新型化学驱油剂的分子行为与性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
聚合物和表面活性剂是两类主要的化学驱油剂,前者通过封堵调剖降低水油流度比提高原油采收率,后者主要通过降低油水界面张力提高洗油效率提高采收率。近年来,疏水改性的聚合物由于既具有增粘效果又具有界面活性,成为备受关注的多效合一的新型化学驱油剂。本论文采用分子动力学(MD)、耗散颗粒动力学(DPD)等分子模拟方法,与动态界面张力、体相粘度、动态光散射、原子力显微镜、透射电镜等实验方法相结合,从分子水平研究了疏水改性的部分水解聚丙烯酰胺HMHPAM的分子行为和性能,考察了化学结构、环境条件等因素对聚合物分子行为与性能的影响,并提出了相关机制,为疏水改性水溶性聚合物作为高效驱油剂的分子设计和应用提供理论指导。另外,本论文还研究了烷醇酰胺非离子表面活性剂的界面行为,发现该体系不仅具有超高界面活性,并且因具有低界面电性可使驱动原油经分散和聚并发挥封堵调剖作用,因而也是多效合-的新型高效驱油剂。本文采用分子模拟方法与实验方法结合分别研究了疏水改性聚丙烯酰胺和烷醇酰胺的体相和界面分子行为和性能,并通过观察驱替过程,对两种新型驱油体系的致效机制进行了分析和比较。
     本论文主要分为四个部分:
     1.HMHPAM分子行为与构效关系研究
     采用耗散颗粒动力学(DPD)的方法考察了HMHPAM的浓度、聚合方式、疏水改性比例及水解程度对聚合物分子行为和溶液性质的影响。研究发现改性基团以无规形式均匀分布在分子链上的梳型结构相较于嵌段结构对HMHPAM的分子链伸展更为有利。经过疏水改性处理后,疏水基团之间疏水缔合作用的引入有利于分子链三级结构地形成,其中适当的疏水改性基团和合适的疏水改性度能使HMHPAM在溶液中形成网状结构,很大程度上增大了整个体系的流体力学尺寸。而经过水解处理后的聚合物上部分丙烯酸根基团地引入则可使聚合物分子链通过静电斥力逐渐展开,从而有效地增大了分子链的流体力学尺寸。在HMHPAM体系中,酰胺基团之间的氢键作用,疏水基团之间的疏水作用和水解基团之间的电性作用,这三种作用力共同决定着HMHPAM的性质和状态。过强的疏水缔合作用会促使聚合物分子链蜷缩,导致聚合物的水溶性降低甚至析出,而过强的电性斥力则会破坏聚合物分子链之间的三级结构使体系的粘度降低。因此在对实际应用体系进行改性处理时应根据实际体系的应用要求,结合改性的难易程度等因素,通过综合考察改性基团对聚合物溶液性质的影响,制定合成方案。在以增粘为目的烷基链长度为十六个碳的HMHPAM体系中,疏水改性基团梳型无规分布,聚合物的疏水改性度和水解度分别为2%和40%,为体系的最优状态。
     2.环境条件对HMHPAM分子行为和性质的影响
     耗散颗粒动力学模拟方法,与实验手段相结合,研究了环境pH、盐度及添加表面活性剂对HMHPAM分子行为和溶液性质的影响。研究发现,随着溶液pH增大,聚合物分子链逐渐伸展,体系的粘度逐渐升高,当pH≥8时,体系的粘度基本保持不变,因此HMHPAM的应用体系应选在偏碱性环境中更为有利。溶液中的无机盐对HMHPAM的影响也很大,聚合物溶液的粘度随着无机盐含量地增加显著下降。溶液中的无机盐不仅能够屏蔽聚合物羧酸基团之间的静电斥力,引发聚合物分子链蜷缩,而且因其水合导致的竞争吸水能力也使体系中的聚合物的水溶性下降,分子链蜷缩,这两种作用都会使聚合物溶液的粘度降低,影响聚合物的应用效果。在HMHPAM的体系中,无机盐的竞争吸水作用则是影响聚合物溶液性质的主要原因。HMHPAM体系中适量SLS地加入可以一定程度上缓解聚合物因环境变化而引起的粘度大幅降低。分子模拟结果表明,HMHPAM与SLS的相互作用位点集中在各自的疏水基团。表面活性剂在聚合物疏水基团上的聚集可以促使聚合物分子链伸展,有效地增大聚合物的水动力学半径,进而起到增粘作用,然而过量的SLS的加入则会引起聚合物三级结构地破坏从而使聚合物体系的粘度大幅降低。同时研究还发现SLS不但能使聚合物增粘,而且可以与HMHPAM在油/水界面共吸附,进而大幅度降低体系的油/水界面张力,因此适量的SLS的加入能更好地优化HMHPAM体系的体相性质和界面性质,扩大聚合物的应用范围。
     3.无机阳离子对HMHPAM的影响机制研究
     采用分子动力学与实验手段相结合,研究了Na+、Mg2+、Ca2+、Cr3+和Fe3+这5种常见的金属阳离子对聚合物粘度和溶解度的影响。研究发现其影响大小排序为Fe3+>Cr3+>>Ca2+>Mg2+>Na+。研究表明,Cr3+和Fe3+可以与HMHPAM的水解基团羧酸根以络合作用形成稳定的配合物,且此配合物不溶于水,易从体相析出。相比较于Fe3+,Cr3+的配位作用要弱一些,其在低浓度时可以作为交联剂将不同的聚合物分子链连接在一起,且保持聚合物的水溶状态,同时增加体系的粘度,而Fe3+只有降粘作用。HMHPAM在Na+、Mg2+和Ca2+存在的溶液中都保持着溶解状态,其中Ca2+可以进入羧酸根基团的第一个水合层,并与之形成稳定的离子对,研究发现Ca2+可以作为盐桥通过静电作用将不同的羧酸基连接在-起,使聚合物形成较大的聚集体。Mg2+的水合层比较致密,不易脱水,因此与羧酸根形成的离子对并不稳定,但是Mg2+的吸水能力较强,对聚合物的水溶性影响较大。Na+对聚合物的影响是最小的,其只能起到微弱的电性屏蔽作用。4.非离子型表面活性剂烷醇酰胺DDA的界面行为与超低界面张力产生机理
     采用分子模拟与实验结合的手段,研究了DDA的界面行为,揭示其产生超低界面张力的机理。研究发现DDA产生低界面张力的主要原因是其头基与水分子之间及头基与头基之间的强氢键作用,这种作用使表面活性剂亲水基与周围的水分子形成了较稳定且较厚的水合层,阻碍了界面层上油相和水相的接触,使原有的油-水界面,变成油-表面活性剂尾链-表面活性剂头基亲水层-水相的拟四相界面,从而使体系的界面张力大幅度降低。同时还考察了温度、盐度及pH的变化对DDA体系油/水界面张力的影响,发现界面电性对超低界面张力的产生影响很大。通过加入带电表面活性剂改变界面电性,研究结果表明,表面活性剂头基电性越强,界面电性越高,头基之间静电排斥作用越严重,界面上表面活性剂与表面活性剂之间孔隙越大,油/水直接接触区域越大,体系的界面张力越高。低电性或电中性表面活性剂因具有高界面密度,有效隔开油水层,可在不加辅助表面活性剂的情况下将界面张力将至超低。通过与离子型表面活性剂SLS和CTAB复合体系做对比,进一步验证了界面电性对界面张力的影响。
     5.疏水改性聚合物与低张力表面活性剂的驱油效率与致效机理
     本论文采用自行设计的可视物模,考察疏水改性聚合物与低电性高活性的表面活性剂体系的驱油效率,并细致观察驱替特征,发现两种新型驱油剂均可有效提高采收率,但致效机制不同。其中疏水改性聚合物不仅增加驱替体系粘度,降低原油和水的流速比,有效地缓解驱替液的窜流现象,提高体系的波及系数,还有促使油滴脱附的作用,因而可增加原油的采收率。而由表面活性剂烷醇酰胺组成的超低界面张力体系依靠超低油/水界面张力促进原油自岩石表面脱附和分散,实现对残余油的有效驱动。同时作为一种非离子型表面活性剂,烷醇酰胺在原油界面吸附形成低界面电性乳状液,易发生聚集,在高渗透带形成原油封堵层,有效防止驱油过程中的指进效应和窜流现象,因此显著提高驱油效率,一次性取得高采收率。相比较于其他驱替体系,非离子表面活性剂烷醇酰胺低张力驱替体系的驱油效率最好。
Polymers and surfactants are widely used in EOR (Enhance Oil Recovery) as flooding agents. The high viscosity of polymer solution can reduce the mobility ratio between oil phase and water phase through plugging ability and profile control effects, and enhance the oil displacement efficiency. The surfactant can also increase the oil displacement efficiency through decreasing the oil/water interfacial tension and increasing the displacement efficiency. In recent years, the partially hydrolyzed hydrophobically modified polyacrylamide HMHPAM as a kind of new flooding agent get more and more attention, owing to its thickening effect and interfacial activity. In this thesis, the Molecule Dynamics (MD) and Dissipative Particles Dynamics (DPD) were combined with dynamic interfacial tension, viscosity, zeta potential, Dynamics Light Scattering (DLS), Atomic Force Microscopy (AFM), and Transmission Electron Microscopy (TEM) to study the properties of HMHPAM. The relationship between the conformation of HMHPAM molecular structure and its solution properties was studied at molecular level. To provide the theoretical guidance for design and applicant of HMHPAM, the influences of molecular structure and environmental conditions on HMHPAM solution were also investigated. As another new flooding agent, the alkanolamide (DDA), which has both ultra low interfacial tension and plugging ability and profile control effects, was also studied. The flooding mechanism and displacement efficiency of these two flooding agents were investigated through a flooding model.
     This thesis is divided into five parts:1. The relationship between molecular configuration and phase behavior of HMHPAM
