开关磁阻电机的非线性建模及在航空发动机多场耦合仿真中的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
开关磁阻电机(Switched Reluctance Machine, SRM)由于具有容错性好、稳定性高、调速范围宽、功率密度大和易冷却等优点,因而比传统电机更适合航空应用场合。随着多/全电飞机(More Electric Aircraft/All Electric Aircraft, MEA/AEA)成为未来航空的发展趋势,SRM在航空应用上面临极大的机遇。目前,美国等航空强国已把SRM作为未来的MEA/AEA电源系统的首选方案,国际上主要的航空发动机研究机构如GE、Rolls-Roys和Pratt & Whitney等公司也都将SRM作为潜在的航空起动/发电机(Starter/Generator)系统进行研究。可以预见,SRM系统将是航空发动机动力系统的一个潜在的重要组成部分。
     航空发动机动力系统是一个多领域复杂物理系统,其研发进度是整个飞机研发进度的关键。基于CAE技术的仿真分析可以实现发动机动力系统的预测设计,从而缩短其研发周期并减少成本。当前,我国的航空工业正处于起步阶段,严重落后于美、俄、英、法等航空强国,尤其在以发动机为主的航空动力系统的研发方面,差距更为明显。鉴于我国航空工业的自主研制基础较弱,开发虚拟样机仿真分析的航空动力系统CAE技术对于发展我国航空工业具有重要意义。
     航空发动机动力系统仿真涉及到多学科的耦合研究。目前有关发动机和开关磁阻电机的特性仿真均是单独进行的。发动机仿真往往只偏向于某一领域的诸如压气机特性、涡轮特性或燃烧特性等方面的仿真分析;开关磁阻电机的仿真研究也都将其视为独立的个体,集中在机电层面上。关于开关磁阻电机在航空发动机动力系统方面的应用,组成发动机动力系统的系统级模型,涉及机、电、液、气、热等多场耦合的实时特性仿真分析时,还鲜见相关成果。从这个意义上,本文分析了发动机各子系统的耦合作用,实现了多场耦合的发动机系统级仿真,提供了发动机各耦合子系统的实时特性,和全域内开关磁阻电机运行特性的分析依据。
     由此,本课题组致力于建立一个完整的、通用化的航空动力系统元部件模型库。该模型库采用适用于多领域物理系统建模、被誉为新一代的统一建模语言——Modelica开发,具有参数化、易扩展的特点,并力求标准化和通用化。相比传统的面向块、基于信号流的如Simulink等建模平台,Modelica的面向对象性使得系统分解更接近实际物理系统结构,而其非因果性的特点则赋予模型双向计算能力,因而能较好地解决子系统之间的耦合和计算流程的问题,增加了模型的可重用性。
     SRM系统是航空动力系统的一个潜在重要子系统,而开关磁阻驱动系统(Switched Reluctance Drive)本身则是个时变的强非线性系统,其控制存在着诸多难题。SRD具有可控参数多、控制灵活但难以优化的特点,常规的参数固定的PID控制方法难以取得理想的控制效果。神经网络技术具有良好的非线性逼近能力,自学习、自适应能力和并行处理信息的能力,比较适用于具有不确定性或高度非线性系统的建模和控制,因此,从20世纪90年代后,神经网络技术开始被引进SRM的建模和SRD的控制中。神经网络理论研究已形成多个流派,而多层前向神经网络是其中最富有成就、应用最广泛的研究成果之一。然而,目前网络结构还没有有效的确定方法,动态辨识与控制用的一阶梯度学习算法及其相应的衍生方法收敛过于缓慢,以及难以利用先验知识指导网络训练学习过程等问题成为制约神经网络技术实际应用的障碍。
     鉴于SRM在航空方面的应用前景,本文围绕SRM的Modelica非线性建模,SRM的航空应用分析的研究展开,并致力于解决SRM神经网络控制的一些技术难点。本文主要完成的工作如下:
     (1)本文基于磁路特性原理提出了SRM的一个改进的非线性解析模型。该模型原始数据基于有限元分析的静态磁特性参数,较好地实现了高精度和快速可计算性的平衡。模型分别通过静态、动态方面加以验证,精度均在误差的理想范围内。本文接着基于BP神经网络建立SRM的神经网络模型。神经网络结构采用黄金分割法确定,以求在精度和结构上找到优化计算的平衡点。相比较解析模型,神经网络模型具有更高的精度,然而,模型的计算复杂性也更强。
     (2)本文采用Modelica语言并基于Dymola平台开发了SRM系统相对完整的元部件模型库。由于复杂物理系统的动态仿真具有计算量极大的特点,因此,子系统模型在确保精度的基础上,必须力求简单、可快速计算的特性。鉴于此,SRM的Modelica模型库基于非线性解析模型建立。该模型库具有参数化、通用化和易扩展的特点,既可为SRM的独立设计提供CAE分析依据,也能组建SRM系统模型与负载或原动机模型相耦合的系统级模型,提供系统级仿真分析依据。
     (3)本文基于BP神经网络理论设计了SRD的自适应神经网络PID控制算法。该算法探讨了网络初始权(阈)值的问题,旨在通过先验知识指导权系数矩阵的生成,从而减小神经网络对于初始权系数矩阵的依赖性。本文提出并比较了两种改进方法,结果显示两种改进算法对于初始权系数矩阵的依赖性均有较大下降。本文进一步探讨了用于控制的多层前向神经网络的学习算法,尝试把输入向量的变化考虑进权值调整过程,进而提出动态Levenberg-Marquardt法和动态梯度法。其目的在于加速网络收敛速度并改善网络经过训练后的稳态精度,解决由静态空间建模到动态时间建模所带来的问题。
     (4)最后,本文分析了SRM在航空方面的应用及其控制方法的比较。航空应用具有宽速运行的特点,传统的SRM的航空应用分析,通常是选取其典型的运行点进行分析。本文则通过搭建发动机动力系统的系统级模型提供了全域内的分析依据。仿真结果显示了SRM的航空控制方法的可行性,同时也验证了解决多场耦合的系统级模型仿真的可行性,为发动机动力系统的预测设计提供分析依据。
Switched Reluctance Machine (SRM) boasts lots of excellent characteristics like high fault tolerance, high reliability, high power density, wide-speed operation ability and being easy to cool etc. The distinctive advantages of SRM lead to its better suitability for aerospace applications than the conventional drives. As a matter of fact, since More Electric Aircraft (MEA) and All Electric Aircraft (AEA) become the trend of future aircraft power system, SRM is facing great opportunities in aerospace applications. Big aviation countries like USA have selected SRM as the first scheme of the electrical power system for future MEA/AEA, and main research institutions of aircraft engine like GE, Rolls-Roys and Pratt & Whitney etc have carried out researches on SRM as potential aircraft engine Starter/Generator (S/G). In the foreseeable future, SRM system should be one of the potential important subsystems in the aircraft power systems.
