轮胎稳态滚动阻力的理论及仿真分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在当今世界能源日益缺乏、能源需求不断增长的形势下,如何提高能源利用率、降低轮胎滚动能量损失是摆在轮胎技术工作者面前的一项重大难题。研究轮胎稳态滚动阻力的理论及仿真分析有着重要的现实意义。
     本文从轮胎的材料特性和变形出发,详细阐述了轮胎滚动阻力的发生机理。在此基础上,采用热力学半耦合的分析方法,对子午线轮胎稳态滚动阻力进行了有限元分析建立起了一套完整的轮胎变形-能耗-传热分析系统和计算流程。应用大型有限元分析程序ABAQUS,建立了子午线轮胎12R22.5的完整有限元模型。在考虑轮胎橡胶材料的非线性、帘线--橡胶材料的各向异性、轮胎大变形导致的各向异性、轮胎与轮惘的装配、轮胎与路面的接触非线性边界条件的基础上,采用非线性动力分析程序ABAQUS/STANDARD对模型进行稳态滚动分析。用FORTRAN编制计算能耗损失和生热率的程序,利用ABAQUS子程序HETVAL将其生热率导入到二维轮胎热分析过程中去,从而得到温度场分析。在上述分析的基础上进行稳态滚动阻力分析。
     本文着重研究了轮胎行驶速度、充气压力、垂直载荷、对轮胎稳态滚动阻力的影响。结果表明在一定的速度和充气压力下下,滚动阻力及滚动阻力系数会随载荷的增大而增大;在一定的速度和垂直载荷下,滚动阻力会随轮胎充气压力的增大而减小。轮胎的滚动阻力和滚动阻力系数会随着稳态速度的增大而减小。
In the current situation, our world is experiencing the increasing shortage of energy resources and the increasing demand of energy. How to improve the energy efficiency and reduce the energy loss of the rolling tires is a major challenge for the researchers and scientists of the tire technology. It is significant and crucial to study the rolling resistance of the tires under steady state.
     At first, the rolling resistance of tires is elaborately explained based on the material hysteretic theory. Then a complete tire deformation-energy loss-thermal analysis framework using thermodynamical semi-coupling method is presented. A finite element model of the 12R22.5 was built using ABAQUS. Based on the consideration of nonlinear property,geometric nonlinearity caused by the large deformation of tire,assembling of tire with rim and nonlinear boundary conditions resulting from the contact of tire ,the steady state rolling analysis was performed by using ABAQUS/STANDARD which is an implicit integral nonlinearity dynamic analysis software. The heat rate and energy loss are calculated by a FORTRAN program. Then the above result is imported into the two-dimensional thermal analysis of the process via the use of ABAQUS subroutine HETVAL, and then the temperature field analysis of the steady state tires can be acquired. Based on the above analysis, the rolling resistance can be obtained.
     The paper focuses on the impact of speed, inflation pressure, vertical load on the tire steady state rolling resistance of the steady state tires. The results show that under a certain speed and inflation pressure, the rolling resistance and rolling resistance coefficient increases with the increase of load; under a certain speed and vertical load, the rolling resistance decreases with the increase of the tire inflation pressure. Generally Tire rolling resistance and rolling resistance coefficient decreases when the steady-state speed increases.
引文
1 Shida Z, Koishi M, Kogure T. A rolling resistance simulation of tires using static finite element analysis [J]. Tire Science and Technology. 1999, 27(2):84-105
    2马国清.国内外轿车子午线轮胎室内滚动阻力性能分析[D].北京:北京化工大学.2004
    3郭孔辉.轮胎侧偏特性的一般理论模型,汽车工程,1990,12(3),1~12
    4 Fiala E. Seitenkrafte am rollenden luftreifen, Zeitcrift der VDI.1954, 96(29)
    5 Frank F. Grundlagen zur berechnung der seitenfuhrungskennlinien von reifen. Kautschunk Unt Qummi.1965,8
    6 Mitsunari T. Theoretical study on dynamic properties of tyre to road. Transactions of SAE Japan. 1957,4
    7 Pacejka H B and Bakker E. The magic formula tyre model. Vehicle System Dynamics. 1991,21(supplement)
    8 Bakker E, Pacejka H B, Lidner L. A New Tire Model with an Application in Vehicle Dynamics Studies. SAE Technical Paper Series. 1989,890087
    9 Pacejka H B. Analysis of Tire Properties Mechanics of Pneumatic Tires(ed. Clark S.K.). 1981, 952
    10 Rogers L C and Brewer H K. Synthesis of tire equations for use in shimmy and other dynamic studies. Journal of Aircraft. 1971, 8(9)
    11 Rogers L C, Theoretical tire equations for shimmy and other dynamic studies. Journal of Aircraft. 1972, 9(8)
    12 Furuichi T and Sakai H. Dynamic cornering properties of tires. SAE Technical Paper Series. 1978,780169
    13 Apetaur M. Modeling of transient nonlinear tyre responses. Vehicle System Dynamics. 1991,21(supplement)
    14 Higuchi A and Pacejka H B. The relaxation length concept at large wheel slip and camber. Vehicle System Dynamics. 1997,27(supplement),50~64