     The influence of the polymer concentration, polymerization process, degree of hydrolysis, and the hydrophobic modified group of HMHPAM on the polymer solution were studied by DPD simulation. It was found that the comb structure which the hydrophobic modified groups of polymer molecular chain were distributed uniformly and randomly, were better than the block copolymer. The hydrophobic modified groups of HMHPAM can help the polymer form the net-work structure, which can enlarge the hydrodynamic radius of polymer chain and increase solution viscosity seriously. The hydrolysis groups of HMHPAM can also benifit the increase of the viscosity of polymer solution, because the electrical repulsion between different hydrolysis groups can stretch the polymer chain. So in HMHPAM system, the hydrogen bond between acrylamide groups, the hydrophobic interaction between hydrophobic modified groups and the electrical repulsion between hydrolysis groups decided the phase properties of HMHPAM. The strong hydrophobic interaction can lead to polymer curl up even separate out from solution, and the strong electrical repulsion can destroy the net-work structure of polymer. For HMHPAM, the optimal hydrolysis degree and hydrophobic degree were40%and2%, respectively.
     2. The Influence of Environment Conditions on the Properties of HMHPAM
     The influences of pH, salinity and additive agent (sodium dodecyl sulfonate (SLS)) on the properties of HMHPAM by dissipative particle dynamics (DPD) simulation combined with viscometer and AFM observations (Atomic Force Microscopy) were studied. The effects of electrical shielding effect and water absorbing ability of salts and pH on the behavior of HMHPAM molecules were investigated through changing the interaction parameter between different beads. The conformation variation of polymer chain described by root-mean-square (RMS) end-to-end distance and simulation snapshot was compared with the change of solution viscosity. The hydrolyzed groups of HMHPAM were existed in the form of acrylic acid in acidic solution and acrylic acid anion in alkaline solution. The electrostatic repulsion between different acrylic acid anion groups can stretch the polymer chain and increase the solution viscosity, which resulted in the higher viscosity of HMHPAM solution in environment with pH>8. It was found that, the water absorbing effect of salts was the main reason seriously reduced the viscosity of HMHPAM solution, while the influence of electrical shielding of salts was not obvious. The added SLS can influence the interfacial activity and bulk phase thickening property of HMHPAM. HMHPAM can be absorbed onto the oil/water interface and reduce the oil/water interfacial tension of system. The added SLS reduced the interfacial tension obviously, which help to broaden the potential application of HMHPAM. In the HMHPAM solution, the SLS can enter the hydrophobic domains of polymer chain through hydrophobic interaction, which can enlarge the molecular chain of polymer and increase the system viscosity.
     3. The influence of inorganic cations on HMHPAM
     The effects of Na+, Mg2+, Ca2+, Cr3+and Fe3+ions on the HMHPAM solutions was explored using the MD simulations and experimental methods. It was found that the influence of multivalent cations on the property of HMHPAM was not rely on the water absorbing ability of cations, but the direct interaction between the cations and polymer. The influence degree of cations on HMHPAM solution was Fe3+>Cr3+>>Ca2+>Mg2+>Na+. The Cr3+and Fe3+both have coordination interaction with acrylic anion groups and there would be about three acrylic anions groups bound with Cr3+or Fe3+. But the interaction degree of Cr3+or Fe3+with HMHPAM in solutions were found to be different, therefore their influence on properties of HMHPAM were dissimilar, trace amount of Cr3+can be regarded as cross-linker and increase the systems' viscosity, but the Fe3+can only decreased the viscosity of polymer solution. The hydration ability of Mg2+was bigger than Ca2+, but Ca2+have more strong influence on capacities of polymer solution, which was reordered to the classical Hofmeister series. It was found that the hydration shell of Ca2+was loose and dehydrated easily which made it interact with acrylic anions directly. The Ca2+can form stable dipolar pair with different acrylic anions though strong electrostatic attraction and leads to the forming of big aggregations of polymer. While the dense hydration layer adhered to Mg2+strongly which made the Mg2+only enter the second hydration shell of acrylic anions and the formed Mg2+-HMHPAM dipolar pair was unstable, so the influence of Ca2+on the viscosity of HMHPAM solution was bigger than the Mg2+
     4. The interfacial property of DDA
     The MD simulation and experimental methods were combined to study the interfacial behavior of DDA. It was found that the mechanism of DDA systems getting ultra low interfacial tension was ascribed to the strong hydrogen bond between the head groups of DDA and water molecules, form thick hydrated layer with water. The formed hydrated layer can be regarded as a barrier stopping the oil phase from directly contacting with water phase, which turns oil/water interface into oil/hydrophobic tail of DDA/hydrated layer of head group/water interface, and reduces the interfacial tension significantly. In addition, the interfacial charge has a great influence on the oil/water interfacial tension of DDA system. For the DDA solution, the added ionic surfactants introduced charge into the oil/water interface. The higher charge of surfactant head group always means the stronger electrostatic repulsion between each other, and the oil/water interface can contain some macropores with no surfactants covering. In the macropores domains, the water molecules and oil molecules contact directly and the interfacial tension increases seriously. So it can be concluded that the interface with low or zero charge would be beneficial for getting the ultra interfacial tension system. The mechnism was testified in the SLS/CTAB system.