     An aircraft power system is a complex, multi-disciplinary physical system. Its development is the key factor in the progress of the development of an aircraft. CAE technology-based simulation ensures the predictive design technique, which is important in that it saves the cost and shortens the development period. The aviation industry in China is still in its beginning stage. It’s by no way comparable to the conventional aviation powers such as USA, Russia, Britain and France. In the research and development of the aircraft engine power system, the disparity is especially huge. Given that the foundation of independent development in aviation industry is strongly weak in China, It’s meaningful to develop virtual prototype-based aircraft power system CAE technology to improve China’s aviation industry.
     Simulation of aircraft power system involves coupling of multi-physics. Up to now, all the research on simulation of aircraft engine and SRM was confined to their individual characteristics. The previous simulation of aircraft engine mainly focused on some specific aspects like the compressor map, the turbine map or the combustion characteristics etc; likewise, simulation of SRM was carried out alone and was focused on the electromechanical field. As for applications of SRM in aerospace, system-level simulation of aircraft power system together with SRM as a whole would be helpful for dynamic analysis. It should involve the coupling of multi-domains like mechanics, electrics, hydraulics, pneumatics and thermodynamics etc. However, very few research findings could be found in this aspect. On this account, this paper is devoted to analyze the coupling sub-systems of aircraft power system, and to realize multi-domain system-level simulation of aircraft power system. It’s aimed to provide dynamic analysis of the coupling sub-systems and that of SRM on the global operation range.
     Therefore, our research group is devoted to developing a rather complete, generic aircraft power system model library. The model library is built based on Modelica, which is especially suitable for the modeling of complex, multi-disciplinary system, and is honored as the next generation unified modeling language (UML). The library is parameterized, expandable and it’s also aimed to be standard and generic. Compared to the conventional block-oriented, signal-flow modeling software like Simulink, the object-oriented characteristic of Modelica makes the system decomposition more similar to the real physical system, and the non-causal characteristic of Modelica endows the model with bidirectional calculation ability, which is a good solution to problems of the calculation flow and the mutual coupling of sub-systems.
     SRM system is a potential important subsystem in aircraft power system, whereas SRM drive (SRD) itself is a time-varying, strongly nonlinear system. There exist many problems in the control of SRM. SRD characterizes flexible control but being hard to optimize. The conventional parameter-fixed PID control is not good enough to achieve satisfactory control effect. Neural network (NN) technique boasts strong nonlinear approximation, self-study, self-adaptability and parallel processing ability, and thus it’s suitable to be used in the modeling and control of uncertain or nonlinear systems. NN technique has been applied in the modeling and control of SRM ever since 1990s. There has been quite a lot of school in the research of NN technology, and multi-layer feed-forward NN is one of the most fruitful and the most widely used techniques. However, there have still been some problems in NN research: the NN structure can not be derived analytically; there’s no particular learning algorithm for dynamic identification and control; it’s hard to apply the empirical knowledge in the initialization and training of the networks.
     Considering the potential application of SRM in aerospace, this dissertation carries out the research work on the Modelica-based nonlinear modeling of SRM, the application and control analysis of SRM in aerospace, and it’s also aimed to improve or present solutions to some key technical problems in the NN control of SRM. The following are the achievements that are fulfilled in this dissertation:
     (1) Based on the analysis of the magnetic field characteristics, an improved nonlinear analytical model of SRM is presented. The original static magnetic characteristics data are derived from FEM and the model is verified through comparison with FEM,statically and dynamically. The model is proved to be satisfactory in accuracy and it also ensures rapid calculation due to its analyticity. Further on, this dissertation derives a BP neural network (NN) model of SRM. The structure of the network is based on gold section method in order for a balance between accuracy and complexity. Compared to the analytical model, the BP NN model of SRM is more accurate. However, the model is much more complex for calculation.
     (2) A comparatively complete SRM system model library is developed on Modelica/Dymola. For dynamic simulation of a complex physical system, the calculation is very intense. Therefore, models for sub-systems should be rapidly computable besides precise in accuracy. Thus, the nonlinear analytical model of SRM is chosen for the SRM Modelica model. The model library is parameterized, generic and conveniently expandable. It can be used as an independent modeling software package for the CAE analysis of SRM design alone, and it can also serve the whole aircraft power system model library to assemble a system-level model for system-level simulation analysis.
