位移型和速度型阻尼器减震对比研究及优化设计
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
由于消能减震结构具有减震机理明确、减震效果显著且安全可靠等优点,易于在工程中推广应用,因此,三十多年来,国内外学者对各种消能装置的试验、理论分析和控制设计方法进行了大量研究,并取得了诸多成果,消能减震技术在新建工程和震损建筑减震、加固中的应用形式和范围也越趋广泛。目前,我国《建筑抗震设计规范》(GB50011—2001)中已经增加了有关消能减震的内容,位移型和速度型两类被动阻尼器是其中需要重点研究和推广的技术。对于形式多样、要求各异的工程结构,如何在推广应用消能技术时,选择适合的阻尼器类型并进行阻尼器的合理优化设计将关系到这一技术的发展前景,具有重要的现实意义,值得进一步探讨研究。在此背景下,本文主要进行了以下几个方面的工作:
     (1)从时程分析的主体—结构着手,提出根据不同结构模型进行阻尼器选型的方法。鉴于层弯剪型模型在弹塑性分析中存在的问题,对刚度矩阵的修正进行了合理地近似处理。根据动力等效准则设计了与层弯剪型模型第一频率和振型相同且各层质量也相同的剪切型结构,编制了不同计算模型结构的弹塑性时程分析程序;在为结构提供相同附加阻尼比的前提下,对弯剪型和剪切型两种不同形式结构在位移型和速度型阻尼器控制下的非线性地震反应分别进行分析比较。数值分析结果表明,对于不同模型的结构,达到相同抗震性能目标下所需位移型阻尼器和速度型阻尼器的数量不同,且两种类型被动阻尼器的减震效果也不同,建议在进行消能减震技术应用时,可以根据确定的结构分析模型形式以及结构空间状况选用适当类型的被动阻尼器进行振动控制,给出可供工程参考的初步结论。
     (2)提出一种新型的阻尼器位置优化目标函数,可以综合考虑结构安全性和舒适度的要求。在阻尼器数量一定的前提下,利用遗传算法对位移型阻尼器进行位置优化,并对目标函数中不同的加权系数组合进行了初步探讨。在四类不同场地条件下,对低、中、高层三种不同结构进行阻尼器位置优化,并对阻尼器最优布置下的结构时程反应进行分析对比。数值分析表明,根据新型优化函数得到的阻尼器优化布置可以有效地控制结构反应;通过比较不同加权系数组合情况下的阻尼器最优布置方案,给出有关位移型阻尼器优化布置方面的几点建议以供设计、应用参考。
     (3)提出了阻尼器位置优化的两个评价指标。在阻尼器数量一定的前提下,以遗传算法为手段,利用新型位置优化目标函数,在四类场地条件下,对短、中、长周期三种结构分别进行了位移型和速度型阻尼器的位置优化。对两种类型阻尼器最优布置下的结构非线性地震反应进行数值分析,以本文提出的两个评价指标为性能指标,将不同消能结构的振动控制效果进行量化比较。数值分析表明,不同类型阻尼器在不同结构和场地条件下进行位置优化时,目标函数中的最优系数组合取值各有特点,为工程应用中针对不同类型阻尼器选取适当形式的优化目标函数提供了一定的参考。
     (4)将基于位移的抗震设计方法应用于新建或震损建筑减震、加固中阻尼器的设计。针对根据已有多自由度体系目标位移公式计算高层、超高层结构的不合理性,提出了一种修正的结构目标位移计算公式,建立了目标位移和结构性能指标之间的关系。以一定设防等级下结构控制部位的目标位移作为已知条件,而将消能减震装置作为未知条件,根据两种类型阻尼器的等效刚度和等效阻尼比公式,通过等效单自由度体系的逆向计算,进行满足相同结构预期性能目标下的不同类型阻尼器参数设计。以一高层钢结构建筑为例的数值分析表明,采用此方法设计的阻尼器能够满足结构预期的性能目标,设计方法比较简便实用。
     (5)结合国际上通用的结构振动控制性能评价平台—Benchmark三种结构模型,利用非线性结构振动控制Benchmark评价性能指标,对位移和速度型被动阻尼器的控制效果进行比较分析。将被动控制结构分析同现代控制理论相结合,利用MATLAB/SIMULINK建立了基于位移型和速度型阻尼器的结构仿真模型,分别计算了三种结构模型在近场和远场地震动作用下,不同类型阻尼器对结构反应不同指标的控制效果,为消能结构设计中阻尼器的选用提供了一定的参考。
Passive energy dissipation structures have advantages of definite damping mechanism, effective reduction of structural response, safety and reliability. So over thirty years, studies on experiments, theoretical analyses and design methods of various energy dissipation devices have made great development. The technique of passive energy dissipation has been widely applied in seismic control of new constructions and reinforcement of seismic damage structures and has extensive forms. At present, contents related to passive energy dissipation have been written into the China Seismic Code (GB50011-2001). Among it, the use of displacement-based dampers and velocity-based dampers is the technology needed to be emphasized and popularized. But for a variety of forms and different requirement of the projects, how to choose suitable type of dampers and design dampers optimally will affect the development of the technology during its popularization, which has important realistic meaning and is worth of further study. The thesis focuses on seismic behavior comparison and optimal design of different dampers, and the following aspects are devoted to the main effects:
     (1) Considering different computation models, comparison of the nonlinear vibration control of high-rise structures with additional two type passive dampers is done. For the current problem of storey shear-bending model in elasto-plastic analysis, approximate treatment is done to the stiffness matrix. Designing storey shearing model structure from shear-bending model structure according to dynamically equivalent standard, time-history analysis programs of structures are compiled. On the premise that the equivalent damping of two kind dampers is equal, studies focus on the effect of type and quantity of dampers on structure control effectiveness of different computation models and comparisons are done. The numerical analysis results show that the two types of dampers' control effectiveness are different for the high-rise structure of different computation models. Suggestions are proposed that when using passive energy dissipation technology, different type of passive dampers should be chosen to control vibration responses according to the structure analysis model.