     5. The oil displacement efficiency of the two types of new flooding agent
     The flooding efficiency of hydrophobically modified polymer and non-ionic surfactant DDA system were studied by a sample flooding model. It was found that both of these two systems can increase the displacement efficiency, while the mechanisms were different. The HMHPAM solution has high viscosity, which can reduce the mobility ratio between oil phase and water phase, relief the crossflow effect of displacement fluid and increase the oil displacement efficiency. While the low interfacial tension of DDA system can promote desorption and dispersion of crude oil from rock surface, and increase the oil displacement efficiency as a result. In addition, as a kind of non-ionic surfactant, the DDA can lead to the dispersive crude oil aggregate again. The aggregated crude oil drops can be regarded as blocking agent which can prevent the fingering effect and crossflow effect of the displacement fluid in the process of oil displacement. Compared with other flooding agents, the non-ionic surfactant DDA has the best oil displacement efficiency.
引文
[1]窦宏恩,油田不同开发阶段原油储采比计算新方法,石油学报,2010,31,114-118.
    [2]李鹏华,李兆敏,聚合物浓度对原油采收率的影响研究及应用,2009全国复杂结构油气井藏增产改造技术高级研讨会.
    [3]朱鹏飞,油/水界面超低界面张力体系设计及机理研究,山东大学硕士学位论文,2009.
    [4]Morrow, N. R.; Chatzis, I.; Taber, J. J.; Entrapment and mobilization of residual oil in bead packs, Soc. Petrol. Eng 1988. August,927-934.
    [5]Hou, Z. S.; Li, Z. P.; Wang, H. Q.; Ultra-Low Interfacial Tension in Oil-Water-Mixed Surfactant Systems; J. Dispersion Sci. Technol 2011,22, 255-259.
    [6]谭晶,表面活性剂与聚合物在油/水和泡沫体系加和增效机制研究,山东大学 硕士论文,2010.
    [7]Wever, D. A. Z.; Picchioni, R; Broekhuis, A. A.; Polymers for enhanced oil recovery:A paradigm for structure-property relationship in aqueous solution, Prog. Polym. Sci.2011,36,1558-1628.
    [8]Takata, Y.; Norisuye, T.; Hirayama, S.; Takemori, T.; Qui, T. C. M.; Nomura, S.; DLS and AFM Studies on the Cluster Evolution of Organically Modified Silica Gels Catalyzed by a Super Strong Acid, Macromolecules 2007,40,3773-3778.
    [9]Kim, D.; Kim, E.; Lee, J.; Hong, S.; Sung, W.; Lim, N.; Park, C. G.; Kim, K.; J. AM. CHEM. SOC 2010,132,9908-9919.
    [10]Giraldo-Zuniga, A. D.; Coimbra, J. S. D. R.; Arquete, D. A.; Luis, A. M.; Luis, H. M. S.; Maffia, M. C; Interfacial Tension and Viscosity for Poly(ethylene glycol) +Maltodextrin Aqueous Two-Phase Systems. J. Chem. Eng. Data 2006,51, 1144-1147.
    [11]Vonnegut, B.; Rotating Bubble Method for the Determination of Surface and Interfacial Tensions, Rev. Sci. Instrum.1942,13,6-9.
    [12]Wu, Y. T.; Zhu, Z. Q.; Mei, L. H.; Interfacial Tension of Polyethylene glycol)+ Salt+Water Systems. J. Chem. Eng. Data 1996,41,1032-1035.
    [13]Xia, Y. Q.; Guo, T, Y.; Song, M. D.; Zhang, B. H.; Zhang, B. L.; Hemoglobin Recognition by Imprinting in Semi-Interpenetrating Polymer Network Hydrogel Based on Polyacrylamide and Chitosan. Biomacromolecules 2005,6,2601-2606.
    [14]方道斌,郭睿威,哈润华等.丙烯酰胺聚合物,北京:化学工业出版社,2006.
    [15]Kim, Y. H.; Oblas, D.; Angelopoulos, A. P. Adsorption of a Cationic Polyacrylamide onto the Surface of a Nafion Ionomer Membrane. Macromolecules 2001,34,7489-7495.
    [16]Hsieh, S. J.; Wang, C. C; Chen, C. Y. Self-Assembling Microporous Matrix from Dendritic-Linear Copolymers Based on a Solvent-Induced Phase Separation Mechanism. Macromolecules 2009,42,4787-4794.
    [17]Cordova, M.; Cheng, M.; Trejo, J.; Johnson, S. J.; Willhite, G. P.; Liang, J. T.; Berkland, C. Delayed HPAM Gelation via Transient Sequestration of Chromium in Polyelectrolyte Complex Nanoparticles. Macromolecules 2008,41, 4398-4404.
    [18]Hu, Y.; Wang, S. Q.; Jamieson, A. M. Rheological and Rheooptical Studies of Shear-Thickening Polyacrylamide Solutions. Macromolecules 1995,28, 1847-1853.
    [19]Shupe, R.; Russell, D. Chemical Stability of Polyacrylamide Polymers. J. Pet. Sci. Technol.1981,33,1513-1529.
    [20]Bj(?)rsvik, M.; H(?)iland, H.; Skauge, A. Formation of colloidal dispersion gels from aqueous polyacrylamide solutions. Colloids and Surfaces A:Physicochem. Eng. Aspects 2008,317,504-511.
    [21]Klaveness, T. M.; Ruoff, P. Kinetics of the Cross-Linking of Polyacrylimide with Cr(III), Analysis of Possible Mechanisms. J. Phys. Chem.1994,98, 10119-10123.
    [22]Peng, S. F.; Wu, C. Light Scattering Study of the Formation and Structure of Partially Hydrolyzed Poly (acrylamide)/Calcium(Ⅱ) Complexes. Macromolecules 1999,32,585-589.