     (3) A BP NN PID controller is developed for the adaptive speed control of SRM. The interest of the dissertation is to explore on the utilization of the prior empirical knowledge as guidance in the initializing and the training of the neural networks. It’s aimed to make the networks less sensitive on the initial weights and biases. Two proposed algorithms are compared. Simulation results show that the two proposed algorithms are much less sensitive on the initial weights. Learning algorithms of feed-forward NN for control applications are further discussed. This dissertation explores to involve the variation of the inputs into the adjusting of the weights. Subsequently, two algorithms, namely Dynamic Levenberg-Marquardt (DLM) and Dynamic Gradient Method (DGM), are presented. The purpose is to accelerate the training of the networks, and to improve the output accuracy after training as well, and also to solve problems caused by the transformation from static-space modeling to dynamic-time modeling.
     (5) In the end, this paper analyzes SRM’s aerospace applications and the respective control. Aerospace applications characterize wide-speed operation. Therefore, selective operating points’analysis, which is mostly used in previous research papers, is not enough to evaluate the SRM’s global performance. System-level models of Switched reluctance generator (SRG) coupled with an aircraft engine are constructed on Modelica/Dymola. Dynamic simulation results verify the control methods. The example also verifies the validation of the idea of system-level simulation with multi-field coupling, and thus makes a way to the predictive design of the aircraft power system.
引文
[1] M.M. Tiller. Introduction to Physical Modeling with Modelica. Boston: Kluwer Academic Publisher. 2001.
    [2] P. Fritzson. Introduction to Object-Oriented Modeling and Simulation with OpenModelica. Tutorial. 2006. (Available at: http:// www.modelica.org)
    [3]田永利,邹慧君,郭为忠,叶志刚.机电一体化系统建模技术与仿真软件的研究与分析.机械设计与研究. 2003.8, 19(4): 15-18.
    [4]吴义忠,吴民峰,陈立平.基于Modelica语言的复杂机械系统统一建模平台研究.中国机械工程. 2006.11, 17(22): 2391-2396.
    [5] V.V. Sastry and T.V. Sivakumar. Computer aided education of power electronics using object oriented modeling language. In Proc. 8th European Conference on Power Electronics and Applications. 1999, 1-8.
    [6]吴昊,韩新伟,陈良猷.我国航空发动机发展的道路选择.航空科学技术. 2002.6:29-32
    [7]刘大响.抓住机遇,加快航空动力的发展.航空制造技术. 2002, 2: 17-18.
    [8]李强,高耀东,王昌.有限元法及CAE技术在现代机械工程中的应用.机械科学与技术. 2003,2: 126-128.
    [9] T.L. Skvarenina, S. Pekarek, O. Wasynczuk and P.C. Krause. Simulation of a switched reluctance More Electric Aircraft power system using a graphical user interface. In Proceedings of the 32nd Intersociety. 1997, 1: 580-584.
    [10]曹源,金先龙,孟光.航空发动机系统级仿真研究的回顾与展望.航空动力学报. 2004.8, 19(4): 562-571.
    [11] Performance Prediction and Simulation of Gas Turbine Engine Operation, Research and Technology Organisation, RTO-TR-044, AC/323(AVT-018) TP/29, Apr. 2004.
    [12]刘大响.中国航空发动机发展水平的差距与发展道路的选择.专题报告. 2003.
    [13] A. Emadi and M. Ehsani. Aircraft Power Systems: Technology, State of the Art and Future Trends. IEEE Aes. El. Sys. Mag.. Jan. 2000, 28-32.
    [14] G.M. Raimondi, T. Sawata, M. Holme, A. Barton et al. Aircraft Embedded Generation Systems. In Proc. IEEE Conference on Power Electronics, Machines and Drives. 2002, 217-222.
    [15] J.R. Coles, M. Holme and J.P. Doyle. Electrical Generator an Aero-Engine including Such a Generator, and an Aircraft including Such a Generator. US Patent, Patent Number: 6,467,725B1. 2002.
    [16] I. Moir. The All-Electric Aircraft– Major Challenges.in Proc. IEE Colloquium on All Electric Aircraft, 1998, 2/1-2/6.
    [17]严加根.航空高压直流开关磁阻起动/发电机系统的研究.南京航空航天大学博士论文. 2006.
    [18]顾春雷,胡育文.独立电源起动/发电系统的研究现状及特点.电工技术杂志,2004, 11: 51-54.
    [19] E. Malik, M. Elbuluk and D. Kankam. Potential Starter/Generator Technologies for Future Aerospace Applications. IEEE Aero. El. Sys. Mag.. May 1997, 12(5): 24-31.
    [20] C.A. Ferreira, S.R. Jones, W.S. Heglund and W.D. Jones. Detailed Design of a 30-kW Switched Reluctance Starter/Generator System for a Gas Turbine Engine Application. IEEE Trans. on Ind. Appl.. May/June 1995, 31(3): 553-561.
    [21] S.R. MacMinn and J.W. Sember. Control of a switched-reluctance aircraft starter-generator over a very wide speed range. in Proc. IEEE IECEA. Aug. 1989, 1:631–638.
    [22] A.V. Radun. High-Power Density Switched Reluctance Motor Drive for Aerospace Applications. IEEE Trans. Ind. Appl., Jan./Feb. 1992, 28(1): 113-119.
    [23] C.A. Ferreira and E. Richter. Detailed Design of a 250 kW Switched Reluctance Starter/Generator for an Aircraft Engine. Presented at the SAE Aerospace Atlantic Conf. and Exposition Dayton. 1993, 20-23.
