胶囊机器人转弯动力学特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
口服胶囊内窥镜的主动驱动与控制已成为微创或无创诊疗技术的一个研究热点和前沿,可减少诊疗周期和病人的痛苦。胶囊内窥镜在体内姿态的主动调整和行走的主动控制可以解决介入诊断的视觉盲区这一难题,因此对临床诊断技术意义重大。
     在先前的研究基础上,提出利用空间万向旋转磁场驱动与控制机器人在充满黏性液体的弯管内非接触地转弯行走,以及一种离散逼近的磁场控制策略,并建立机器人的转弯动力学方程。旨在通过对机器人在弯管内转弯运动的分析,为最佳的磁场控制参数的选择提供理论依据,达到实现机器人稳定地主动转弯行走的目的。
     提出新一代胶囊机器人并对其结构进行了描述。首先对空间万向旋转磁场的产生和机器人的转弯驱动原理进行了阐述。空间旋转磁场对机器人内驱动器的磁耦合作用形成磁驱动力矩,如果磁场的旋转轴与机器人回转对称轴不平行,则该磁驱动力矩在垂直于回转对称轴的方向上产生分量,该分量驱动机器人转动。
     给出非定常运动的Reynolds方程,并采用有限差分法和螺旋肋阶梯边界处流量控制对Reynolds方程进行数值求解,解决了复杂动压膜间隙函数引起的Reynolds方程无法直接求解得的难题。
     由于空间旋转磁场发生装置的线圈感抗引起的响应延迟,决定了空间磁场的旋转方向不能连续改变,因此本文提出离散改变磁场旋转方向的控制策略,控制机器人的行走路径逼近于弯管的中径曲线。在此控制策略的基础上,引入描述机器人空间姿态的赖柴坐标系。
     根据空间磁矢量耦合理论,建立了在机器人任意空间姿态下空间旋转磁场作用于内驱动器的磁驱动力矩模型。垂直于机器人回转对称轴的磁驱动力矩分量诱导机器人转向的同时伴随着摆动,管内运动流体形成的流体动压膜对机器人的摆动和空间姿态的变化分别产生阻尼作用和刚性阻抗作用。结合这两种作用建立了流体动压膜作用于机器人的流体力矩模型。
     结合前面建立的力矩模型,根据陀螺力学和定点运动的欧拉力学方程推导出了胶囊机器人的转弯动力学方程。使用MATLAB软件的Simulink工具箱编程求解动力学方程,对机器人的运动进行了仿真和分析。通过分析力矩的响应曲线,证明了机器人的随动效应;分析讨论了磁场控制参数对机器人转弯运动的影响。
Active drive and control of oral capsule robot, which can reduce diagnosis and healing time and alleviate patient's suffering, is becoming a research hotspot and leading edge in minimally invasive or noninvasive treatment both at home and abroad.
     Based on previous research, this paper proposed the utilize of space universal rotating magnetic field (SURMF) to drive and control robot non-contact steering in curved pipe filled with viscous fluid. A magnetic field control strategy of discrete approximation is proposed and steering kinetic equations are established, aiming at providing theory basis for selecting optimal magnetic parameters by analyzing robot's kinetic motion to realize its active steady steering.
     A new capsule robot is proposed and its structure is presented in this paper. Firstly, the principles of SURMF generation and robot's steering drive are elaborated. When rotating axis of SURMF is not parallel to that of robot, magnetic driving moment component, produced by SURMF coupling with robot's inner actuator, emerges in the direction perpendicular to robot's rotating axis, which drive robot to turn.
     In this paper non-stationary motion Reynolds equation is given, and the finite difference method and flow control at the side of spiral ribs are used to solve Reynolds equation, the later solve the problem that Reynolds equation with complicated thickness function of hydrodynamic film can't be directly solved.
     As a result of operating lag caused by coil inductive impedance of SURMF generating device, which determined the rotating direction of SURMF can't be continuously changed, a discrete control strategy is proposed to control robot's walk path so that to be approximated to pipe's diametral curve. Based on the control strategy, Resal coordinate system is introduced to determine robot's posture.