    [23]Konradi, R.; RUhe, J. Interaction of Poly (methacrylic acid) Brushes with Metal Ions:Swelling Properties. Macromolecules 2005,38,4345-4354.
    [24]Wu, C. Y; Skelton, A. A.; Chen, M. J.; Vlcek, L.; Cummings, P. T. Modeling the Interaction between Integrin-Binding Peptide (RGD) and Rutile Surface:The Effect of Cation Mediation on Asp Adsorption. Langmuir 2012,28,2799-2811.
    [25]Zhao, F.; Du, Y. K.; Xu, J. K. Molecular morphology of modified partially hydrolyzed polyacrylamide (MHPAM) on mica substrates and Langmuir-Blodgett films of MHPAM/CTAB complexes as observed by AFM. Eur. Polym. J.2007,43,797-801.
    [26]陈洪,韩利娟,徐鹏,罗平亚.疏水改性聚丙烯酰胺的增粘机理研究.物理化学学报2003,19,1020-1024.
    [27]Deguchi, S.; Lindman, B. Novel approach for the synthesis ofhydrophobe modified polyacrylamide.DirectN-alkylationof polyacrylamide in dimethyl sulfoxide. polymer 1999,40,7163-7165.
    [28]Feng, Y. J.; Billon, L.; Grassl, B.; Khoukh, A.; Jeanne, F. Hydrophobically associating polyacrylamides and their partially hydrolyzed derivatives prepared by post-modification.1:Synthesis and characterization. Polymer 2002,43, 2055-2064.
    [29]Feng, Y. J*.; Luo. P. Y.; Luo, C. Q.; Yan, Q. T. Direct visualization of the microstructures in hydrophobically modified polyacrylamide aqueous solution by environmentally scanning electronic microscopy. Polymer 2002,51,931-938.
    [30]Ezzell, S. A.; McCormick, C. L. Water-Soluble Copolymers.39. Synthesis and Solution Properties of Associative Acrylamide Copolymers with Pyrenesulfonamide Fluorescence Labels. Macromolecules 1992,25,1881-1886.
    [31]Hill, A.; Candau, F.; Selb, J. Properties of Hydrophobically Associating Polyacrylamides:Influence of the Method of Synthesis. Macromolecules 1993, 26,4521-4532.
    [32]赵勇,何炳林,哈润华.反相微乳液中疏水缔合型聚丙烯酰胺的合成及其性能研究.高分子学报,2000,5,550-553.
    [33]McCormick, C. L.; Nonaka, T.; Johnson, C. B. Water-soluble copolymers:27. Synthesis and aqueous solution behavior of associative acrylamide/N-alkylacrylamide copolymers. Polymer 1998,29,731-739.
    [34]张克勤,陈乐亮.钻井技术手册,北京:石油工业出版社,1988.
    [35]赵福麟.油田化学.北京:石油大学出版社,2000.
    [36]郑晓宇,吴肇亮.油田化学品,北京:化学工业出版社,2001.
    [37]刘翔鹗.采油工程技术论文集.北京:石油工业出版社,1999.
    [38]万仁薄,罗英俊.采油技术手册(修订本).北京:石油工业出版社,1991.
    [39]康万利,董喜贵.三次采油化学原理.北京:化学工业出版社,1997.
    [40]严瑞瑄,陈振兴,宋宗文等.水溶性聚合物.北京:化学工业出版社,1988.
    [41]永泽满等.高分子水处理.陈振兴译.北京:化学工业出版社,1985.
    [42]中国造纸学会编.中国造纸年鉴.北京:中国轻工业出版社,2002.
    [43]乔宗科,张宝丽等.一种新型絮凝剂在金矿的工业应用有色金属:选矿部分.1997,5 pp7.
    [44]Vonnegut, B. Rotating Bubble Method for the Determination of Surface and Interfacial Tensions. Rev. Sci. Instrum.1942,13,6-9.
    [45]Trujillo, E. M. The static and dynamics interfacial tensions between crude oils and caustic solutions. SPE Journal 1983,23,645-656.
    [46]Jenning, J. R.; Harley, Y. Chevron Oil Field Research CO; A Study of Caustic Solution-Crude Oil Interfacial Tensions. SPE Journal 1975,15,197-202.
    [47]Shinoda, K.; Hanrin, M.; Kunieda, K.; Saito, H. Principles of attaining ultra-low interfacial tension:The role of hydrophile-lipophile-balance of surfactant at oil/water interface. Colloids and Surfaces 1981,301-314.
    [48]Shinoda, K.; Arail, H. The correlation between phase inversion temperature in emulsion and cloud point in solution of nonionic emulsifier. J. Phys. Chem 1964, 68,3485-3490.
    [49]Allouche, J.; Tyrode, E.; Sadtler, V.; Choplin, L.; Salager, J. L. Emulsion morphology follow-up by simultaneous in situ conductivity and viscosity measurements during a dynamic temperature-induced transitional inversion.3th International Symposium on Food Rheology and Struture.2004,19-23
    [50]肖进新,赵振国.表面活性剂应用原理.北京:化学工业出版社,2003.
    [51]Yan, H.; Guo, X. L.; Yuan, S. L.; Liu, C. B. Molecular Dynamics Study of the Effect if Calcium Ions on the Monolayer of SDC and SDSn Surfactants at the Vapor/Liquid Interface. Langmuir 2011,27,5762-5771.
    [52]Islam, M. N.; Kato, T. Effect of temperature on the surface phase behavior and micelle formation of a mixed system of nonionic/anionic surfactants. J. Colloid Interface Sci.2005,282,142-148.
    [53]Sharma, K. S.; Hassan, P. A.; Rakshit, A. K. Self aggregation of binary surfactant mixtures of a cationic dimeric (gemini) surfactant with nonionic surfactants in aqueous medium. Colloids and Surfaces A:Physicochem. Eng. Aspects 2006, 289,17-24.
    [54]Szymczyk, K.; Janczuk, B. The wettability of polytetrafluoroethylene by aqueous solution of cetyltrimethylammonium bromide and Triton X-100 mixtures. J. Colloid Interface Sci.2006,303,319-325.
    [55]Szymczyk, K.; Janczuk, B. The adsorption at solution-air interface and volumetric properties of mixtures of cationic and nonionic surfactants. Colloids and Surfaces A:Physicochem. Eng. Aspects 2007,293,39-50.
    [56]Kabir-ud-Din.; Al-Ahniadi, M. D.; Naqvi, A. Z.; Akram, M. Conductometric study of antidepressant drug-cationic surfactant mixed midelles in aqueous solution. Colloids and Surfaces B:Biointerfaces 2008,64,65-69.
    [57]Dar, A. A.; Rather, G. M.; Ghosh, S.; Das, A. R. Micellization and interfacial behavior of binary and ternary mixtures of model cationic and nonionic surfactants in aqueous NaC1 medium. J. Colloid Interface Sci.2008,322, 572-581.