    [24] C.A. Ferreira, C.R. Legros. Switched Reluctance Starter/Generator. US Patent, Patent Number: 5,489,810. 1996.
    [25] W.S. Heglun. Switched Reluctance Starter/Generator Control System Allowing Operation with Regenerative Loads and Electrical System Empoloying Same. US. Patent, Patent Number: 5,493,195. 1996.
    [26] A.V. Radun, C.A. Ferreira, E. Richter. Two-Channel Switched Reluctance Starter/Generator Results. IEEE Trans. Ind. Appl.. Sep. 1998, 34(5): 1026-1034.
    [27]周强,严加根,刘闯,刘迪吉.航空开关磁阻发电机双通道容错性能研究.航空学报. 2007.9, 28(5): 1146-1152.
    [28] A.V. Radun. High-Power Density Switched Reluctance Motor Drive for Aerospace Applications. IEEE Trans. Ind. Appl.. 1992, 28(1): 113-119.
    [29] C.A. Ferreira, S.R. Jones, B.T. Drager and W.S. Heglund. Design and Implementation of a Five-hp, Switched Reluctance, Fuel-Lube, Pump Motor Drive for a Gas Turbine Engine. IEEETrans. Power Electr., Jan. 1995, 10(1): 55-61.
    [30] T.-T. Mohsen. Analysis of Electro-Mechanical Actuator Systems in More Electric Aircraft Applications. Licentiate Thesis, Royal Institute of Technology (KTH), Stockholm. 2005.
    [31] A. Schramm and D. Gerling. Researches on the Suitability of Switched Reluctance Machines and Permanent Magnet Machines for Specific Aerospace Applications Demanding Fault Tolerance. In Proc. International Symposium on Power Electronics, Electrical Drives, Automation and Motion (SPEEDAM), Taormina, Sicily, Italy, 2006.
    [32]吴建华.开关磁阻电机设计与应用.北京:机械工业出版社. 2000.6.
    [33] T.J.E. Miller. Switched Reluctance Motors and Their Control. Oxford: Magna Physics and Clarendon Press. 1993.
    [34] T.J.E. Miller. Electronic Control of Switched Reluctance Machines. Boston: Newnes. 2001.
    [35] B. Fahimi, A. Emadi, and R.B. Sepe. A Switched Reluctance Machine-Based Starter/Alternator for More Electric Cars. IEEE Trans. Energy Conver.. 2004, 19(1): 116-124.
    [36] More-electric aircraft, Conference reports from: Aircraft Engineering and Aerospace Technology. 2005, 77(1).
    [37] D. Panda and V. Ramanarayanan. Reduced Acoustic Noise Variable DC-Bus-Voltage-Based Sensorless Switched Reluctance Motor Drive for HVAC Applications. IEEE Trans. Ind. Electron.. 2007, 54(4): 2065-2078.
    [38] P.J. Lawrenson et al. Variable-speed Switched Reluctance Motors. Proc. Inst. Electr. Eng.- Electr. Power. Appl. 1980, 127(4): 253-265.
    [39]王宏华编著.开关型磁阻电动机调速控制系统.北京:机械工业出版社.1995.
    [40]童怀.磁阻电机动态特性的非线性分析和计算机仿真.北京:科学出版社. 2000.
    [41] T.J.E. Miller. Converter Volt-ampere Requirements of Switched Reluctance Motor Drives. IEEE Trans. Industry Appl.. 1985, 21: 1136-1144.
    [42] J.M. Stephenson and J. Corda. Computation of Torque and Current in Doubly Salient Reluctance Motors from Nonlinear Magnetization Data. Proc. Inst. Electr. Eng.- Electr. Power. Appl. 1979, 126: 393-396.
    [43] M.I. Spong, R. Marino, S. Peresada, D. Taylor. Feedback Linearizing Control of Switched Reluctance Motors. IEEE Trans. Automat. Contr.. May 1987, 32(5): 371-379.
    [44] D.A. Torrey, X.-M. Niu and E.J. Unkauf. Analytical Modelling of Variable-Reluctance Machine Magnetisation Characteristics. Proc. Inst. Electr. Eng.- Electr. Power Appl.. 1995, 142(1): 14-22.
    [45] T.J.E. Miller. Nonlinear theory of the switched reluctance motor for rapid computer-added design. Proc. Inst. Electr. Eng.- Electr. Power Appl.. 1990, 137(6): 337-347.
    [46] C. Roux, M.M. Morcos. A Simple Model for Switched Reluctance Motors. IEEE Power Engineering Review. Oct. 2000, 49-52.
    [47] M. Stiebler, K. Liu. An Analytical Model of Switched Reluctance Machines. IEEE Trans. Energy Conver., Dec. 1999, 14(4): 1100-1107.
    [48] J. Mahdavi, G. Suresh, B.Fahimi and M. Ehsani. Dynamic Modeling of Non-linear SRM Drive with Pspice. In Proc. IEEE IAS Annual Meeting. Oct. 1997, 1: 661-667.
    [49] Z.-Z. Ye, T.W. Martin and J.C. Balda. Modeling and Nonlinear Control of a Switched Reluctance Motor to Minimize Torque Ripple. In Proc. IEEE International Conference on Systems, Man and Cybernetics. 2000, 3471-3478.
    [50] D.N. Essah and S.D. Sudhoff. An Improved Analytical Model for the Switched Reluctance Motor. IEEE Trans. Energy Conver. Sep. 2003, 18(3):349-356.
    [51] J. Zhang and A.V. Radun. A Simplified Analytical Flux Model of Switched Reluctance Motor. In Proc. IEEE ICEMD. 2005, 510-515.