     (2) A new objective function of dampers' location optimization is proposed. As the China Codes have given certain limit to the structure's drift angle, maximum acceleration and maximum horizontal displacement of vertical components, three structure indexes are comprehensively considered in the new objective function. Various coefficient combinations of indexes can be chosen according to the different requirement of structural security and coziness. On the premise that the number of dampers is fixed, it is dealt with the optimal placement of displacement-based dampers for several building models with different number of stores and seismic ground motions at four types of sites using genetic algorithm. Five kinds of combination modes of the three indices in optimal function are then supposed. Nonlinear step-by-step time history analyses are carried out to achieve the optimal combination mode of the coefficients in mathematic model and the optimal locations of these dampers for several building structures. The optimal results can also verify effectiveness and feasibility of the new objective function for structural control and some meaningful suggestions about optimal placement of displacement-based dampers are given.
     (3) Two estimating indices are presented to assess the structural responses with different optimal placement of dampers. Using the new objective function, the optimal locations of two types of dampers are analyzed for several building models with different number of stores and seismic ground motions at four types of sites. Two estimating indices are utilized to assess the response to the optimal location under the condition of five combination modes, which can generally express the best response control and the propositional combination of the coefficients is available under different conditions. Comparison of two kinds dampers' optimal results show that the objective function of location optimization are different for different structures with different dampers and some conclusions for application are given.
     (4) The displacement-based seismic design method has been applied to the dampers design utilized in new constructions and reinforcement of seismic damage structures. Because of the inconsequence of target displacement formula of multiple-degree of freedom system used for high-rise structures, a modified displacement formula is suggested, which can establish the relationship between the target displacement and the performance indexes. Taking a target displacement of a certain security grading structure as the known condition, and the energy dissipation devices as unknown conditions, according to the equivalent stiffness and damping formulas, the reverse calculation of the equivalent single degree of freedom system was done to gain the design parameters of different types of dampers expected to meet performance targets. The numerical analysis of a high-rise steel structure as an example shows that using this method to design dampers can meet the prospective performance targets, and it is a simple and practical design means.
     (5) With the international common performance evaluation platform of structural vibration control—the third stage of Benchmark three models, using Benchmark performance evaluation indices of nonlinear vibration control, the control results for displacement-based and velocity-based dampers were compared. Combining the passive control of structures with the modern control theory, using MATLAB/SIMULINK to establish simulation models of the structures with displacement-based and velocity-based dampers, the responses of three Benchmark structure models were calculated under far and near-field earthquakes. Control effectiveness is compared for different types of dampers on different structures through different evaluation indices, which can provide a certain criterion of reference for the application and design of the passive energy dissipation dampers.
引文
[1]李宏男主编.建筑抗震设计原理.北京:中国建筑工业出版社,1996.
    [2]胡聿贤.地震工程学导论.北京:地震出版社,1988.
    [3]李宏男.结构多维抗震理论.北京:科学出版社,2006.
    [4]Kelly J M,Skinner R I,Heine A J.Mechanisms of energy absorption in special devices for use in earthquake-resistant structures.Bulletin of N.Z.National Society for Earthquake Engineering,1972,5(3):63-88.
    [5]Housner G W,Bergman L A,Caughey T K,et al.Structural control:past,present,and future.Journal of Engineering Mechanics,1997,123(9):897-971.
    [6]Qu J T,Li H N.Progress on Study of Energy Dissipation for Passive Response Control.The second international forum on advances in structural engineering,2008 Oct.,Dalian,China.
    [7]中华人民共和国国家标准.建筑抗震设计规范(GB50011-2001).北京:中国建筑工业出版社,2001.
    [8]Yao J T P.Concept of structural control.ASCE Journal of the Structural Division,1972,98(ST7):1567-1573.
    [9]李宏男,阎石.中国结构控制的研究与应用.地震工程与工程振动,1999,19(1):107-112.
    [10]李宏男.结构振动控制实践的新进展.世界地震工程,1995,11(2):34-39.
    [11]李宏男等.结构振动与控制.北京:中国建筑工业出版社,2005.
    [12]周福霖.工程结构减震控制.北京:地震出版社,1997.
    [13]吴波,李惠.建筑结构被动控制的理论与应用.哈尔滨:哈尔滨工业大学出版社,1997.
    [14]欧进萍.结构振动控制-主动、半主动和智能控制.北京:科学出版社,2003.
    [15]周云.摩擦耗能减震结构设计.武汉:武汉理工大学出版社,2006.
    [16]李宏男,阎石,贾连光.利用调液阻尼器减振的结构控制研究进展.地震工程与工程振动,1995,15(3):99-110.
    [17]李宏男,张玲,杨玉石.利用多个调液阻尼器减小高层建筑地震反应的研究.地震工程与工程振动,1997,17(1):23-31.