    [58]Bergstrom, L. M; Bramer, T. Synergistic effects in mixtures of oppositely charged surfactants as calculated from the Poisson-Boltzmann theory:A comparison between theoretical predictions and experiments. J. Colloid Interface Sci.2008,322,589-595.
    [59]Meszaros, R.; Varga, I.; Gilanyi, T. Effect of Polymer Molecular Weight on the Polymer/Surfactant Interaction. J. Phys. Chem. B 2005,109,13538-13544.
    [60]Tirtaatmadjia, V.; Tam, K. C; Jenkins, R. D. Effects of Temperature on the Flow Dynamics of a Model HASE Associative Polymer in Nonionic Surfactant Solutions. Langmuir 1999,15,7537-7545.
    [61]Wesley, R. D.; Cosgrove, T. Stucture of Polymer/Surfactant Complexes Formed by Poly(2-(dimethylamino)ethyl methacrylate) and Sodium Dodecyl Sulfate. Langmuir 2002,18,5704-5707.
    [62]Duffy, D. C; Davies, P. B.; Creeth, A. M. Polymer-Surfactant Aggregates at a Hydrophobic Surface Studied Using Sum-Frequency Vibrational Spectroscopy. Langmuir 1995,11,2931-2937.
    [1]Briones, X. G; Encinas, M. V. et al. Adsorption Behavior of Hydrophobically Modified Polyelectrolytes onto Amino or Methyl-Terminated Surfaces. Langmuir 2010,27,13524-13532.
    [2]Choi, I.; Suntivich, R.; Plamper, F. A. pH-Controlled Exponential and Linear Growing Modes of Layer-by-Layer Assemblies of Star Polyelectrolytes. J. AM. Chem. Soc 2011,133,9592-9606.
    [3]Zhang, S. F.; Sun, L. L. et al. Aggregate Structure in Heavy Crude Oil:Using a Dissipative Particle Dynamics Based Mesoscale Platform. Energy Fuels 2010,24, 4312-4326.
    [4]Vlcek, L.; Chialvo, A. A.; Cole, D. R. Optimized Unlike-Pair Interactions for Water-Carbon Dioxide Mixtures Described by the SPC/E and EPM2 Models. J. Phys. Chem. B 2011,115,8775-8784.
    [5]Wang, Q. F.; Keffer, D. J.; Nicholson, D. M.; Thomas, J. B. Coarse-Grained Molecular Dynamics Simulation of Polyethylene Terephthalate (PET). Macromolecules 2010,43,10722-10734.
    [6]Vonnegut, B. Rotating Bubble Method for the Determination of Surface and Interfacial Tensions. Rev. Sci. Instrum 1942,13,6-9.
    [7]Drelich, J.; Fang, C; White, L. C. Measurement of interfacial tension in fluid-fluid systems. Encyclopedia of Surface and Colloid Science 2002,3152-3166.2-7
    [8]赵国玺等,表面活性剂物理化学,北京:中国轻工业出版社,2003.
    [9]Karraker, K. A.; Radke, C. J. Disjoining pressures, Zeta potentials and surface tensions of aqueous non-ionic surfactant/electrolyte solutions:theory and comparison to experiment. Advances in Colloid and Interface Science 2002,96, 231-364.
    [10]Tantra, R.; Schulze, P.; Quincey, P.; Effect of nanoparticle concentration on zeta-potential measurement results and reproducibility. Particuology 2010,8, 279-285.
    [11]Mullet, M.; Fievet, P.; Reggiani, J. C; Pagetti, J. Surface electrochemical properties of mixed oxide ceramic membranes:Zeta-potential and surface charge density. Journal of Membrane Science 1997,123,255-265.
    [12]Ayao, K.; Akira, W.界面电现象,北京:北京大学出版社,1992.
    [13]何秀娟,强化采油用表面活性剂在油/水界面和泡沫液膜吸附行为的研究;硕士学位论文,2008.
    [14]谭晶,表面活性剂与聚合物在油/水和泡沫体系的加和增效机制研究;硕士学位论文,2010.
    [15]苑世领,分子模拟基础讲义,山东大学理论化学研究所:2003.
    [16]Perros, H. Computer Simulation Techniques:The definitive introduction!; Computer Science Department. NC State University, Raleigh, NC,2009.
    [17]延辉,两亲分子自组装体系及其耐盐机理的理论研究,博士学位论文,2011;
    [18]Vreede, J. DPD simulations of surfactants in oil-water systems.2003.
    [19]Rekvig, L.; Kranenburg, M.; Vreede, J.; Hafskjold, B.; Smit, B. Investigation of Surfactant Efficiency Using Dissipative Particle Dynamics. Langmuir 2003,19, 8195-8205.
    [20]Zhang, PL; Xu, Z. P.; Lu, G. Q.; Smith, S. C. Computer Modeling Study For Intercalation of Drug Heparin into Layered Double Hydroxide. J. Phys. Chem. C 2010,114,12618-12629.
    [21]Ilott, A. J.; Palucha, S.; Batsanov, A. S.; Harris, K. D. M.; Hodgkinson, P.; Wilson, M. R. Structural Properties if Carboxylic Acid Dimers Confined within the Urea Tunnel Structure:An MD Simulation Study. J. Phys. Chem. B 2011, 115,2791-2800.
    [22]Hagiwara, T.; Sakiyama, T.; Watanabe, H. Molecular Simulation of Bovine J3-Lactoglobulin Adsorbed onto a Positively Charged Solid Surface. Langmuir 2009,25,226-234.
    [23]Wang, X. Y.; et al. A molecular simulation study of cavity size distributions and diffusion in para and meta isomers. Polymer 2005,46,9155-9161.
    [24]Stirnemann, G.; Sterpone, F.; Laage, D.; Dynamics of Water in Concentrated Solutions of Amphiphiles:Key Roles of Local Structure and Aggregation. J. Phys. Chem. B 2011,115,3254-3262.
    [25]Brown, E. C; Mucha, M.; Jungwirth, P.; Tobias, D. J. Structure and Vibrational Spectroscopy of Salt Water/Air Interfaces:Predictions from Classical Molecular Dynamics Simulations. J. Phys. Chem. B 2005,109,7934-7940.
    [26]Shi, W. X.; Guo, H. X. Structure, Interfacial Properties and Dynamics of Sodium Alkyl Sulfate Type Surfactant Monolayer at the Water/Trichloroethylene Interface:A Molecular Dynamics Simulation Study. J. Phys. Chem. B 2010,114, 6365-6376.
    [27]Jang, S. S.; Goddard, W. A. Structures and Properties of Newton Black Films Characterized Using Molecular Dynamics Simulations. J. Phys. Chem. B 2006, 110,7992-8001.
    [28]Jungwirth, P.; Tobias, D. J. Surface Effects on Aqueous Ionic Solvation:A Molecular Dynamics Simulation Study of NaCl at the Air/Water Interface from Infinite Dilution to Saturation. J. Phys. Chem. B 2000,104,7702-7706.
    [29]Song, Y. M.; Luo, M. X.; Dai, L. L. Understanding Nanoparticle Diffusion and Exploring Interfacial Nanorheology using Molecular Dynamics Simulations. Langmuir 2010,26,5-9.