    [52] A.J. Pires, J.F. Martins, P.J. Branco and J.A. Dente. An Average Values Global Model for the Switched Reluctance Machine. Mathematics and Computers in Simulation. 2006, 71:466-475.
    [53] H. Hannoun, M. Hilairet and C. Marchand. Analytical Modeling of Switched Reluctance Machines Including Saturation. In Proc. IEEE IMEDC. 2007, 1: 564-568.
    [54] Q.-Z. Chen, G. Meng, Y.-F. Mo and T.-X. Wang. Analytical Nonlinear Modeling of SRM and Its System-level Simulation with Airborne Power System. Proc. IEEE ICIT. Chengdu, China, Apr. 2008: 1-8.
    [55] A. Radun. Analytically Calculation of Switched Reluctance Motors Unaligned Inductance. IEEE Trans. Magn.. Nov. 1999, 35(6): 4473-4481.
    [56] A. Radun. Analytically computing the flux linked by a switched reluctance motor phase when the stator and rotor poles overlap. IEEE Trans. on Magn.. Jul. 2000, 36(4): 1996-2003.
    [57] V. Vuji?i? and S.N. Vukosavi?. A Simple Nonlinear Model of the Switched Reluctance Motor. IEEE Trans. Energy Conver. Dec. 2000, 15(4): 395-400.
    [58] S.A. Hossain, I. Husain. Geometry Based Simplified Analytical Model of Switched Reluctance Machines for Real-Time Controller Implementation. IEEE Trans. Power Electr.. Nov. 2003, 18(6): 1384-1389.
    [59] I. Husain and S.A. Hossain. Modelig, Simulation, and Control of Switched Reluctance MotorDrives. IEEE Trans. Ind. Electron. Dec. 2005, 52(6): 1625-1634.
    [60] A. Khalil and I. Husain. A Fourier Series Generalized Geometry-Based Analytical Model of Switched Reluctance Machines. IEEE Trans. Ind. Appl.. May/Jun. 2007, 43(3): 673-684.
    [61] C. Elmas, S. Sagiroglu, I. Colak and G. Bal. Modelling of a Nonliear Switched Reluctance Drive Based on Artificial Neural Networks. In Proc. International Conference on Power Electronics and Viriable-Speed Drives. Oct. 1994, 7-12.
    [62] T. Lachman, T. R. Mohamad and C. H. Fong,. Nonlinear Modelling of switched reluctance motors using artificial intelligence techniques. Proc. Inst. Electr. Eng.- Electr. Power Appl.. Jan. 2004, 15(1): 53-60
    [63] Y. Cai and C. Gao. Nonlinear Modeling of Switched Reluctance Motor Based on BP Neural Network. In Proc. IEEE ICNC. 2007, 1: 232-236.
    [64] W. Ding and D.-L. Liang. Modeling of a 6/4 Switched Reluctance Motor Using Adaptive Neural Fuzzy Inference System. IEEE Trans. Magn. Jul. 2008, 44(7): 1796-1804.
    [65] J. Corda. Linear Analysis of Torque of Switched Reluctance Motor. In Proc. IEEE ICEM. 1984, 281-284.
    [66] R. Krishnan, R. Arumugan and J.F. Lindsay. Design Procedure for Switched- Reluctance Motors. IEEE Trans. Ind. Appl. May/Jun. 1988, 24: 456-461.
    [67] M.T. Hagan and M. Menhaj. Training Feedforward Networks with the Marquardt Algorithm. IEEE Trans. Neural Networ. 1994, 5(6): 989-993.
    [68] C.S. Edrington, B. Fahimi and M. Krishnmurthy. An Autocalibrating Inductance Model for Switched Reluctance Motor Drives. IEEE Trans. Ind. Electron. Aug. 2007, 54(4): 2165-2173.
    [69] A.K. Jain and N. Mohan. Dynamic Modeling, Experimental Characterization and Verification for SRM Operation with Simultaneous Two-Phase Excitation. IEEE Trans. Ind. Electron. Aug. 2006, 33(4): 1238-1249.
    [70] F. Soares and P.J. Costa Branco. Simulation of a 6-4 Switched Reluctance Motor Based on Matlab/Simulink Environment. IEEE Trans. Aero. Elec. Sys. Jul. 2001, 37(3): 989-1009.
    [71]周会军,丁文,鱼振民.基于Ansoft Maxwell 2D的开关磁阻电机仿真研究.微电机. 2005,38(6): 10-12.
    [72]梁得亮,丁文,程竹平.基于Simplorer的三相开关磁阻起动/发电系统建模研究.西安交通大学学报. 2007.10, 41(10): 1210-1213.
    [73] I. Husain. Minimization of Torque Ripple in SRM Drives. IEEE Trans. Ind. Electron. 2002, 49(1): 28-39
    [74] J.L. Chenadec. Torque Ripple Minimization in Switched Reluctance Motors by Optimization of Current Waveforms and of Tooth Shape with Copper Losses and‘V.A. Silicon’Constraints. In Proc. IEEE ICEM. 1994: 559-564.
    [75]于庆广,杨玉岗.开关磁阻电机新型定子极型极其电磁关系仿真研究.系统仿真学报. 2001, 13(6): 798-801.
    [76] P. Jinpun and P. C.-K. Luk. Direct Torque Control for Sensorless Switched Reluctance Motor Drives. In Proc. 7th Conf. Power Electron. Variable Speed Drives. 1998, 329-334.
    [77] A.D. Cheok and Y. Fukuda. A New Torque and Flux Control Method for Switched Reluctance Motor Drives. IEEE Trans. Power Electr. Jul. 2002, 17(4): 543-557.