    [18]Chang J C H,Soong T T.Structural control using active tuned mass dampers.ASCE Journal of Engineering Mechanics Division,1980,106(6):1091-1098.
    [19]Aizawa S,Fukao Y,Minewaki S et al.An experimental study on the active mass damper.Proceedings of 9th World Conference on Earthquake Engineering,Tokyo-Kyoto,Japan,1988,V:871-876.
    [20]Soong T T.Active structural control-theory and practice.Longman Scientific and Technical,1990:60-97.
    [21]霍林生.偏心结构利用调液阻尼器减震控制的研究:(博士学位论文).大连:大连理工大学.2005.
    [22]Kobori T.Dynamics loading test of real scale steel frame with active variable stiffness device.Journal of Structural Engineering,1991,37B:317-328.
    [23]Kobori T,Takahashi M,Nasu T et al.Seismic response controlled structure with active variable stiffness system.Earthquake Engineering and Structural Dynamics,1993,22(11):925-941.
    [24]Yang N J,Wu J C,Li Z.Control of seismic-excited buildings using active variable stiffness systems.Engineering Structures,1996,18(8):589-596.
    [25]Nasu T,Kobori T,Zakahashi M.Earthquake observation and efficiency evaluation of active variable stiffness.Proceedings of 4th International Conference on Adaptive Structures,1993:15-28.
    [26]刘季,孙作玉.结构可变阻尼半主动控制.地震工程与工程振动,1997,17(2):92-97.
    [27]Patten W N.New life for the Walnut creek bridge via semi-active vibration control.Newsletter of the International Association for Structural Control,1997,2(1):4-5.
    [28]欧进萍,杨飓.压电-T型变摩擦阻尼器及其性能试验与分析.地震工程与工程振动,2003,23(4):171-177.
    [29]Li H N,Li J,Song G B.Sub-optimal bang-bang control of buildings with piezoelectric friction dampers.Proceedings of the International Society for Optical Engineering(SPIE),San Diego,CA,2005.
    [30]赵大海.基于压电摩擦阻尼器的结构控制理论与试验研究:(博士学位论文).大连:大连理工大学,2008.
    [31]李秀领.非对称结构的磁流变阻尼器半主动控制:(博士学位论文).大连:大连理工大学,2006.
    [32]李秀领,李宏男.MR阻尼结构振动控制的仿真试验研究.系统仿真学报,2006,18(5):1343-1346.
    [33]李宏男,霍林生,闫石.神经网络半主动TLCD对偏心结构的减震控制.地震工程与工程振动,2001,21(4):135-141.
    [34]李宏男,金峤.基于Takagi-Sugeno模型的半主动TLCD对偏心结构的减震控制.计算力学学报,2003,20(5):523-529.
    [35]李宏男,霍林生,刘洋.采用神经网络半主动TLCD对海洋固定式平台的振动控制.防灾减灾工程学报,2003,23(2):22-27.
    [36]Housner G W,Soong T T.Second generation of active structural control in civil engineering.Microcomputers in Civil Engineering,1996,11:289-296.
    [37]程文瀼,瞿伟廉.南京电视塔的风振控制研究.土木工程学报,1993,4(5):14-20.
    [38]李爱群,瞿伟廉,程文瀼.南京电视塔风振的混合振动控制研究.建筑结构学报,1996,17(3):9-17.
    [39]Watakabe M,Tohdo M,Chiba O,et al.Response control performance of a hybrid mass damper applied to a tall building.Earthquake Engineering and Sturctural Dynamics,2001,30(11):1655-1676.
    [40]Yang J N,Li Z,Danielians A,et al.Aseismic hybrid control of nonlinear and hysteretic structures.Journal of Engineering Mechanics,1992,118(7):1423-1456.
    [41]Madden G J,Wongprasert N,Symans M D.Analytical and numerical study of a smart sliding base isolation system for seismic protection of buildings.Computer-Aided Civil and Infrastructure Engineering,2003,18(1):18-30.
    [42]Tzan S R,Pantelides C P.Hybrid structural control using viscoelastic dampers and active control systems.Earthquake Engineering and Structural Dynamics,1994,23(2):1369-1388.
    [43]李惠.粘弹性阻尼材料在结构及其内部设备减震中的应用研究和低层大空间高层建筑的混合控制方法:(博士后出站报告).哈尔滨:国家地震局工程力学研究所,1996.
    [44]周云.金属耗能减震结构设计.武汉:武汉理工大学出版社,2006.
    [45]李宏男,阎石.智能结构控制发展综述.地震工程与工程振动,1999,19(2):29-36.
    [46]李宏男,李军.采用压电智能材料的土木工程结构控制研究进展.建筑结构学报,2005,26(3):1-9.
    [47]Building Seismic Safety Council.NEHRP Commentary on the Guidelines for the Seismic Rehabilitation of Buildings,FEMA274.Washington D C,1996.
    [48]Skinner R I,Kelly J M,Heine A J.Hysteresis dampers for earthquake resistant stuctures.Earthquake Engineering and Sturctural Dynamics,1975,3(1):287-296.
    [49]Tyler R G.Tapered steel energy dissipators for earthquake resistant structures.Bulletin of the New Zealand National Society for Earthquake Engineering,1978,11(4):282-294.