    [31]Shi, L.; Tummala, N. R.; Striolo, A. C12E6 and SDS Surfactants Simulated at the Vacuum-Water Interface. Langmuir 2010,26,5462-5474.
    [32]Chanda, J.; Bandyopadhyay, S. Molecular Dynamics Study of Surfactant Monolayers Adsorbed at the Oil/Water and Air/Water Interfaces. J. Phys. Chem. B 2006,110,23482-23488.
    [33]Hamm, L. M.; Wallace, A. F. Dove, P. M. Molecular Dynamics of Ion Hydration in the Presence of Small Carboxylated Molecules and Implications for Calcification. J. Phys. Chem. B 2010,114,10488-10495.
    [1]Zhao, X. F.; Liu, L. X.; Wang, Y. C.; Dai, H. X.; Wang, D.; Cai, H. Influences of partially hydrolyzed polyacrylamide (HPAM) residue on the flocculation behavior of oily wastewater produced from polymer flooding. Sep. Purif. Technol.2008,62,199-204.
    [2]宗华,工磊,方洪波,毛雷霆,工宇慧,张路,赵濉,俞稼镛.疏水改性聚丙烯酰胺对原油组分界面扩张流变性质的影响.物理化学学报,2010,26,2982-2988.
    [3]朱鹏飞,李英,李全伟,宋新旺,曹绪龙,李振泉.生物表面活性剂鼠李糖脂 及其复配体系界面行为和性质的介观模拟.化学学报,2011,69,2420-2426.
    [4]Li, Q.-W.; Yuan, R.; Li, Y. Study on the Molecular Behavior of Hydrophobically Modified Poly(acrylic acid) in Aqueous Solution and Its Emulsion-Stabilizing Capacity.J APPL. POLYM. SCI.2013,128,206.
    [5]Wu, H.; Xu, J. B.; He, X. R.; Zhao, Y. H.; Wen, H. Mesoscopic simulation of self-assembly in surfactant oligomers by dissipative particle dynamics. Colloids Surf., A.2006,290,239-246.
    [6]Li, Y.; He, X. J.; Cao, X. L.; Zhao, G. Q.; Tian, X. X.; Cui, X. H. Molecular behavior and synergistic effects between sodium dodecylbenzene sulfonate and Triton X-100 at oil/water interface. J. Colloid Interface Sci 2007,307,215-220.
    [7]Li, Y. M.; Zhang, H. X.; Bao, M. T.; Wang, Z. N. Dissipative particle dynamics simulation on the association between polymer and surfactant:Effects of surfactant and polymer feature. Comput. Mater. Sci.2012,63,154-162.
    [8]方云,赖中宇,庞萍萍,江明.部分水解聚丙烯酰胺-羟乙基纤维素的水相pH响应性自组装.物理化学学报,2011,27,1712-1718.
    [9]陈洪,韩利娟,徐鹏,罗平亚.疏水改性聚丙烯酰胺的增粘机理研究.物理化学学报,2003,19,1020-1024.
    [10]Li, Y. M.; Guo, Y Y; Bao, M. T.; Gao, X. L. Investigation of interfacial and structural properties of CTAB at the oil/water interface using dissipative particle dynamics simulations. J. Colloid Interface Sci.2011,361,573-580.
    [11]Feng, Y J.; Billon, L.; Grassl, B.; Khoukh, A.; Francois, J. Hydrophobically associating polyacrylamides and their partially hydrolyzed derivatives prepared by post-modification.1. Synthesis and characterization. Polymer 2002,43, 2055-2064.
    [12]Dobrynin, A. V. Theory and Simulations of charged polymers:From solution properties to polymeric nanomaterials. Curr. Opin. Colloid Interface Sci.2008, 13,376-388.
    [13]赵丰,杜玉扣,李兴长,唐季安,杨平.水解聚丙烯酰胺溶液粘弹性的研究.物理化学学报,2004,20,1385-1388.
    [14]Soppimath, K. S.; Kulkarni, A. R.; Aminabhavi, T. M. Chemically modified polyacrylamide-g-guar gum-based crosslinked anionic microgels as pH-sensitive drug delivery systems:preparation and characterization. J. Controlled Release 2001,75,331-345.
    [1]Bostrom, M.; Parsons, D.F.; Salis, A.; Ninham, B.W.; Monduzzi, M. Possible Origin of the Inverse and Direct Hofmeister Series for Lysozyme at Low and High Salt Concentrations. Langmuir 2011,27,9504-9511.
    [2]Xin, X.; Xu, G.Y.; Wu, D., Li, Y. M., Cao, X. R. The effect of CaCl2 on the interaction between hydrolyzed polyacrylamide and sodium stearate: Rheological property study. Colloids and Surfaces A:Physicochem. Eng. Aspects 2007,305,138-144.
    [3]Cao, J.; Tan, Y.B.; Che, Y.J.; Xin, H. P. Novel complex gel beads composed of hydrolyzed polyacrylamide and chitosan:An effective adsorbent for the removal of heavy metal from aqueous solution, Bioresource Technology 101 (2010) 2558-2561.
    [4]Cai, W. S.; Anderson, E. C, Gupta, R.B. Separation of Lignin from Aqueous Mixtures by Ionic and Nonionic Temperature-Sensitive Hydrogels. Ind. Eng. Chem. Res.2001,40,2283-2288.
    [5]Kunz, W.; Henle, J.; Ninham, B.W.'Zur Lehre von der Wirkung der Salze'(about the science of the effect of salts):Franz Hofmeister's historical papers. Curr. Opin. Colloid Interface Sci 2004,9,9-37.
    [6]Pegram, L. M., Record, M. T. Jr. Thermodynamic Origin of Hofmeister Ion Effects. J. Phys. Chem. B 2008,112,9428-9436.
    [7]Omta, A.W.; Kropman, M. F., Woutersen, S.; Bakker, H. J. Negligible Effect of Ions on the Hydrogen-Bond Structure in Liquid Water. Science 2003,301, 347-349.
    [8]Batchelor, J. D.; Olteanu, A.; Tripathy, A.; Pielak, G. J. Impact of Protein Denaturants and Stabilizers on Water Structure, J. Am. Chem. Soc.2004,126, 1958-1961.
    [9]Annunziata, O.; Paduano, L.; Pearlstein, A. J.; Miller, D. G.; Albright, J. G.; The Effect of Salt on Protein Chemical Potential Determined by Ternary Diffusion in Aqueous Solutions, J. Phys. Chem. B 2006,110,1405-1415.
    [10]Perez-Jimenez, R.; Godoy-Ruiz, R.; Ibarra-Molero, B.; Sanchez-Ruiz, J. M. The Efficiency of Different Salts to Screen Charge Interactions in Proteins:A Hofmeister Effect? Biophysical Journal 2004,86,2414-2429.
    [11]Kurutz, J. W.; Xu, S. H.; Hofmeister Solute Effects on Hydrophobic Adhesion Forces in SFM Experiments, Langmuir 2001,17,7323-7326.