    [78]宋桂英,孙鹤旭,郑易,李练兵.开关磁阻电机直接转矩控制的研究.电气传动. 2004, 5:11-13.
    [79] K. Russa, I. Husain and M.E. Elbuluk. A Self-tuning Controller for Switched Reluctance Motors. IEEE Trans. Power Electr. 2000, 15: 545-552.
    [80] H. Ishikawa, D. Wang and H. Naitoh. A New Switched Reluctance Motor Drive Circuit for Torque Ripple Reduction. In Proc IEEE PCC. 2002, 2: 683-688.
    [81] J. Chiasson and L. Tolbert. High Performance Motion Control of a Switched Reluctance Motor. In Proc. IEEE ICEMD. 2000, 425-429.
    [82]郑洪涛,蒋静坪.开关磁阻电机高性能转矩控制策略研究.电工技术学报. 2005.9, 20(9): 24-28.
    [83] M.I. Spong, T.J.E. Miller and S.R. MacMinn et al. Instantaneous Torque Control of Electric Motor Drives. IEEE Trans. Power Electr. 1987, 2: 55-61
    [84] D.S. Schramm, B.W. Williams and T.C. Green. Torque Ripple Minimization in Switched Reluctance Motors by PWM Phase Current Optimal Profiling. In Proc. IEEE PESC. 1992, 857-860
    [85] I. Husain, M. Ehsani. Torque Ripple Minimization in Switched Reluctance Motor Drives by PWM Current Control. IEEE Trans. Power Electr. 1996, 11: 83-88.
    [86] F. Filicori, C.G.L. Bianco and A. Tonielli. Modeling and Control Strategy for a Variable Reluctance Direct-Drive Motor. IEEE Trans. Ind. Electron. 1993, 40(1):105-115.
    [87] K. Russa, I. Hussain and M. Elbuluk. Torque Ripple Minimization in Switched Reluctance Machines over a Wide Speed Range. IEEE Trans. Ind. Appl. 1998, 34(5): 1105-1112.
    [88] P.C. Kjaer, J.J. Gribble, and T.J.E. Miller. High-Grade Control of Switched Reluctance Machines. IEEE Trans. Ind. Appl. 1997, 33(6): 1585-1593.
    [89] C. Shang, D.S. Reay, and B.W. Williams. Adapting CMAC Neural Networks with Constrained LMS Algorithms for Efficient Torque Ripple Reduction in Switched Reluctance Motors. IEEE Trans. Contr. Syst. T. 1999, 7(4): 401-413.
    [90] D.S. Reay, T.C. Green and B.W. Williams. Neural Networks Used for Torque Ripple Minimisation from a Switched Reluctance Motor. In proc. 5th European Conference on Power Electronics and Applications. 1993, 6: 1-6.
    [91] D.S. Reay, M.M. Mirkazermi and T.C. Green et al. Switched Reluctance Motor Control via Fuzzy Adapative Systems. IEEE Contr. Syst. Mag. 1995, 15(3): 8-15.
    [92] S. Mir, M.E. Elbuluk, I. Husain. Torque Ripple Minimization in Switched Reluctance Motors Using Adaptive Fuzzy Control. IEEE Trans. Ind. Appl. 1999, 35(2): 461-468.
    [93] A. Derdiyok, N. Inanc and V. Ozbulur et al. Fuzzy Logic Based Control of Switched Reluctance Motor to Reduce Torque Ripple. In Proc. IEEE ICEMD. 1997, TB1/9.1-TB1/9.3.
    [94] N.C. Sahoo, J.X. Xu and S.K. Panda. Determination of Current Waveforms for Torque Ripple Minimization in Switched Reluctance Motors Using Iterative Learning: an Investigation. Proc. Inst. Electr. Eng.- Electr. Power. Appl.1999, 146(4): 369-377.
    [95] L.O. Henriques, L.G.B. Rolim and W.I. Suemitsu et al. Torque Minimization in a Switched Reluctance Drive by Neuro-Fuzzy Compensation. IEEE Trans. Magn. 2000, 36(5): 3592-3594.
    [96]丁文,周会军,鱼振民.开关磁阻电机转矩脉动的智能抑制研究.微电机. 2006, 39(3): 7-11.
    [97] B.-M. Ge, X.-H. Wang and P.-S. Su et al. Nonlinear Internal-Model Control for Switched Reluctance Drives. IEEE Trans. Power Electr. 2002, 17(3): 379-388.
    [98]夏长亮,陈自然,李斌.基于RBF神经网络的开关磁阻电机瞬时转矩控制.中国电机工程学报. 2006, 26(19): 127-132.
    [99] Y. Cai and C. Gao. Torque Ripple Minimization in Switched Reluctance Motor Based on BP Neural Network. In Proc. IEEE ICIEA. 2007, 1198-1202.
    [100] D.E. Cameron, J.H. Lang and S.D. Umans. The Origin and Reduction of Acoustic Noise in Doubly Salient Variable-Reluctance Motors. IEEE Trans. Ind. Appl. 1992, 28(6): 1250-1255.
    [101] C.Y. Wu and C. Pollock. Time Domain Analysis of Vibration and Acoustic Noise in the Switched Reluctance Drive. In Proc. IEEE ICEMD. 1993, 558-563.
    [102] C. Pollock. Acoustic Noise Cancellation Techniques for Switched Reluctance Drives. IEEE Trans. Ind. Appl. 1997, 33(2): 477-484
    [103] M. Gabsi, F. Gamus and T. Loyau et al. Noise Reduction of Switched Reluctance Machine. InProc. IEEE ICEMD. 1999, 263-265.
