithm to Aplicatin[M]. San Diego, Academic Press, 1996
    [133] Lipkowltz, B, Boyd, D B. Review in Computer Chemistry Ⅱ [M]. VCH Publishers Inc. 1991.
    [134] Wertz, D H,Aliinger N L. Conformational analysis—Cl: The gauche-hydrogen interaction as the basis of conformational analysis[J]. Tetrahedron 1974, 30:1579-1586
    [135] Allinger N L. Conformational analysis. 130. MM2. A hydrocarbon force field utilizing V1 and V2 torsional terms[J]. J.Am.Chem. Soc. 1977,99: 8127-8134.
    [136] Discover user guide Part Ⅰ Biosym Technologies 1994.
    [137] Dauber-Osguthorpe P, Roberts V A. etal Structure and energetics of ligand binding to proteins: Escherichia coil dihydrofolate reductase-trimethoprim, a drug-receptor system[J]. Proteins: Structure. Function and Genetics 1988, 4:31-47
    [138] Weiner, S J, Kollman PA, Nguyen D T, Case D A. An all atom force field for simulations of proteins and nucleic acids[J]. J. Comp. Chem. 19860,7:230-252.
    [139] Jorgonsen, W L etal. Development and Testing of the OPLS All-Atom Force Field on Conformational Energetics and Properties of Organic Liquids[J]. J.Am.Chem. Soc 1996, 118:11225-11236.
    [140] Karplus M. etal. An all-atom empirical energy function for the simulation of nucleic acids[J]. J. Am. Chem. Soc 1995, 117:11946-11975.
    [141] Allinger N L, Yuh Y H, Lii J H. Molecular mechanics. The MM3 force field for hydrocarbons. 2. Vibrational frequencies and thermodynamics[J]. J. Am. Chem. Soc. 1989, 111: 8566-8575.
    [142] Halgren T. Merck Molecular Force Field. I. Basis, Form, Scope, Parameterization and Performance of MMFF94[J]. J. Comput. Chem. 1989, 17:490-519.
    [143] Sun H COMPASS:an ab initio force-field optimized for condensed-phase applications-overview with details on alkane and benzene compounds[J]. J. Phys. Chem. B 1995, 102:7338-7364
    [144] Plimpton S. Fast parallel algorithms for short-range molecular dynamics[J]. J. Comp. Phys. 1995,117(1): 1-19
    [145] Pinches M R S, Tildesley D J, Smith W. Large Scale Molecular Dynamics on Parallel Computers using the Link-cell Algorithm[J]. Mol. Simulation 1991,6:51-87
    [146] Hoogerbrugge, P J, Koelman, J M V A. Simulating microscopic hydrodynamic phenomena with dissipative particle dynamicwcs[J]. Europhys. Lett. 1992,19,155-160.
    [147] Koelman, J M V A, Hoogerbrugge, P J. Dynamic simulations of hard-sphere suspensions under steady shear[J]. Europhys.Lett. 1993,21,363-368.
    [148] Schlijper, A G, Hoggerbrugge, P J, Manke C W. Computer simulation of dilute polymer solutions with the dissipative particle dynamics method[J]. J. Rheol. 1995,39: 567-579.
    [149] Madden, W G, Kong, Y Manke, C M, Schlijper, A G. Int. J. Simulation of a confined polymer in solution using the dissipative particle dynamics method[J]. Int. J. Thermophys. 1994, 15: 1093-1101.
    [150] Groot, R D, Madden, TJ. Dynamic simulation of diblock copolymer microphase separation[J]. J. Phys. Chem. 1998, 108: 8713-8724.
    [151] Espanol, P, Warren, P B. Statistical mechanics of dissipative particle dynamics[J]. Europhys. Lett. 1995, 30, 191-196.
    [152] Groot, R D, Warren, P B. Dissipative particle dynamics: Bridging the gap between atomistic and mesoscopic simulation[J]. J.Chem.Phys. 1997, 107:4423-4435
    [153] Yamamotoa, S, Hyodo, S. Mesoscopic simulation of the crossing dynamics at an entanglement point of surfactant threadlike micelles[J]. J. Chem. Phys. 2005, 122:204907-204915.