     On the basis of coupling theory of space magnetic vectors, model of magnetic driving moment acting on robot in any posture by SURMF coupling with inner actuator is established, and whose component that perpendicular to robot's rotating axis induces robot to turn and swing. Robot's pose and kinetic motion influence on the moving fluid in pipe. The hydrodynamic film formed by flow in pipe respectively creates damping effect and resistant effect in response to robot's swig and change of its pose. Based on the both effects, model of fluid moment acting on robot by hydrodynamic film is established.
     On the basis of gyrodynamics and Euler dynamic equations of robot rotating about a fixed point, and combining with the moment models mentioned above, robot steering kinetic equations are derived. Robot kinetic equations are solved with the use of Simulink toolbox provided by MATLAB, and robot kinetic motion is simulated and analyzed. Follow-up effect of robot is proved in analyzing the moment's response curve. Influence of magnetic field control parameters on robot steering motion is analyzed and discussed.
引文
[1]http://baike.baidu.com/view/2788.html
    [2]http://www.ca800.com/gdauto/detail.asp?id=362
    [3]王握文.世界机器人发展历程[J].国防科技.2001,1:71-75.
    [4]孙立宁,刘品宽,吴善强,刘涛.管内移动微型机器人研究与发展现状[J].光学精密工程.2003,11(4):327-332.
    [5]张林燕.微型机器人旋转磁场驱动方法的研究[D].大连:大连理工大学,2006.
    [6]直击中国医用机器人首次远程异地手术[J].解放军报.2003,9(24):26-27.
    [7]中国矫形外科杂志.2005,13(5):339.
    [8]谭湘强,钟映春,杨宜民.液体中泳动微机器人的现状与分析[J].机器人.2001,23(5):467-470.
    [9]张永顺,刘巍,张瑞侠,贾振元.外磁场驱动医用微型机器人的研究现状与展望[J].机器人.2005,27(3):278-283.
    [10]托月.清除血管壁上沉积物的微型机器人[J].上海生物医学工程.1997,18(4):28.
    [11]刘文光,陈和恩,陈扬枝.医用管道微机器人的研究进展[J].现代制造工程.2004,(5):14-16.
    [12]徐阳.机器人技术在医疗领域中的应用[J].今日科技.1999,(8):4-5.
    [13]Meron G D. The development of the swallow able video-capsule (M2A). Gastrointest Endosc.2000,52 (6):812-819.
    [14]http://www.givenimaging.com
    [15]http://www.cqjs.net/index.asp
    [16]http://www.olympus.co.jp/en/news/2005b/nr051013capsle.cfm
    [17]http://www.rfnorika.com/
    [18]http://www.omom.us/main.php
    [19]Ikuta K, Tsukamoto M, Hirose S. Shape memory alloy servo actuator system with electric resistance feedback and application for active endoscope[C]. IEEE International Conference of Robotics and Automation, Philadelphia,1988:427-430.
    [20]张林燕,张永顺,许良等.体内医用微型机器人的发展现状与前景[J].机械工程学报.2006,44(506):33-37.
    [21]Kassim I, Phee L, Wan S NG, et al. Locomotion techniques for robotic colonoscopy. IEEE Engineering in Medicine and Biology Magazine.2006,25(3):49-56.
    [22]Wang X N, Meng M. An inchworm-like locomotion mechanism based on magnetic actuator for active capsule endoscope[C]. IEEE/RSJ International Conference on Intelligent Robots and Systems, Beijing, China,2006:1267-1272.
    [23]叶东东,颜国正,王坤东等.无缆式微机器人内窥镜系统的研制及离体实验[J].高技术通讯.2007,17(12):1244-1249.
    [24]马官营,颜国正,王坤东.一种人体消化道微小蠕动机器人设计[J].机械设计.2007,24(7):17-19.
    [25]Lim J W, Park H J, Moon S M, et al. Pneumatic robot based on inchworm motion for small diameter pipe inspect ion[C]. International Conference on Robotics and Biomimetics, Sanya, China,2007:330-335.
    [26]Quirini M, Menciassi A, Scapellato S, et al. Design and fabrication of a motor legged capsule for the active exploration of the gastrointestinal tract[J]. IEEE/ASME Transactions on Mechatronics,2008,13(2):169-179.