    [50]Whittaker A S,Bertero V V,Thompson C I,et al.Seismic testing of steel plate energy dissipation devices.Earthquake Spectra,1991,7(4):563-604.
    [51]Tsai K C,Chen H W,Hong C P,et al.Design of steel triangular plate energy absorbers for seismic resistant construction.Earthquake Spectra,1993,19(3):505-528.
    [52]欧进萍,吴斌.摩擦型与软钢屈服型耗能器的性能与减震效果的试验比较.地震工程与工程振动,1995,15(3):73-87.
    [53]Yasushi Kurokawa,Mitsuo Sakamoto,Toshikazu Ymada,et al.Structural design of a tall building with elastic-plastic steel dampers for the attenuation of torsional and lateral motions.Structure Design Tall Build,1998,7:21-32.
    [54]李钢.新型金属阻尼器减震结构的试验及理论研究:(博士学位论文).大连:大连理工大学,2006.
    [55]Mito M,Tamura R,Isogai,et al.Study on seismic design method for building with steel damper(Partl).PROC.AIJ Annual Meeting,1997,B:815-816.
    [56]Tirca L D,Foti D,Diaferio M.Response of middle-rise steel frames with and without passive dampers to near-field ground motions.Engineering Structures,2003,25(2):169-179.
    [57]欧进萍,吴斌.组合钢板耗能器-一种新型耗能减震装置.地震工程与工程振动,1997,17(1):32-39.
    [58]周云.耗能减震新技术与新体系研究:(博士学位论文).哈尔滨:哈尔滨建筑大学,1996.
    [59]周云,刘季.新型耗能(阻尼)减震器的开发与研究.地震工程与工程振动,1998,18(1):71-79.
    [60]周云,刘季.双环软钢耗能器的试验研究.地震工程与工程振动,1998,18(2):117-123.
    [61]孙峰,周云,俞公骅等.加劲圆环耗能器性能的试验研究.地震工程与工程振动,1999,19(3):115-120.
    [62]李钢,李宏男.新型软钢阻尼器的减震性能研究.振动与冲击,2006,25(3):66-73.
    [63]Hong-Nan Li,Gang Li.Experimental study of structure with "dual functions" metallic damper.Engineering Sturctures,2007,29(8):1917-1928.
    [64]邢书涛,郭迅.一种新型软钢阻尼器力学性能和减震效果的研究.地震工程与工程振动,2003,23(6):187-192.
    [65]Xia C,Hanson R C.Influence of ADAS Element Parameters on Building Seismic Response,Journal of Structural Engineering,ASCE,1992,118(7):1903-1918.
    [66]Tehranizadeh M.Passive Energy Dissipation Device for Typical Steel Frame Building in Iran.Engineering Structures,2001,23(6):643-655.
    [67]邢书涛.新型软钢阻尼器及其在结构控制中的应用研究:(硕士学位论文).哈尔滨:中国地震局工程力学研究所,2003.
    [68]张国真,黄震兴,苏晴茂等.结构消能减震控制及隔震设计.台北:全华科技图书股份有限公司.1993.
    [69]蔡克铨,黄立宗.含三角形加劲阻尼装置构架的设计方法与应用.结构工程师增刊(台湾省),2000.
    [70]李惠,毛晨曦.形状记忆合金(SMA)被动耗能减震体系的设计及参数分析.地震工程与工程振动,2001,21(4):54-59.
    [71]Skinner R I,Kelly J M,Heine A J,et al.Hysteresis dampers for the protection of the structures from earthqake.Bulletin of N.Z.National Society for Earthquake Engineering,1980,13(1):22-26.
    [72]Ciampi V.Use of energy dissipation devices,based on yielding of steel for earthquake protection of buildings.Proceedings of International Meeting on Earthquake Protection of Buildings,Ancona,Italy,1991,D:41-58.
    [73]Toshiyuki Sueoka,Shingo Torii,Yasuhiro Tsuneki.The application of response control design using middle-story isolation system to high-rise building.The 13th World Conference on Earthquake Engineering,Vancouer,Canada,2004.
    [74]Akihiro Kunisue,Norihide Koshika.Retrofiting method of existing reinforced concrete building using elastic-plastic steel dampers.The 12th World Conference on Earthquake Engineering,Auckland,New Zealand,2000.
    [75]Martinez-Romero,E,Experiences on the use of supplemental energy dissipators on building structures.Earthquake Spectra,1993,9(3):581-624.
    [76]Perry C L,Fierro E A,Sedarat H,et al.Seismic upgrade in San Francisco using energy dissipation devices.Earthquake Spectra,1993,9(3):559-579.
    [77]Pierro E A,Perry C L.Francisco retrofit design using added damping and stiffness elements.Proceedings of ATC 17-1 Seminar on Seismic Isolation,Passive Energy Dissipation,and Active Control,San Francisco,1993,2:593-604.
    [78]陈福松,王庆明,蒋志强.特殊耐震耗能系统在建筑结构之应用.结构工程师增刊,2000.
    [79]Soong T T,Dargush G F.Passive energy dissipation systems in structural engineering.New York:John Wley & Sons,1997.
    [80]Pall A S,Marsh C,Fazio P.Friction joints for seismic control fo large panel structures.Journal of Prestressed Concrete Institute,1980,25(6):38-61.
    [81]Pall A S,Marsh C.Friction-damped concrete shear walls.ACI Journal,1981,78(3):187-193.