    [154] Liu, D H, Zhong, C L. Dissipative Particle Dynamics Simulation of Microphase Separation and Properties of Linear-Dendritic Diblock Copolymer Melts under Steady Shear Flow[J]. Macromol. Rapid Comumun. 2005, 26, 1960-1964.
    [155] Qian, H J, Lu, Z Y, Chen, L J, Li, Z S, Sun, C C. Computer simulation of cyclic block copolymer microphase separation[J]. Macromolecules 2005, 38,1395-1401.
    [156] Weiner H. Structure Determination of Paraffin Boiling Points.[J]. J. Am Chem. Soc. 1947,69: 17-25
    [157] Randic M.On Characterization of Molecular Branching.[J]. J. Am Chem. Soc. 1975, 97: 6609-6615
    [158] Kier L B and Hall L H.Molecular Connectivity in Chemistry and Drug Resarch.[M]. Academic Predd, New York, 1976
    [159] Kier L B and Hall L H.Molecular Connectivity in Structure-Activity Anlysis[M]. John Wiley & Sons, New York, 1986
    [160] 王连生,韩朔暌等.有机物定量结构-活性关系[M].中国环境科学出版社.北京,1993.
    [161] Polak A J, Sundahl R C. Application of Chemical Graph Theory for the Estimation of Polymer Dielectric Properties [J]. Polymer 1989, 30:1314-1318.
    [162] Surgi M R, Polak A J, Sundahl R C. Description of Oxygen Permeability in Various High Polymers Using a Graph Theoretical Approach [J]. J. Polym. Sci. Part A: Polym. Chem. 1989, 27: 2761-2776.
    [163] Sumpter B G. Noid DW. Neural Networks and Graph Theory as Computational Tools for Predicting Polymer Properties [J]. Macromol. Theory Simul. 1994, 3: 363-378.
    [164] Bicerano J. Prediction of Polymer Properties [M]. 2nd ed.; Marcel Dekker: New York, 1996.
    [165] Camarda KV, Maranas C D. Optimization in Polymer Design Using Connectivity Indices [J]. Ind. Eng. Chem. Res. 1999, 38: 1884-1892.
    [166] Zhong C, Yang C. Approach for the Calculation of High-order Connectivity Indices of Polymers and Its Application [J]. J. Polym. Sci. Part B: Polym. Phys. 2002, 40:401-407.
    [167] Imre R, Bae Y C, Chang B H, Kraska T. Semiempirical method for the prediction the theta (lower critical solution temperature) in polymer solutions[J]. Ind Eng Chem Res 2004: 43: 237-242.
    [168] Simha R, Somcynsky T. On the statistical thermodynamics of spherical and chain molecule fluids Macromolecules 1969; 2: 342-351.
    [169] Zhong C, Wang W, Lu H. Open-cell model equation of state for liquids. I. P-V-T behavior for liquids and liquid polymers. Macromolecules 1994, 27: 660-664.
    [170] Zhong C, Wang W, Lu H. Open-cell model equation of state for liquids. 2. Polymer solutions and blends. Macromolecules 1995, 28: 7737-7743.
    [171] Bae Y C, Shim J J, Soane DS, Prausnitz JM. Representation of vapor-liquid and liquid-liquid equilibria for binary systems containing polymers: Applicability of an extended Flory-Huggins equation. J Appl Polym Sci 1993, 47:1193-1206.
    [172] Kontogeorgis GM, Saraiva A, Fredenslund A, Tassios DP. Prediction of liquid-liquid equilibrium for binary polymer solutions with simple activity coefficient models. Ind Eng Chem Res 1995; 34: 1823-1834.
    [173] Saraiva A, Bogdanic G, Fredenslund A. Revision of the group contribution—Flory equation of state for phase equilibria calculations in mixtures with polymers. 2. Prediction of liquid-liquid equilibria for polymer solutions. Ind Eng Chem Res 1995, 34: 1835-1841.
    [174] Chang BH, Bae YC. Liquid-liquid equilibria of binary polymer solutions with specific interactions. Polymer 1998, 39: 6449-6454.
    [175] Bogdanic G, Vidal J. A segmental interaction model for liquid-liquid equilibrium calculatins for polymer solutions. Fluid Phase Equilib 2000. 173: 241-252.