    [12]Aroti, A.; Leontidis, E.; Maltseva, E.; Brezesinski, G. Effects of Hofmeister Anions on DPPC Langumuir Monolayers at the Air-Water Interface, J. Phys. Chem. B 2004,108,15238-15245.
    [13]Nostro, P. L.; Peruzzi, N.; Severi, M.; Ninham, B. W.; Baglioni, P. Asymmetric Partitioning of Anions in Lysozyme Dispersions, J. Am. Chem. Soc.2010,132, 6571-6577.
    [14]Alvarez, F.; Flores, E. A.; Castro, L. V.; Hernandez, J. G; Lopez, A.; Vazquez, F. Dissipative Particle Dynamics (DPD) Study of Crude Oil-Water Emulsions in the Presence of a Functionalized Co-polymer. Energy Fuels 2011,25,562-567.
    [15]Sangwai, A. V.; Sureshkumar, R. Coarse-Grained Molecular Dynamics Simulations of the Sphere to Rod Transition in Surfactant Micelles. Langmuir 2011,27,6628-6638.
    [16]Li, Q. W; Yuan, R.; Li, Y. Study on the molecular behavior of hydrophobically modified poly(acrylic acid) in aqueous solution and its emulsion-stabilizing capacity. Journal of Applied Polymer Science 2013,128,206-215.
    [17]Che, Y J.; Tan, Y. B.; Cao, J.; Xin, H. P.; Xu, G. Y. Synthesis and properties of hydrophobically modified acrylamide-based polysulfobetaines. Polym. Bull. 2011,66,17-35.
    [18]Li, Y; He, X. J.; Cao, X. L.; Zhao, G. Q.; Tian, X. X.; Cui, X. D. Molecular behavior and synergistic effects between sodium dodecylbenzene sulfonate and Triton X-100 at oil/water interface. Journal of Colloid and Interface Science 2007,307,215-220.
    [19]黄茜,李英,张辉,宋新旺,李全伟,曹绪龙,李振泉.聚丙烯酸环境影响行为的研究.化学学报,2009,21,2421-2426.
    [20]Rekvig, L.; Kranenburg, M.; Vreede, J.; Hafskjold, B.; Smit, B. Investigation of Surfactant Efficiency Using Dissipative Particle Dynamics. Langmuir 2003,19, 8195-8205.
    [1]He, F.; Xu, G. Y.; Pang, J. Y.; Ao, M. Q.; Han, T. T.; Gong, H. J. Effect of Amino Acids on Aggregation Behaviors of Sodium Deoxycholate at Air/Water Surface: Surface Tension and Oscillating Bubble Studies. Langmuir 2011,27,538-545.
    [2]He, F.; Xu, G. Y.; Pang, J. Y.; Ao, M. Q.; Han, T. T.; Gong, H. J. Effect of Amino Acids on Aggregation Behaviors of Sodium Deoxycholate at Air/Water Surface: Surface Tension and Oscillating Bubble Studies. Langmuir 2011,27,538-545.
    [3]Wang, X. Y.; in't Veld, P. J.; Lu, Y.; Freeman, B. D.; Sanchez, I. C. A molecular simulation study of cavity size distributions and diffusion in para and meta isomers. Polymer 2005,46,9155-9161.
    [4]Hagiwara, T.; Sakiyama, T.; Watanabe, H. Molecular Simulation of Bovine β-Lactoglobulin Adsorbed onto a Positively Charged Solid Surface. Langmuir 2009,25,226-234.
    [5]Farimani, A. B.; Aluru, N. R. Spatial Diffusion of Water in Carbon Nanotubes: From Fickianto Ballistic Motion. J. Phys. Chem. B 2011,115,12145-12149.
    [6]Hamm, L. M.; Wallace, A. F.; Dove, P. M. Molecular Dynamics of Ion Hydration in the Presence of Small Carboxylated Molecules and Implications for Calcification. J. Phys. Chem. B 2010,114,10488-10495.
    [7]Goli, E.; Hiemstra, T.; Van Riemsdijk, W. H.; Rahnemaie, R.; Malakouti, M. J. Diffusion of Neutral and Ionic Species in Charged Menbranes:Boric Acid, Aresenite, and Water. Anal. Chem.2010,82,8438-8445.
    [8]Zhao, T. T.; Xu, G. Y.; Yuan, S. L.; Chen, Y. J.; Yan, H. Molecular Dynamics Study of Alkyl Benzene Sulfonate at Air/Water Interface:Effect of Inorganic Salts. J. Phys. Chem. B 2010,114,5025-5033.
    [9]Wu, C. Y.; Skelton, A. A..; Chen, M. J..; Vlcek, L..; Cummings, P. T. Modeling the Interaction between Integrin-Binding Peptide (RGD) and Rutile Surface:The Effect of Cation Mediation on Asp Adsorption. Langmuir 2012,28,2799-2811.
    [10]Obst, S.; Bradaczek, H. Molecular Dynamics Study of the Structure and Dynamics of the Hydration Shell of Alkaline and Alkaline-Earth Metal Cations. J. Phys. Chem.1996,100,15677-15687.
    [11]Sachs, J. N.; Woolf, T. B. Understanding the Hofmeister Effect in Interactions between Chaotropic Anions and Lipid Bilayers:Molecular Dynamics Simulations. J. Am. CHEM. SOC.2003,125,8742-8743.
    [12]Yan, H.; Guo, X. L.; Yuan, S. L.; Liu, C. B. Molecular Dynamics Study of the Effect of Calcium Ions on the Monolayer of SDC and SDSn Surfactants at the Vapor/Liquid Interface. Langmuir 2011,27,5762-5771.
    [13]Uddin, N. M.; Capaldi, F. M.; Farouk, B. Molecular dynamics simulations of the interactions and dispersion of carbon nanotubes in polyethylene oxide/water systems. Polymer 2011,52,288-296.
    [14]Reister, E.; Fredrickson, G. H. Nanoparticles in a Diblock Copolymer Backgroud: The Potential of Mean Force. Macromolecules 2004,37,4718-4730.
    [15]Algaer, E. A.; van der Vegt, N. F. Hofmeister Ion Interactions with Model Amide Compounds. J. Phys. Chem. B 2011,115,1378-1387.
    [16]Larentzos, J. P.; Criscenti, L. J. A molecular Dynamics Study of Alkaline Earth Metal-Chloride Complexation in Aqueous Solution. J. Phys. Chem. B 2008,112, 14243-14250.
    [17]Iskrenova-Tchoukova, E.; Kalinichev, A. G.; Kirkpatrick, R. J. Metal Cation Complexation with Natural Organic Matter in Aqueous Solutions:Molecular Dynamics Simulations and Potentials of Mean Force. Langmuir 2010,26, 15909-15919.
    [18]Schwierz, N.; Horinek, D.; Netz, R. R. Anionic and Cationic Hofmeister Effects on Hydrophobic and Hydrophilic Surfaces. Langmuir 2013,29,2602-2614.