    [82]Pall A S,Marsh C.Seismic response of friction damped braced frames.ASCE Journal of the Structural Division,1982,108(6):1313-1323.
    [83]Aiken I D,Kelley J M.Earthquake Simulator Testing and Analytical Studies of Two Energy-Absorbing Systems for Multistory Structures.Report No.UCB/EERC-90/03,University of California,Berkeley,CA,1990.
    [84]李惠,彭君义,周锡元,张平.向心式变摩擦阻尼器控制结构地震反应分析.地震工程与工程振动,2001,21(4):66-73.
    [85]陈宗明,陈立兴,赵禹民等.新型抗震耗能支撑试验研究.建筑结构学报,1988,10(4):21-29.
    [86]张维,杨蔚彪.低周反复荷载下二阶摩擦减振控制支撑框架的试验研究.建筑科学,1997,4:3-7.
    [87]周云,刘季.两种摩擦耗能器的比较试验研究.地震工程与工程振动,1997,17(1):40-48.
    [88]吴斌,张纪刚.基于几何非线性的Pall型摩擦阻尼器滞回特性分析与试验验证.地震工程与工程振动,2001,21(4):60-65.
    [89]吴斌,张纪刚,欧进萍.Pall型摩擦阻尼器的试验研究与数值分析.建筑结构学报,2003,24(2):7-13.
    [90]赵川,潘文,叶燎原等.耗能支撑装置的构造及安装.建筑结构,2003,33(8):47-48.
    [91]Nims D K,Richter P J,Bachman R E.The use of the energy dissipating restraint for seismic hazard mitigation.Earthquake Spoctra,1993,9(3):467-489.
    [92]Scholl R E.Design criteria for yielding and friction energy dissipation.Proceedings of ATC 17-1 on Seminar Seismic Isolation,Passive Energy Dissipation and Active Control,San Francisco,1993,2:485-495.
    [93]欧进萍,吴斌,龙旭.结构被动耗能减振效果的参数影响.地震工程与工程振动,1998,18(1):60-70.
    [94]吴波,李惠,林立岩等.东北某政府大楼采用摩擦阻尼器进行抗震加固的研究.建筑结构学报,1998,19(5):28-36.
    [95]欧进萍,邹向阳,龙旭等.振戎中学食堂楼耗能减震分析与设计(Ⅰ)-反应谱法.地震工程与工程振动,2001,21(1):109-114.
    [96]赵川,潘文,叶燎原等.耗能支撑装置的性能及工程应用.工程抗震,2004,6(3):10-12.
    [97]Fujita T.Seismic isolation and response control for nuclear and non-nuclear structures.The 11th International Conference on SMIRT,Tokyo,Japan,1991:156-161.
    [98]陈月明,刘季.杠杆粘弹性阻尼器(LVES)及其受控结构的试验研究.第一届全国结构控制会议论文集,承德,1998.
    [99]吴波,李惠.液压粘弹性控制系统对建筑结构抗震控制的研究.地震工程与工程振动,1996,16(2):67-75.
    [100]周云,徐彤,俞公华等.耗能减震技术研究及应用的新进展.地震工程与工程振动,1999,19(2):122-131.
    [101]周云.粘弹性阻尼减震结构设计.武汉:武汉理工大学出版社,2006.
    [102]Chang K C,Soong T T,Oh S T,et al.Effect of ambient temperature on viscoelastically damped structure.ASCE Journal of Structural Engineering,1992,118(7):1955-1973.
    [103]Tsai C S.Temperature effect of viscoelastic dampers during earthquakes.ASCE Journal of Structural Engineering,1994,120(2):394-409.
    [104]Shen K L,Soong T T,Chang K C,et al.Seismic behavior of reinforced concrete frame with added viscoelastic dampers.Engineeing Structures,1995,17(5):372-380.
    [105]Lai M L,Chang K C,Soong T T,et al.Full-scale viscoelastically damped steel frame.ASCE Journal of Structural Engineering,1995,121(10):1443-1447.
    [106]Chang K C,Chen S J,Lai M L.Inelastic behavior of steel frames with added viscoelastic dampers.ASCE Journal of Structural Engineering,1996,122(10):1178-1186.
    [107]周云,徐赵东,邓雪松.粘弹性阻尼器的性能试验研究.振动与冲击,2001,20(3):71-75.
    [108]吴波,郭安薪.设有粘弹性阻尼器的结构体系的受力分析.世界地震工程,1998,14(3):6-14.
    [109]Aahmoodi P.Structural Dampers.ASCE Journal of Structural Division,1969,95(8):1661-1672.
    [110]Keel C J,Mahmoodi P.Designing of Viscoelastic Dampers for Columbia Center Building.ASCE,Building Motion in Wind NY,1986:66-82.
    [111]Nielsen E J,Lai M L,Soong T T,et al.Viscoelastic damper overview for seismic and wind application.Proceedings of the First World Conference on Structural Control.Los Angeles,California,1994,3:42-51.
    [112]Constantinou M C,Symans M D,Tsopelas P,et al.Fluid viscous dampers in applications of seismic energy dissipation and seismic isolation.Proceedings of ATC 17-1 Seminar on Seismic Isolation,Passive Energy Dissipation,and Active Control,San Francisco,1993,2:581-591.
    [113]叶正强,李爱群,程文瀼等.采用粘滞流体阻尼器的工程结构减振设计研究.建筑结构学报,2001,22(4):61-66.