    [176] Pappa G D, Voutsas EC, Tassios D P. Liquid-liquid phase equilibrium in polymer-solvent systems: Correlation and prediction of the polymer molecular weight and the pressure effect. Ind Eng Chem Res 2001,40: 4654-4663.
    [177] Wang F, Saeki S, Yamaguchi T. Absolute prediction of upper and lower critical solution temperatures in polymer/solvent systems based on corresponding state theory. Polymer 1999; 40: 2779-2785.
    [178] Vetere A. An empirical method to predict the liquid-liquid equilibria of binary polymer systems. Ind Eng Chem Res 1998, 37: 4463-4469.
    [179] Vetere A. Empirical method to correlate and to predict the vapor-liquid equilibrium and liquid-liquid equilibrium of binary amorpous polymer solutions, Ind Eng Chem Res 1998, 37: 2864-2872.
    [180] Kier L B, Murray W J, Randic M and Hall L H. Molecular connectivity. V. C Connectivity series applied to density[J]. J. Pharm. Sci. 1975,65:1226-1230.
    [181] Kier L B and Hall L H. Molecular connectivity. Ⅶ. Specific treatment of heteroatoms[J]. J. Pharm. Sci. 1975,65: 1806-1809.
    [182] Kier LB and Hall LH. Molecular connectivity in Chemistry and Drug Research[M]. Academic Press, New York, 1976.
    [183] Kier L B and Hall L H, Molecular connectivity in Sturcture-Acitviyty Analysis[M]. New York: Wiley. 1986.
    [184] Randic M. Novel graph theoretical approach to heteroatoms in QSAR, Chem. Intel. Lab. Syst., 1991, 10: 213-227.
    [185] Randic M. On computation of optimal parameters for multivariate analysis of structure-property relationship[J]. J. Comput. Chem., 1991, 12: 970-980.
    [186] Needham D E, Wei L C and seybold P G. Molecular modeling of the physical properties of the alkanes[J]. J. Am. Chem. Soc. 1988, 110:4186-4194.
    [187] Pogliani L. Molecular modeling ofisoelectric point of amino acids[J]. J. Pharm. Sci. 1992, 81: 334-336.
    [188] Pogliani L. Molecular connectivity: Treatment of the electronic structure of amino acids[J]. J. Pharm. Sci. 1992. 81 : 967-969.
    [189] Imre A, Van Hook WA. Liquid-liquid demixing from solutions of polystyrene. 1. A review. 2. Improved correlation with solvent properties[J]. J Phys Chem Ref Data 1996, 25: 637-661.
    [190] Charlet G, Delmas G. Thermodynamic properties of polyolefin solutions at high temperature: 1. Lower critical solubility temperatures of polyethylene, polypropylene and ethylene-propylene copolymers in hydrocarbon solvents[J]. Polymer 1981, 22:1181-1189.
    [191] Wen H, Elbro HS, Alessi P. Polymer solutions data collection. Part 2: Solvent activity coefficients at infinite dilution[M]. Frankfurt: DECHEMA, 1992.
    [192] Charler G, Ducasse R, Delmas G. Thermodynamic propertiesof polyolefin solutions at high temperature: 2. Lowercritical solubility temperatures for polybutene-1, polypentene-1 and poly(4-methylpenetene-1) in hydrocarbon solventsand determination of the polymer-solvent interactionparameter for PB1 and one ethylene-propylene copolymer[J]. Polymer 1981, 22:1190-1198.
    [193] Patterson D, Delmas G, Somcynsky T. A comparison oflower critical solution temperatures of some polymersolutions[J]. Polymer 1967,8:503-516.
    [194] Bardin JM, Patterson D. Lower critical solution temperaturesof polyisobutylene plus isomeric alkanes[J]. Polymer 1969,10:247-255.
    [195] Simha, R, Somcynsky, T. On the Statistical Thermodynamics of Spherical and Chain Molecule Fluids[J]. Macromolecules 1969, 2: 342-350.
    [196] Liu, H, Zhong, C. Modeling of the Theta (Lower Critical Selution Temperature) in Polymer Solutions Using Molecular Connectivity Indices[J]. Eur. Polym. J. 2005, 41: 139-147.