    [19]Yan, H.; Yuan, S. L.; Xu, G. Y.; Liu, C. B. Effect of Ca2+and Mg2+Ions on Surfactant Solutions Investigated by Molecular Dynamics Simulation. Langmuir 2010,26,10448-10459.
    [20]Minatti, E.; Viville, P.; Borsali, R.; Schappacher, M.; Deffieux, A.; Lazzaroni, R. Micellar Morphological Changes Promoted by Cyclization of PS-b-PI Copolymer:DLS and AFM Experiments. Macromolecules 2003,36,4125-4133.
    [21]Stubenrauch, K.; Moitzi, C.; Fritz, G.; Glatter, O.; Trimmel, G.; Stelzer, F. Precise Tuning of Micelle, Core, and Shell Size by the Composition of Amphiphilic Block Copolymers Derived from ROMP Investigated by DLS and SAXS. Macromolecules 2006,39,5865-5874.
    [22]DLS and AFM Studies on the Cluster Evolution of Organically Modified Silica Gels Catalyzed by a Super Strong Acid. Macromolecules 2007,40,3773-3778.
    [23]Klaveness, T. M.; Ruoff, P. Kinectics of the Cross-Linking of Polyacrylamid with Cr(III). Analysis of Possible Mechanisms. J. Phys. Chem.1994,98, 10119-10123.
    [24]Cordova, M.; Cheng, M.; Trejo, J.; Johnson, S. J.; Willhite, G P.; Liang, J. T.; Berkland, C. Delayed HPAM Gelation via Transient Sequestration of Chromium in Polyelectrolyte Complex Nanoparticles. Macromolecules 2008,41, 4398-4404.
    [25]Wang, Z.; Ma, W. H.; Chen, C. C.; Zhao, J. C. Photochemical Coupling Reactions between Fe(III)/Fe(II), Cr(VI)/Cr(III), and Polycarboxylates: Inhibitory Effect of Cr Species. Environ. Sci. Technol.2008,42,7260-7266.
    [26]Velasquez, J.; Pillai, E. D.; Carnegie, P. D.; Duncan, M. A. IR Spectroscopy of M+(Acetone) Complexes (M=Mg, Al, Ca):Cation-Carbonyl Binding Interactions. J. Phys. Chem. A 2006,110,2325-2330.
    [27]Cordova, M.; Cheng, M; Trejo, J.; Johnson, S. J.; Willhite, G. P.; Liang, J. T.; Berkland, C. Delayed HPAM Gelation via Transient Sequestration of Chromium in Polyelectrolyte Complex Nanoparticles. Macromolecules 2008,41, 4398-4404.
    [28]Frenking, G.; Frohlich, N. The Nature of the Bonding in Transition-Metal Compounds. Chem. Rev.2000,100,717-774.
    [29]Lyubchenko, Y. L. Preparation of DNA and nucleoprotein samples for AFM imaging. Micron 2011,42,196-206.
    [30]Yang, Y. H.; Haile, M.; Park, Y. T.; Malek, F. A.; Grunlan, J. C. Super Gas Barrier of All-Polymer Multilayer Thin Films. Macromolecules 2011,44,1450-1459.
    [31]Grigorov, K. G.; Oliveira, I. C.; Maciel, H. S.; Massi, M.; Oliveira, M. S.; Amorim, J.; Cunha, C. A. Optical and morphological properties of N-doped TiO2 thin films. Surface Science 2011,605,775-782.
    [32]Gaczynska, M.; Osmulski, P. A. AFM of biological complexes:What can we learn? Current Opinion in Colloid & Interface Science 2008,13,351-367.
    [1]肖进新,赵振国.表面活性剂应用原理, 北京:化学工业出版社,2003.
    [2]彭朴.采油用表面活性剂,北京:化学工业出版社,2003.
    [3]梁梦兰.三元复合驱用天然石油磺酸盐制备及性能研究.精细石油化学,1999,7,15.
    [4]李干佐,房秀敏.表面活性剂在能源和选矿工业中的应用.北京:中国轻工业 出版社,2002.
    [5]朱鹏飞,李英,李全伟,宋新旺,曹绪龙,李振泉.生物表面活性剂鼠李糖脂及其复配体系界面行为和性质的介观模拟.化学学报,2011,69,2420-2426.
    [6]崔正刚,邹文华,孙雪芳,张天林,张德根.重烷基苯磺酸盐/碱/原油体系的界面张力.油田化学,1999,16,153-157.
    [7]焦艳华,徐志刚,乔卫红,李宗石,程侣柏.改性木质素磺酸盐表面活性剂合成及性能研究.大连理工大学学报,2004,44,44-47.
    [8]Novosad, J译:李道山,田燕春.在表面活性剂驱油中木质素磺酸盐作为牺牲剂的实验室评价.国外油田工程,2000,9,1-3.
    [9]谭中良,韩冬,杨普华.孪连表面活性剂的性质和三次采油中应用前景.油田化学,2003,20,187-191.
    [10]康永,柴秀娟.烷醇酰胺表面活性剂的应用及其发展.西部皮革,2011,33,51-54.
    [11]康永,柴秀娟.烷醇酰胺表面活性剂研究进展.精细石油化工进展,2011,12,27-30.
    [12]李晓东,刘慧,徐方俊.烷醇酰胺表面活性剂在降压增注技术中的性能与应用研究.哈尔滨理工大学,2009,6,120-123.
    [13]宁红梅,郭俊文,陈玉萍,崔秀兰.葵花籽油制备烷醇酰胺表面活性剂的研究.内蒙古农业大学学报,2008,2,169-172.
    [14]易杰,杨文华,单志华.烷醇酰胺复合物的制备.皮革科学与工程,2011,2,35-38.
    [15]白亮,杨秀金.烷醇酰胺的合成研究进展.日用化学品科学,2009,4,15-19.
    [16]赵国玺.表面活性剂物理化学.北京:北京大学出版社,1991.
    [17]Rosen, M. J. Surfactants and Interfacial Phenomena. John Wiley & Sons, Inc. 2004.
    [18]Khurana, E.; Nielsen, S. O.; Klein, M. L. Gemini Surfactants at the Air/Water Interface:A Fully Atomistic Molecular Dynamics Study. J. Phys. Chem. B 2006, 110,22136-22142.
    [19]Qalik, P.; Ileri, N.; Erdinc, B. Novel Antifoam for Fermentation Processes: Fluorocarbon-Hydrocarbon Hybrid Unsymmetrical Bolaform Surfactant. Langmuir 2005,21,8613-8619.
    [20]Shi, L.; Tummala, N. R.; Striolo, A. C12E6 and SDS Surfactants Simulated at the Vacuum-Water Interface. Langmuir 2010,26,5462-5474.
    [21]Chanda, J.; Bandyopadhyay, S. Molecular Dynamics Study of a Surfactant Monolayer Adsorbed at the Air/Water Interface. J. Chem. Theory Comput.2005, 1,963-971.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700