    [114]宋智斌.粘滞消能减震技术在结构抗震加固中的研究与应用:(硕士学位论文).北京:中国建筑科学研究院,2001.
    [115]欧进萍.设置粘滞耗能器的JZ20-2MUQ平台结构冰振控制.海洋平台结构冰致振动机理及研究(国家自然科学基金项目专题年度研究报告),1999,10-19.
    [116]张同忠.粘滞阻尼器和铅阻尼器的理论与试验研究:(硕士学位论文).北京:北京工业大学,2004.
    [117]周云.粘滞阻尼减震结构设计.武汉:武汉理工大学出版社,2006.
    [118]刘康安,彭枫北.BND工程结构抗震粘滞流体阻尼器在2008年北京奥运会等重点工程中应用实例简介.四川建筑科学研究,2007,33:89-91.
    [119]范砥,王焕定.底框结构抗震分析规范规定中的若干讨论.哈尔滨工业大学学报,2004,36(9):1260-1264.
    [120]Kasai K,Munshi J A,Lai M L,et al.Viscoelastic damper hysteretic model:theory,experiment and application.Proceedings of the First World Conference on Structural Control.Los Angeles,California,1993,2(2):521-532.
    [121]聂云靖.具有粘滞阻尼器偏心结构的动力分析及优化设计:(硕士学位论文).山西:太原理工大学,2003.
    [122]Inaudi J A,Makris N.Time-domain analysis of linear hysteretic damping.Earthquake Engineering and Structural Dynamic,1996,25(6):529-545.
    [123]Lai M L,Lu P,Kassai K,et al.Viscoelastic damper:a damper with linear or nonlinear material.The 11th World Conference on Earthquake Engineering,Acapulco,Mexico,1996.
    [124]Chang K C,Lai M L,Soong T T,et al.Seismic behavior and design guidelines for steel frame structures with added viscoelastic damper.NCEER 93-0009,National Center for Earthquake Engineering Research,Buffalo,NY,1993.
    [125]刘棣华.粘弹阻尼减振降噪应用技术.北京:宇航出版社,1990.
    [126]Akazawa T,Nakashima M,Sakaguchi O.Simple model for simulating hysteretic behavior involving significant strain hardening.The 11th World Conference on Earthquake Engineering,Acapulco,Mexico,1996.
    [127]徐赵东,周洲,赵鸿铁等.粘弹性阻尼器的计算模型.工程力学,2001,18(6):88-93.
    [128]Li C,Reinborn A M.Experimental and analytical investigation of seismic retrofit of structures with supplemental damping:part Ⅱ-friction devices.State University of New York at Buffalo Department of Civil Engineering,1995.
    [129]张相庭.高层建筑抗风抗震设计计算.上海:同济大学出版社,1996.
    [130]王耀伟.剪切型与弯剪型结构非线性地震反应分析的研究:(硕士学位论文).重庆:重庆建筑大学,1999.
    [131]王铁英.配筋砌体抗震分析软件开发:(硕士学位论文).哈尔滨:哈尔滨建筑大学,2001.
    [132]王俊永.粘弹性与粘滞阻尼器在建筑减震中的性能分析与比较:(硕士学位论文).南京:南京理工大学,2002.
    [133]Graesser E J,Cozzarelli F A.Shape memory alloys as new materials for aseismic isolation.Journal of Engineering Mechanics,1991,17(1):2590-2608.
    [134]张新培.钢筋混凝土抗震结构非线性分析.北京:科学出版社,2003.
    [135]何政,欧进萍.钢筋混凝土结构非线性分析.哈尔滨:哈尔滨工业大学出版社,2007.
    [136]曹征良,洪翔,吴兵.层间弯剪型高层结构的弹塑性地震反应分析[J].深圳大学学报理工版,2004,21(2):116-122.
    [137]李杰,李国强.地震工程学导论.北京:地震出版社,1992.
    [138]孙焕纯,徐卫真.框架结构的串联多自由度简化体系等效刚度参数的识别法.地震工程与工程振动,1995,15(2):100-108.
    [139]周志勇,赵惠麟,刘承宗.结构层模型的改进及工程应用.建筑结构,2001,31(6):40-42.
    [140]张敏.高层框架动力分析刚度矩阵的弯剪层模型.华东交通大学学报,2005,22(5):33-36.
    [141]武藤清著,腾家禄等译.结构物动力设计.北京:中国建筑工业出版社,1984年.
    [142]包世华.新编高层建筑结构(第二版).北京:中国水利水电出版社:知识产权出版社,2005.
    [143]徐赵东,郭迎庆.MATLAB语音在建筑抗震工程中的应用.北京:科学出版社,2004.
    [144]中国建筑科学研究院建筑结构所.高层建筑结构设计.北京:科学出版社,1982.
    [145]裴星洙,张立,任正权.高层建筑结构地震响应的时程分析法.北京:中国水利水电出版社,2006.
    [146]Haftka R T,Adelman H M.Selection of actuator locations static shape control of large space structures by heuristic integer programming.Computers and Structures,1985,20(3):578-582.
    [147]Ashour S A,Hanson R D.Elastic seismic response of buildings with supplemental damping.Report No.LMCE 87-01,Department of Civil Engineering,University of Michigan,Ann Arbor,MI,1987.
    [148]Natke H G,Soong T T.Topological structural optimization under dynamic loads.In Optimization of Structural systems and Applications,Hernandez S,Brebbia CA(eds).Southampton:Computational Mechanics Publications,1993.