    [197] He, J, Zhong, C. Correlation of Infinite Dilution Activity Coefficients of Solvents in Polymer Solutions Using Connectivity Indices[J]. Eur. Polym. J. 2003, 39: 1297-1310.
    [198] Zhong, C, Yang, C, Li, Q. Correlation of Henry's Constants of Nonpolar and Polar Solutes in Molten Polymers Using Connectivity Indices[J]. Ind. Eng. Chem. Res. 2002, 41: 2826-2833.
    [199] Liu, D, Zhong, C. Modeling of the Heat Capacity of Polymers with the Variable Connectivity Index[J]. Polym. J. 2002, 34: 954-961.
    [200] Surgi, M R, Polak, A J Sundahl, R C. Functional polymers and sequential copolymers by phase transfer catalysis. XXVI. Synthesis and characterization of thermotropic liquid crystalline polypodants[J]. J Polym Sci. Part A: Polym Chem 1989, 25: 2761-2776.
    [201] Camarda, K V, Maranas, C D. Optimization in Polymer Design Using Connectivity Indices[J]. Ind. Eng. Chem. Res. 1999, 38: 1884-1892.
    [202] Danner, R P, High, M S. Handbook of Polymer Solution Thermodynamics[M]. New York:DIPPR, 1993.
    [203] Charlet, G, Ducasse, R, Delmas, G. Thermodynamic Properties of Polyolefin Solutions at High Temperature: 2. Lower Critical Solubility Temperatures for Polybutene-1, Polypentene-1 and Poly(4-methylpenetene-1) in Hydrocarbon Solvents and Determination of the Polymer-solvent Interaction Parameter for PBl and One Ethylene-propylene Copolymer[J]. Polymer 1981, 22, 1190-1195.
    [204] Garbassi F, Morra M, Occhiello E. Polymer surfaces[M]. Chichester: Wiley;1994
    [205] Chan C M. Polymer surface modification and characterization[M]. Munich, Germany:Hanser; 1994
    [206] Naqvi, M K, Choudhary, M S J Macromol. Sci. Rev. Macromol. Chem. Phys. 1996, C36, 601.
    [207] Hogt, A H, Meijer, J, Jelenic, J. In Reactive Modifiers for Polymers[M]. Al-Malai"ka, S., Eds.; Chapman & Hall: London, 1997; p 84 and references therein.
    [208] S(?)nchez-Valdes S, Picazo-Rada C J, Lopez-Quintanilla M L. Polyethylene grafted maleic anhydride to improve wettability of liquid on polyethylene films [J]. J Applied Polym. Sci. 2001, 79: 1802-1808.
    [209] Kazunori Yamada, Jun Kimura, Mitsuo Hirata Autohesive properties of polyolefins photografted with hydrophilic monomers[J]. J Applied Polym. Sci. 2003, 87: 2244-2252.
    [210] Fanta F, Frederick C Felker, John H. Salchl Graft polymerization of acrylonitrile onto starch-coated polyethylene film surfaces[J]. J Applied Polym. Sci. 2003, 89: 3323-3328.
    [211] El Kholdi O, Lecamp L, Lebaudy P, Bunel C, Alexandre S. Modification of adhesive properties of a polyethylene film by photografting[J]. Journal of Applied Polymer Science, 2004, 92: 2803-2811.
    [212] Bergbreiter, D E, Boren, D, Kippenberger, A M. New Routes to Hyperbranched Poly(acrylic acid) Surface Grafts on Polyethylene Films and Powders[J]. Macromolecules 2004, 37: 8686-8691
    [213] Jang, J H, Ozisik, R, Mattice, W L. A Monte Carlo Simulation on the Effects of Chain End Modification on Freely Standing Thin Films of Amorphous Polyethylene Melts[J]. Macromolecules 2000, 33: 7663-7671
    [214] Contact Angle, Wettability and Adhesion[M]. Adv. Chem, Series Vol. 43, editedby F. M. Fowkes~American Chemical Society, Washington, DC, 1964.
    [215] Cherry B W.Polymer Surface[M].New York:Cambridge University Press, 1981.
    [216] Wu S. Polymer Interface and Adhesion[M]. Marcel Dekker, New York, 1982.
    [217] Cun F F, Tahir C. Wetting of crystalline polymer surfaces: A molecular dynamics simulation[J]. J. Chem. Phys. 1995, 103: 9053-9061.