    15 Maurice J P, Berzeri M and Pacejka H B. Pragmatic tyre model for short wavelength side slip variations. Vehicle System Dynamics. 1999,31,65~94
    16郭孔辉.汽车操纵动力学.吉林科学技术出版社.1991, 60~63
    17 Guo K. A unified tire model for vehicle dynamic simulation relating to steering braking and driving. Proc of IPC-5. 1989
    18郭孔辉.纵滑与侧偏联合工况下的轮胎力学模型.长春汽车研究所研究报告.1986
    19郭孔辉.用于汽车制动、驱动与转向运动模拟的轮胎力学统一模型.汽车技术.1992
    20郭孔辉.轮胎侧偏特性的一般理论模型.汽车工程. 1990,12(3),1~12
    21 Guo K and Sui J A. Tire side slip model with flexible tire carcass and the identification of tire structural parameters. Proc. of 13th IMAC. Nashville. 1995
    22郭孔辉.用于汽车全工况动力学分析的非稳态轮胎六分力模型.[汽车动态模拟国家重点实验室内部报告].长春:吉林工业大学.1997
    23李炜.子午线轮胎结构有限元分析和设计原理的若干问题研究[博士学位论文].合肥:中国科技大学. 2003,30~36
    24危银涛,刘宇艳,杜星文等.子午线轮胎滚动阻力与温度场非线性有限元分析.轮胎工业.1998,18(6):330~336
    25 Clark S K. Mechanics of Pneumatic Tires. Washington DC: National Highway Traffic Safety Administration. 1981,37~52
    26 Schuring D J. The Rolling Loss of Pneumatic Tires. Rubber Chemistry and Technology. 1980,53(3):600~727
    27 Schuring D J, Futamura S. Rolling Loss of Pneumatic Highway Tires in the Eighties. Rubber Chemistry and Technology. 1990,63(3):315~367
    28 Luchini J R. Rolling Resistance Test Method, in Rubber Division Symposia. Rubber Division. American Chemical Society: Akon, Ohio. 1983, 61~90.
    29 Wei Y T, Tian Z H, Du X W. A Finite Element Model for the Rolling Loss Prediction and Fracture Analysis of Radial Tires. Tire Science and Technology. 1999, 27(4):50~276
    30 Ebbott T G, Hohman R L, Jeusette J P, et al. Tire Temperature and Rolling Resistance Prediction with Finite Element Analysis. Tire Science and Technology. 1999, 27(1):2~21
    31王建强,戴建国,潘洪达等.基于神经网络方法的台试轮胎滚动阻力模型研究.中国公路学报.2003, 16(3):96~99
    32 Miege A J P, Popov A A. Truck tyre modeling for rolling resistance calculations under a dynamic vertical load. Automotive Engineering. 2005, 219:441~456
    33 Grappe F, Candau R, Barbier B, et al. Influence of tyre pressure and vertical load on coefficient of rolling resistance and simulated cycling performance Ergonomics. 1999,10:1361~1371
    34 David E H, Moreland J C. Fundamental of rolling resistance. Rubber Chemistry and Technology. 2001,74(3):525~539
    35 Shida Z, Koishi M, Kogure T, et al. A Rolling Resistance Simulation of Tires Using Static Finite Element Analysis. Tire Science and Technology. 1999,27(2):84~105
    36俞淇,丁剑平,张安强.轮胎结构设计与制造工业[M].北京:化学工业出版社. 2006, 27
    37 Gent A N, Walter J D. The Pneumatic Tire. Washington DC: the National Highway Traffic Safety Administration U.S. Department of Transportation,2005, 476~496
    38庄继德.汽车轮胎学.北京:北京理工大学出版社.1995,158~186
    39傅政.橡胶材料性能与设计应用.北京:化学工业出版社.2003, 177~186
    40杨挺青,罗文波,危银涛等.黏弹性理论与应用.北京:科学出版社,2004, 195~209,292~318
    41 ABAQUS,Inc.2008. ABAQUS Analysis User's Manual. Version 6.8
    42李晓芳,杨晓翔.橡胶材料的超弹性本构模型.弹性体.2005,15(1):50~58
    43任旭春.轮胎有限元分析及优化中的若干问题研究:[博士学位论文].北京:清华大学航空航天学院,2005,40~43
    44韦璇,马玉璞,孙社营等.橡胶材料的宽温频域动态力学性能研究.材料开发与应用. 2006,21(2):1~5
    45 Willett P R. Heat Generation in Tires Due to the Viscoelastic Properties of Elastomeric Components[J]. Rubber Chemistry and Technology. 1974, 47(2):363-375
    46 Kainradl P, Kaufmann G. Heat Generation in Pneumatic Tires[J]. Rubber Chemistry and Technology. 1976,49(3):823-861
    47危银涛.轮胎热力学分析及耐久性评价[D].哈尔滨:哈尔滨工业大学.2001
    48 Wei Y T, Tian Z H, Du X W. A Finite Element Model for the Rolling Loss Prediction and Fracture Analysis of Radial Tires[J]. Tire Science and Technology, 1999, 27(4):250-276
    49 Shida Z, Koishi M, Kogure T, et al. A Rolling Resistance Simulation of Tires Using Static Finite Element Analysis[J]. Tire Science and Technology. 1997,27(2):84-105
    50 Priss L S, Shumskaya A G. Elastic Properties and Mechanical Losses in Rubbers in Complex Stressed State[J]. Tire Science and Technology. 1991, 19(2):100-112
    51 Priss L S, Shumskaya A G. Mechanical Losses in Rubbers Under Loading Conditions Typical of Tires in Service[J]. Tire Science and Technology. 1988, 16(3):171-186
    52 David E H, Moreland J C. Fundamental of rolling resistance. Rubber Chemistry and Technology. 2001,74(3):525~539

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700