    [104] D. Panda and V. Ramanarayanan. A Composite Control Strategy for Sensorless and Low-Noise Operation of Switched Reluctance Motor Drive. In Proc. IEEE IAS Annu. Meeting. 2000, 3: 1751-1760
    [105] W. Guo, Q.-H. Zhan and Z.-Y. Ma. A New Current Control Mode for Switched Reluctance Motor Drive with DSP Controller. In Proc. IEEE ICEMS. 2001, 2: 1017-1021.
    [106] C. Picod, M. Besbe and F. Camus et al. Influence of Stator Geometry upon Vibratory Behaviour and Electromagnetic Performances of Switched Reluctance Motors. In Proc. IEEE ICEMD. 1997, 69-73.
    [107] M. Sanada, S. Morimoto and Y. Takeda. Novel Rotor Pole Design of Switched Reluctance Motors to Reduce the Acoustic Noise. In Proc. IEEE Industry Application Conf. 2000, 1: 107-113.
    [108] B. Fahimi, G. Suresh and M. Ehsani. Review of Sensorless Control Methods in Switched Reluctance Motor Drives. In Proc. IEEE Industry Applications Conf. 2000, 3: 1850-1857.
    [109] M. Ehsani, I. Husain and S. Mahajan et al. New Modulation Encoding Technique for Indirect Rotor Position Sensing in Switched Reluctance Motors. IEEE Trans. Ind. Appl. 1994, 30(1): 584-588.
    [110] P. Laurent, M. Gabsi and B. Multon. Sensorless Rotor Position Detection Using Resonant Method for Switched Reluctance Motors. In Proc. IEEE IAS Annu. Meeting. 1990, 687-694.
    [111] G. Suresh, B. Fahimi and M. Ehsani. Improvement of Accuracy and Speed Range in Sensorless Control of Switched Reluctance Motors. In Proc. IEEE APEC. 1998, 770-777.
    [112] Y.J. Wang, Y.Y. Sun and C.C. Huang et al. Rotor Position Detection of Switched Reluctance Motors Using FM Technique. In Proc. IEEE ICCA. 1999 2: 939-944.
    [113]王旭东,张弈黄,王喜莲等.无位置传感器开关磁阻电动机位置的检测与预报.中国电机工程学报. 2000, 20(1): 5-8.
    [114] C. Elmas and H.Z.-D. L. Parra. Application of a Full-Order Extended Luenberger Observer for a Position Sensorless Operation of a Switched Reluctance Motor Drive. Proc. Inst. Electr. Eng.- Contr. Theor. Ap. 1996, 143: 401-408.
    [115] Y.J. Zhan, C.C. Chan and K.T. Chau. A Novel Sliding-Mode Observer for Indirect Position Sensing of Switched Reluctance Motor Drives. IEEE Trans. Ind. Electron. 1999, 46: 390-397.
    [116] I.W. Yang and Y.S. Kim. Rotor Speed and Position Sensorless Control of a Switched Reluctance Motor Using the Binary Observer. Proc. Inst. Electr. Eng.- Electr. Power. Appl.2000, 147: 220-226.
    [117] A. Khalil, S. Underwood and I. Husain et al. Four-Quadrant Pulse Injection and Sliding Mode Observer Based Sensorless Operation of a Switched Reluctance Machine over Entire Speed Range Including Zero Speed. In Proc. IEEE IAS Annu. Meeting. 2005, 3: 2147-2154.
    [118] K. Urbanski and K. Zawirski. Sensorless Control of SRM Using Position Observer. In Proc. European Conf. on Power Electronics and Application. 2007, 1-6.
    [119] A. Brosse, G. Henneberger and M. Schniedermeyer et al. Sensorless Control of a SRM at Low Speeds and Standstill Based on Signal Power Evaluation. In Proc. IEEE IECON. 1998, 3: 1538-1543.
    [120] G. Suresh, B. Fahimi and K.M. Rahman et al. Inductance Based Position Encoding for Sensorless SRM Drives. In Proc. IEEE PESC. 1999, 2: 832-837.
    [121] S. Saha, K. Ochiai and T. Kosaka et al. Developing a Sensorless Approach for Switched Reluctance Motors from a New Analytical Model. In Proc. IEEE IAS Annu. Meeting. 1999, 1: 525-532.
    [122] H.W. Gao, F.R. Salmasi and M. Ehsani. Inductance Model-Based Sensorless Control of the Switched Reluctance Motor Drive at Low Speed. IEEE Trans. Power Electr. Nov. 2004, 19(6): 1568-1573
    [123] D. Reay and B.W. Williams. Sensorless Position Detection Using Neural Networks for the Control of Switched Reluctance Motors. In Proc. IEEE ICCA. 1999, 2: 1073-1077.
    [124] E. Mese and D.A. Torrey. An approach for sensorless position estimation for switched reluctance motors using artifical neural networks. IEEE Trans. Power Electron. 2002, 17 (1): 66–75.
    [125]夏长亮,王明超,史婷娜,郭培健.基于神经网络的开关磁阻电机无位置传感器控制.中国电机工程学报. 2005. 25(13): 123-128.
    [126] B. Enayati and S.M. Saghaiannejad. Sensorless Position Control of Switched Reluctance Motors Based on Artificial Neural Networks. In Proc. IEEE International Symposium on Ind. Electron. 2006, 3: 2266-2271.
    [127] A.D. Cheok and N. Ertugrul. A Model Free Fuzzy Logic Based Rotor Position Sensorless Switched Reluctance Motor Drives. In Proc. IEEE IAS Annu. Meeting. 1996, 1: 76-83.