    [218] Grest, G S, Heine, D R, Webb, E B. III Liquid Nanedrolets Spreading on Chemically Patterned Surfaces[J]. Langmuir 2006, 22: 4745-4749.
    [219] Heine, D R, Grest, G S, Webb, E B. III Diverse Spreading Behavior of Binary Polymer Nanodroplets[J]. Langmuir 2005, 21: 7959-7963.
    [220] Hautman and M Klein. Microscopic welling phenomena[J]. Phys. Rev. Lett. 1991,67:1763~1991.
    [221] Rabin Y, Alexander S. Stretching of grafted polymer layers[J]. Europhys Lett 1990,13: 49-54.
    [222] Miao L, Guo H, Zuckermann MJ. Conformation of Polymer Brushes under Shear: Chain Tilting and Stretching[J]. Macromolecules 1996, 29: 2289-2297.
    [223] Lai P-Y, Binder K. Grafted polymer layers under shear: A Monte Carlo simulation[J]. J Chem Phys 1993, 98: 2366-2375.
    [224] Janorkar, A V, Meners, A T, Hirt, D E..Modification of Poly(lactic acid) Films: Enhanced Wettability from Surface-Confined Photografling and Increased Degradation Rate Due to an Artifact of the Photografling Process[J]. Macromolecules 2004, 3:, 9151-9159.
    [225] J Brandrup, E H, Immergut, and EA. Grulke Polymer handbook 4th ed New York: Wiley, c1999
    [226] Jian Xiang Zhang, Li Yah Qiu, Kang Jie Zhu, Yi Jin. Thermosensitive Micelles Self-Assembled by Novel N-Isopropylacrylamide Oligomer Grafted Polyphosphazene[J]. Macromol. Rapid Commun. 2004, 25:1563-1567.
    [227] Zhibo Li, Ellina Kesselman, Yeshayahu Talmon, Marc A, Hillmyer, and Timothy P. Lodge Multicompartment Micelles from ABC Miktoarm Stars in Water[J]. Science 2004, 306: 98-101.
    [228] Muthukumar M, Ober C K, Thomas E L. Competing Interactions and Levels of Ordering in Self-Organizing Polymeric Materials[J]. Science 1997, 277: 1225-1232.
    [229] Stupp S I, LeBonheur V, Walker K, Li L S, Huggins K E, Keser M, Amstutz A. Supramolecular Materials: Self-Organized Nanostructures[J]. Science 1997, 276: 384-389.
    [230] Klok HA, Lecommandoux S. Supramolecular Materials via Block Copolymer Self-Assembly[J]. Adv. Mater. 2001, 13: 1217-1229.
    [231] David E. Bergbreiter Self-Assembled, Sub-Micrometer Diameter Semipermeable Capsules[J]. Angew. Chem.. Int. Ed. 1999, 38: 2870-2872.
    [232] Frank Caruso, Rachel A. Caruso, and Helmuth M(?)hwald Nanoengineering of Inorganic and Hybrid Hollow Spheres by Colloidal Templating[J]. Science 1998, 282: 1111-1114.
    [233] Zhou J, Wang L, Wang C, Chen T, Yu H, Yang Q. Synthesis and self-assembly of amphiphilic maleic anhydride-stearyl methacrylate copolymer[J]. Polymer 2005, 46: 11157-11164.
    [234] Chen T, Wang L, Jiang G, Wang J, Wang X, Zhou J, Wang W and Gao H. Large-size bamboo-shape nanotube from self-assembly of poly(ferrocenyldimethylsilane-b-dimethylsiloxane) block copolymer[J]. Polymer 2005, 46: 7585-7589.
    [235] Chen T, Wang L, Jiang G, Wang J, Wang F, Zhou F. Poly(ferrocenyldimcthylsilane-b-dimethylsiloxane) microsphere with shell thickness controllable structure prepared through self-assembly[J]. Polymer 2005, 46: 5773-5777.
    [236] Breitenkamp, K, Emrick, T. Novel Polymer Capsules from Amphiphilic Graft Copolymers and Cross-Metathesis[J]. J Am Chem Soc 2003, 125: 12070-12071.