    [149]Milman M H,Chu C C.Optimization methods for passive damper placement and tuning.Journal of Guidance,Control and Dynamics,1994,17(4):848-856.
    [150]Takewaki I.Optimal damper placement for minimum transfer functions.Earthquake Engineering and Structural Dynamics,1997,26:1113-1124.
    [151]Takewaki I,Yoshitomi S,Uetani K,et al.Non-monotonic optimal damper placement via steepest direction search.Earthquake Engineering and Structural Dynamics,1999,28:655-670.
    [152]李宏男,常治国,赵柏东.微种群遗传算法优化结构振动控制.地震工程与工程振动,2002,22(5):92-96.
    [153]李宏男,金峤.遗传BP神经网络主动AMD对偏心结构的减震控制.地震工程与工程振动,2003,23(2):134-142.
    [154]Hanson R.Supplemental damping for improved seismic performance.Earthquake Spectra,1993,9(3):319-334.
    [155]Hanson R,Aiken I,Nims D K,et al.State-of-the-art and state-of-the-practice in seismic energy dissipation.Proceedings of ATC 17-1 Seminar on Seismic Isolation,Passive Energy Dissipation,and Active Control,San Francisco,CA,1993,449-471.
    [156]Filiatrault A,Cherry S.Seismic design spectra for friction-damped structures.Journal of Structural Engineering,1990,116:1334-1355.
    [157]Moreschi L M,Singh M P.Design of yielding metallic and friction dampers for optimal seismic performance.Earthquake Engineering and Structural Dynamics,2003,32:1291-1311.
    [158]李钢,李宏男.位移型减震结构的优化设计方法.振动与冲击,2007,26(4):65-68.
    [159]冼巧玲,周福霖,成文山.框架结构消能支撑的减震优化方法.世界地震工程,1999,15(2):49-55.
    [160]徐玉野,王全凤,罗漪.地震作用下摩擦耗能减震结构优化分析的遗传算法求解.计算力学学报,2005,22(1):83-88.
    [161]周明,孙树栋.遗传算法原理及应用.北京:国防工业出版社,1999.
    [162]Li H N,Qu J T,Li G.Optimal placement of displacement-based energy dissipative devices for passive response control by genetic algorithms.Earth & Space 2008,2008 March 3-5,Long Beach,California,USA.
    [163]吴斌,欧进萍.拟粘滞摩擦耗能器的性能试验与研究.世界地震工程,1999,15(1):1-11.
    [164]中华人民共和国国家标准.高层民用建筑钢结构技术规程(JGJ99-98).北京:中国建筑工业出版社,1998.
    [165]中华人民共和国国家标准.高层建筑混凝土结构技术规程(JGJ3-2002).北京:中国建筑工业出版社,2002.
    [166]曲激婷,李宏男,李钢.位移型消能器在结构减震控制中的位置优化研究.工程力学,2008,已录用.
    [167]Constantinou M C,Tadjbakhsh I G.Optimum design of a first story damping system.Computers and Structures,1983,17:305-310.
    [165]Gurgoze M,Muller P C.optimal positioning of dampers in multi-body systems.Sound Vibration.1992,158:517-530.
    [169]Singh M P,Moreschi L M.optimal placement of dampers for passive response control.Earthquake Engineering and Structural Dynamics,2002,31:955-976.
    [170]张琴,楼文娟,陈勇.粘弹性阻尼器位置优化目标函数及其实现方法.工业建筑,2003,33(6):10-13.
    [171]周云,徐赵东,邓雪松.粘弹性阻尼结构中阻尼器的优化设置.世界地震工程,1998,14(3):15-20.
    [172]聂云靖.具有粘滞阻尼器偏心结构的动力分析及优化设计:(硕士学位论文).太原:太原理工大学,2003.
    [173]徐赵东.(铅)粘弹性阻尼结构的试验与研究:(博士学位论文).西安:西安建筑科技大学,2001.
    [174]瞿长海.最不利设计地震动及强度折减系数研究:(博士学位论文).哈尔滨:哈尔滨工业大学,2004.
    [175]曲激婷,李宏男.粘弹性阻尼器在结构减震控制中的位置优化研究.振动与冲击,已录用.
    [176]谢礼立,瞿长海.最不利设计地震动研究.地震学报,2003,25(3):250-261.
    [177]中国工程建设标准化协会标准.建筑工程抗震性态设计通则(CECS 160:2004)(试用).北京:中国计划出版社,2004.
    [178]李军.智能压电摩擦阻尼器的控制理论和试验研究:(硕士学位论文).大连:大连理工大学,2005.
    [179]Moehle J P.Displacement-based design of RC structures subjected to earthquakes.Earthquake Spectra,1992,3:403-428.
    [180]王丰.基于性能的结构多维抗震设计方法研究:(博士学位论文).大连:大连理工大学,2007.
    [181]Kowalsky M J,Priestley M J,Macrae G A.Displacement-based design of RC bridge columns in seismic regions.Journal of Earthquake Engineering and Structural Dynamics,1995,24:1623-1624
    [182]Kowalsky M J.RC structural walls designed according to UBC and displacement-based methods.Journal of Structural Engineering,2001,127(5):506-516.
    [183]Lin Y Y,Tsai M H,Hwang J S,et al.Direct displacement-based design for building with passive energy dissipation systems.Engineering Structures,2003,25:25-37.