    [27]Quirini M, Webster III R J, Menciassi A, Dario P. Design of a pill-sized 12-legged endoscopic capsule robot. IEEE International Conference on Robotics and Automation[C].2007:1856-1862.
    [28]Park H J, Yoon E S, Park S J, Yoon E S, et al. Paddling based Microrobot for Capsule Endoscopes[C]. IEEE International Conference on Robotics and Automation, Roma, Italy,2007:3377-3382.
    [29]Ishiyama K, Sendoh M, Yamazaki A, Arai K I. Swimming machine driven by magnetic torque[J]. Sensors and Actuators.2001,91:141-144.
    [30]周银生,李立新,赵东福.一种新型的微型机器人.机械工程学报.2001,37(1):11-13.
    [31]Hu C, Chen D M, Meng M Q. H, et al. A wireless actuation system for micro-robot moving inside pipeline[C]. IEEE/ASME International Conference on Advanced Intelligent Mechatronics, Xi'an, China,2008:653-658.
    [32]Chen D M, Hu C, Wang L, et al. Active actuation system of wireless capsule endoscope based on magnetic field[C]. IEEE International Conference on Robotics and Biomimetics, Sanya, Chian,2007:99-103.
    [33]Chen D M, Hu C, Wang L, et al. The force model of wireless active actuation for capsule endoscope in the GI tract. IEEE International Conference on Robotics and Biomimetics, Sanya, Chian,2007:93-98.
    [34]Simi M, Valdastri P, Quaglia C, Menciassi A, Dario P. Design, fabrication, and testing of a capsule with hybrid locomotion for gastrointestinal tract exploration[J]. IEEE/ASME Transactions on Mechatronics,2010,15(2):170-180.
    [35]Carpi F, Pappone C. Magnetic maneuvering of endoscopic capsules by means of a robotic navigation system[J]. IEEE Transactions on Biomedical engineering,2009,56(5):1482-1490.
    [36]张永顺,张凯,张林燕.体内微型机器人的全方位旋进驱动特性[J].机器人.2006,28(6):560-564.
    [37]张凯.胶囊式微型机器人的驱动与游动特性的研究[D].大连:大连理工大学,2005.
    [38]于洪海.径向间隙自补偿胶囊微型机器人的研究[D].大连:大连理工大学,2009.
    [39]朗格O R,斯泰因希尔珀 W.滑动轴承[M].北京:机械工业出版社,1986.
    [40]董勋.润滑理论[M].上海:上海交通大学出版社,1984.
    [41]王丽丽.螺旋槽流体动静压滑动轴承分流特性研究[D].济南:山东大学,2005.
    [42]Pinkus O, Sterlicht B.流体动力润滑理论[M].北京:机械工业出版社,1980.
    [43]陈伯贤,裘祖干,张慧生.流体润滑理论及应用[M].北京:机械工业出版社,1991.
    [44]张文生.科学计算中的偏微分方程有限差分法[M].北京:高等教育出版社,2006.
    [45]夏平畴.永磁机构[M].北京:北京工业大学出版社,2000.
    [46]Ishiyama K, Arai K I, Sendoh M, et al. Spiral-type micro-machine for medical applications[C]. IEEE International Symposium on Micromechatronics and Human Science, Nagoya, Japan,2000:65-69.
    [47]肖尚彬,董秋泉.陀螺力学[M].北京:人民教育出版社,1980.
    [48]刘希珠,雷田玉.陀螺力学基础[M].北京:清华大学出版社,1987.
    [49]张铁,谢存禧.机器人学[M].广州:华南理工大学出版社,2006.
    [50]熊有伦,唐立新,丁汉,刘恩仓.机器人技术基础[M].武汉:华中理工大学出版社,1996.
    [51]张永顺,姜生元,张学文,于宏海,王殿龙,郭东明.肠道内可变直径胶囊机器人的动态特性[J].科学通报,2009,54(16):2408-2415.
    [52]张永顺,于宏海,阮晓燕,王楠,郭东明.新型肠道胶囊式微型机器人的运动特性[J].机械工程学报.2009,45(8):18-23.
    [53]李颖.Simulink动态系统建模与仿真基础[M].西安:西安电子科技大学出版社,2009.
    [54]张林燕.微型机器人旋转磁场驱动方法的研究[D].大连:大连理工大学,2006.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700