    [237] Rodriguez-Hemandez, J, Lecommandoux, S. Reversible Inside-Out Micellization of pH-responsive and Water-Soluble Vesicles Based on Polypeptide Diblock Copolymers[J]. J Am Chem Soc 2005, 127: 2026-2027.
    [238] Alexandridis, P L. Amphiphilic Block Copolymers[J]. Coll. Interf. Sci., 1996, 1: 490-495.
    [239] Gref R, Minamitake Y, Peracchia MT, Trubetskoy V, Torchilin V, Langer R. Biodegradable long-circulating polymeric nanospheres[J]. Science 1994, 263: 1600-1603.
    [240] Glen S. Kwon, Mayumi Naito, Kazunori Kataoka, Masayuki Yokoyama, Yasuhisa Sakurai and Teruo Okano. Block copolymer micelles as vehicles for hydrophobic drugs[J]. Coll. Sruf. B: Biointerfaces 1994, 2: 429-434.
    [241] Groot R D, Warren P B. Dissipative particle dynamics: bridging the gap between atomistic and mesoscopic simulation[J]. J. Chem. Phys. 1997, 107:4423-4435.
    [242] 杨小震.计算机模拟与高分子材料[M].科学出版社.北京.2002:92-100
    [243] Espafiol P, Warren P. Statistical Mechanics of Dissipative Particle Dynamics[J]. Europhys. Lett., 1995, 30: 191-196.
    [244] Allen M P, Tildesley D J. Computer Simulation of Liquids[M]. Oxford, 1087:1-18
    [245] 苑世领,蔡政亭,徐桂英等,表面活性剂在溶液中聚集形态的动力学模拟[J].化学学报,2002,2:241-245.
    [246] 苑世领等.徐桂英,蔡政亭.表面活性剂与聚合物相互作用的动力学模拟[J].化学学报,2002,4:585-589.
    [247] Groot, R D. Mesoscopic Simulation of Polymer-Surfactant Aggregation[J]. Langmuir 2000, 16: 7493-7502.
    [248] 苑世领.吴锐.蔡政亭.水溶液中嵌段共聚物的耗散颗粒动力学模拟[J].物理化学学报.2004,20:811-815
    [249] Wang H, Troxler T, Yeh AG, Dai HL. In Situ, Nonlinear Optical Probe of Surfactant Adsorption on the Surface of Microparticles in Colloids[J]. Langmuir 2000, 16:2475-2481
    [250] R Zana. Suffactant solutions: new methods of investigation [M]. New York: Marcel Dekker, Inc., 1987: 209-240
    [251] Hoffmann H, Rehage H, Rauscher A. Statics and dynamics ofstrongly interacting colloids and supramolecular aggregates in solution[C]. Netherlands: Fliver Academic Publishers, 1992: 493-510
    [252] 李干佐,郭荣等,微乳液理论及其应用[M].北京:石油工业出版社,1995:1357-3921
    [253] Montalvo G, Valiente M, Rodenas E. Rheological properties of the L phase and the hexagonal lameilar, and cubic liquid crystals of theCTAB/benzyl alcohol/water system [J]. Langmuir, 1996,12: 5202-5208
    [254] Cortes A B, Valiente M, Rodenas E. Properties of the L and ly2otropic phases in CTAB/glycerol/water and CTAB/glyceraldehydes/watesystems [J]. Langmuir, 1999, 15: 6658-6663
    [255] Valiente M, Rodenas E. Rheological behavior of reversecetyltrimethylammonium bromide and sodium dedecyl sulfate miceilesin alkanols [J]. Colloids Surfaces A, 1994,85: 97-103
    [256] Chen C M, Warr G G. Rheology of ternary microemulsions [J]. J. Phys. Chem., 1992,96: 9492-9497
    [257] Paasch S, Schambil F, Schwuger M. Rheological properties oflamellar lyotropic liquid crystals [J]. Langmuir, 1989,5:1344-1346
    [258] Zipfel J, Berghausen J, Lindner P, etal. Influence of shear onlyotropic lamellar phases with different membrane defects [J]. J. Phys.Chem. B, 1999,103:2841-2849
    [259] Robles Vasquez O, Soltero J F A, Puig J E, etal. Rhe2ology of lyotropic liquid crystals of Aerosol OT. Ⅲ. effect of salt and hy2drocarbons [J]. J. Colloid Interface Sci., 1994, 163:432-436