    [184]李钢,李宏男.基于位移的消能减震结构抗震设计方法.工程力学,2007,24(9):88-94.
    [185]王亚勇.我国2000年抗震设计模式展望.建筑结构,1999,1(6):13-19.
    [186]SEAOC.Vision 2000,Performance based seismic engineering of buildings.Ⅰ and Ⅱ:Conceptual framework.Sacramento(CA),Strucutrual Engineering Association of California,1995.
    [187]Williams M S,Sexsmith R G.Seismic damage induces for concrete structures:a state-of art review.Earthquake Spectra,1995,11(2):319-349.
    [188]ATC-40.Seismic evaluation and retrofit of concrete buildings.Applied Technology Council.Red Wood City,California,1996.
    [189]FEMA 273.NEHRP commentary on the guidelines for the rehabilitation of buildings.Federal Emergency management Agency,Washington D.C.,September,1996.
    [190]Shibata A,Sozen M.Substitute structure method for seismic design in reinforced concrete.Journal of the Structural Division,1976,102(1):1-18.
    [191]Calvi G M,Kingsley G R.Displacement-based seismic design of multi-degree of freedom bridge structures.Earthquake Engineering and Structural Dynamics,1995,24:1248-1266.
    [192]Lin Y Y,Chang K C.An improved capacity spectrum method for ATC-40.Farthquake Engineering and Structural Dynamics,2003,32:2013-2025.
    [193]Freeman S A.Development and use of capacity spectrum method.The 6th U.S.National Conference on Earthquake Engineering/EERI,Seattle,Washington,1998,269-272.
    [194]Kowalsky M J,Priestley M J N,Macrae G A.Displacement-based design,a methodology for seismic design applied to SDOF reinforced concrete structures.Report No.SSRP-94/16,Structure System Research Project,University of California,San Diego,California,1994.
    [195]Tsai M H,Chang K C.A preliminary study on displacement-based design of RC structures with viscoelastic dampers.Proceedings of the Eighth KU-KAIST-NTU Tri-Lateral Seminar/Workshop on Civil Engineering,Taejon,Korea,1999.
    [196]Miranda E.Approximate seismic lateral deformation demands in multistory buildings.Journalof the Structural Engineering,1999,125(4):417-425.
    [197]Freeman S A.Evaluation of Existing Buildings for Seismic Risk-a case study of Puget Sound naval shipyard.Proc.Of U.S.National Confefence of Farthquake Engineering,1975.
    [198]Krawinkler H.Pros and cons of pushover analysis of seismic performance evaluation.Engineering Structures,1998,20(4):452-464.
    [199]Mwafy A M.Static pushover versus dynamic collapse analysis of RC buildings.Engineering Structures,2001,23(5):407-424.
    [200]李刚,刘永.不同加载模式下不对称结构静力弹塑性分析.大连理工大学学报,2004,44(3):350-355.
    [201]熊向阳,戚震华.侧向荷载分布方式对静力弹塑性分析结果的影响.建筑科学,2001,17(2):8-13.
    [202]王丰,李宏男.多维结构地震位移反应的近似估计-多维能力谱法.振动工程学报,2006,19(2):270-276.
    [203]李军,李宏男.基于位移设计思想的抗震加固简化计算方法.中国科技论文在线,2004,http://www.paper.edu.cn.
    [204]UBC.Uniform BuildingCode.Whittier,CA:International Conference of Building officals,1997.
    [205]Ohtori Y,Christenson R E,Spencer B F,et al.Benchmark control problems for seismically excited nonlinear buildings.Journal of Engineering Mechanics,2004,130(4):366-385.
    [206]Spencer B F,Jr,Dyke S J,et al.Benchmark problem in structural control.Proceedings of ASCE Structural Congress XV,Reston,Oregon,1997,1285-1289.
    [207]Yang J N,Wu J C,Samali B,et al.A benchmark problem for response control of wind-excited tall buildings.Proceedings of the 2nd World Conference on Structural Control,Wiley New York,1999,2:1408-1416.
    [208]Spencer B F,Christenson R E,Dyke S J.Next generation benchmark control problems for seismically excited buildings.Proceedings of the 2nd World Conference on Structural Control,Wiley New York,1999,2:1135-1360.
    [209]Kurata N,Kovori T,Takahashi M,et al.Forced vibration test of a building with semiactive damper system.Journal of Earthquake Engineering and Structural Dynamics,2000,29:629-645.
    [210]Whalen T M,Bhatia K M,Archer G C.Semi-active vibration control for 3rd generation benchamark problem including spillover suppression.Proceedings of 15th ASCE Engineering Mechanics Conference,New York,2002.
    [211]Fukukita A,Saito T,Shiba K.Control effect of 20-story benchmark building using passive or semiactive device.Journal of Engineering Mechanics,2004,130(4):430-436.
    [212]徐赵东,郭迎庆,周云等.被动控制结构的Simulink动态仿真分析.工程抗震,2000,12(4):18-22.
    [213]Moreschi L M,Singh M P.Design of yielding metallic and friction dampers for optimal seismic performance.Earthquake Engineering and Structural Dynamics,2003,32:1291-1311.
    [214]Zhang R H,Soong T T.Seismic design of viscoelastic dampers for structural applications.Journal of Structural Engineering,1992,118(5):1375-1392.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700