    [260] Soltero J F A, Bautistsa F, Pecina E, etal. Rheological be2havior in the didodecyldimethylammonium bromide/water system [J]. Colloid Polym. Sci., 2000. 278:37-47
    [261] Jones J L, McLeish T C B. Concentration fluctuations in sur2factant cubic phases: Theory, rheology, and light scattering [J]. Langmuir, 1999, 15:7495-7503
    [262] Zipfel J, Lindner P, Tsianou M. etal. Shear-induced forma2tion of multilamellar vesicles ("Onions") in block copolymers [J]. Langmuir, 1999, 15:2599-2602
    [263] Gradzielski M, Muller M, Bergmeier M, et al. Structural and macroscopic characterization of a gel phase of densely packed monodis2 perse, unilamellar vesicles [J]. J. Phys. Chem. B, 1999, 103:1416-1424
    [264] Horbaschek K, Hoffmann H, Ch. Hao J. Classic Laphase as op2 posed to vesicle phase in cationicanionic surfactant mixtures [J]. J. Phys. Chem. B, 2000, 104:2781-2784
    [265] Ali A A, Makhloufi R. Effect of organic, salts on micellar growth and structure studied by rheology [J]. Colloid Polym. Sci, 1999,277:270-275
    [266] 张为灿,李干佐,李英.表面活性剂蠕虫状胶束缔合体系研究进展[J].日用化学工业,1999.171:34-411
    [267] Miyoshi E, Nishinari K. Non-newtonian flow behavior of gellan gum aqueous solutions [J]. Colloid Polym. Sci, 1999,277: 727-734
    [268] Bergenholtz J, Wagner N J. Formation of AOT/brine multilamellar vesicles [J]. Langmuir, 1996,12: 3122-3126
    [269] Mendes E, Menon S V G. Vesicle to micelle transitions in sur2 factant mixtures induced by shear [J]. Chem. Phys. Letters, 1997,275: 477-484
    [270] Kim W J, Yang S M. Microstructures and rheological responses of aqueous CTAB solutions in the presence of benzyl additives [J]. Langmuir, 2000, 16: 6084-6093
    [271] 江体乾.化工流变学[M].上海:华东理工大学出版社,2004:191-263
    [272] Kitade S. Ochiai N. Takahashi Y, et al. Lamellar Orientation of Diblock Copolymer Solutions Under Steady Shear Flow[J]. Macromolecules 1998, 31: 8083-8090
    [273] Luo K, Yang Y. Lamellar Orientation and Corresponding Rheological Proporties of Symmetric Diblock Copolymers Under Steady Shear Flow[J]. Macromolecules 2002, 35:3722-3730
    [274] 牟建海,李干佐.表面活性剂聚集体的流变性质[M].日用工业化学.2002.32(1):88-42
    [275] Beck J S, Vartuli J C, Roth W J, et al. A new family of mesoporous molecular sieves prepared with liquid crystal templates[J]. J. Am. Chem. Soc, 1992, 114:10834-10843
    [276] Kresge C T, Leonowicz M E, Roth WJ, et al. [J]. Nature, 1992, 359:710-712
    [277] Wijmans C M, Smit B. Simulating Tethered Polymer Layers in Shear Flow with the Dissipative Panicle Dynamics Technique[J]. Macromolecules 2002, 35:7138-7148
    [278] Symeonidis V, Karniadakis G E, Caswell B. Dissipative Particle Dynamics Simulations of Polymer Chains: Scaling Laws and Shearing Response Compared to DNA Experiments[J]. Phys. Rev. Lett. 2005, 95:076001
    [279] Chen S, Thien N-P, Fan X-J,et al. Dissipative Panicle Dynamics Simulation of Polymer Drops in a Periodic Shear Flow[J].J. Non-Newtonian Fluid Mech. 2004, 118:65-81
    [280] 韩C D.聚合物加工流变学[M].北京:科学出版社,1985:4-11
    [281] 王玉忠.郑长义.高聚物流变学导论[M].四川:四川大学出版社.1989:2-14
    [282] 金日光.华幼卿.高分子物理[M].北京:化学工业出版社,1991:121-133

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700