    [128] A.D. Cheok and N. Ertugrul. Use of Fuzzy Logic for Modeling, Estimation, and Prediction in Switched Reluctance Motor Drives. IEEE Trans. Ind. Electron. 1999, 46(6): 1207-1224.
    [129] C.-L. Xia and J. Xiu. Sensorless Control of Switched Reluctance Motor Based on ANFIS.Lecture Notes in Computer Science. 2006, Part III: 645-653
    [130] S. Paramasivam, S. Vijayan and M. Vasudevan et al. Real-Time Verification of AI Based Rotor Position Estimation Techniques for a 6/4 Pole Switched Reluctance Motor Drive. IEEE Trans. Magn. Jul. 2007, 43(7): 3209-3222.
    [131] R. Orthmann and H.P. Schoner. Turn-off Angle Control of Switched Reluctance Motors for Optimum Torque Output. In Proc. European Conference on Power Electronics. 1993, 6: 20-25.
    [132] J.J. Gribble, P.C. Kjaer and T.J.E. Miller. Optimal Commutation in Average Torque Control of Switched Reluctance Motors. Proc. Inst. Electr. Eng.- Electr. Power. Appl. 1999, 146: 2-10
    [133] K.I. Hwu and C.M. Liaw. Intelligent Tuning of Commutation for Maximum Torque Capability of a Switched Reluctance Motor. IEEE Trans. Energy Conver. Mar. 2003, 18(1): 113-120
    [134] H.C. Lovatt and J.M. Stephenson. Computer-Optimised Current Waveforms for Switched Reluctance Motors. Proc. Inst. Electr. Eng.- Electr. Power. Appl. 1994, 141(2): 45-51.
    [135] A.V. Rajarathnam, B. Fahimi and M. Ehsani. Neural Network Based Self-tuning Control of a Switched reluctance Motor Drive to Maximize Torque per Ampere. In Proc. IEEE IAS Annu. Meeting. 1997, 1: 548-555.
    [136] D.A. Torrey and J.H. Lang. Optimal-Efficiency Excitation of Variable- Reluctance Motor Drives. Proc. Inst. Electr. Eng.- Electr. Power. Appl. 1991 138: 1-14.
    [137] R.C. Becerra, M. Ehsani and T.J.E. Miller. Commutation of SR Motors. IEEE Trans. Power Electr. 1993, 8: 257-263.
    [138] M. Abdulkadir and A. Yatim. Maximum Efficiency Operation of Switched Reluctance Motor by Controlling Switching Angles. In Proc. IEEE ICPEDS. 1997, 1: 199-204.
    [139] J. Reinert, R. Inderka and M. Menne et al. Optimizing Performance in Switched-Reluctance Drives. IEEE Ind. Appl. Mag. 2000, 6(4): 63-70.
    [140] P.C. Kjaer, P. Nielsen and L. Andersen et al. A New Energy Optimizing Control Strategy for Switched Reluctance Motors. IEEE Trans. Ind. Appl. 1995, 31(5): 1088-1095.
    [141] S. Rehman and D. Taylor. Piecewise Modeling and Optimal Commutation of Switched Reluctance Motors. In Proc. IEEE ISIE. 1995, 1: 266-271.
    [142] D.S. Reay, C. Shang and B.W. Williams. Efficiency Improvements in Switched Reluctance Motor Position and Torque Control Using Adaptive Fuzzy Systems. In Proc. IEEE ICFS. 1996, 2: 800-805.
    [143] S.K. Panda and P.K. Dash. Application of Nonlinear Control to Switched Reluctance Motors: a Feedback Linearisation Approach. Proc. Inst. Electr. Eng.- Electr. Power. Appl. Sep. 1996,143(5): 371-379.
    [144] C. Xia, Z. Chen and M. Xue. Adaptive PWM Speed Control for Switched Reluctance Motors Based o RBF Neural Network. In Proc. IEEE WCICA. 2006, 2:8103-8107
    [145] E. Karakas and S. Vardarbasi. Speed Control of SR Motor by Self-tuning Fuzzy PI Controller with Artificial Neural Network. In SāDHANā-Academy Proc. In Engineering Sciences. 2007, 32: 587-596.
    [146] L. Morel, H. Fayard and R. VivesFos et al. Study of ultra high speed switched reluctance motor drive. In Proc. IEEE IAC. 2000, 1: 87-92.
    [147]张家铭.开关式磁阻马达的设计与特性分析.台湾逢甲大学硕士论文. 2004.
    [148]汤蕴璆.电机内的电磁场.北京:科学出版社. 1996,第二版.
    [149] J.P.A. Bastos and N. Sadowski. Electromagnetic Modeling by Finite Element Methods. New York: Marcel Dekker Inc. 2003.
    [150] F.R. Salmasi and B. Fahimi, B. Modeling Switched-Reluctance Machines by Decomposition of Double Magnetic Saliencies. IEEE Trans. Magn. 2004, 40(3): 1556-1561.
    [151]王耀南.智能控制系统.长沙:湖南大学出版社. 2006
    [152]夏克文,李昌彪,沈钧毅.前向神经网络隐含层节点数的一种优化算法.计算机科学. 2005, 32(10): 143-145.
    [153] M.T. Hagan, H.B. Demuth and M. Beale. Neural Network Design. Boston: PWS Publishing House. 1996.
    [154] H. Elmqvist, S.E. Mattsson and M. Otter. Object-Oriented and Hybrid Modeling in Modelica. Journal Européen des systèmes automatisés. 2001, 35:1-22.
    [155] P. Schwarz. Simulation of Systems with Dynamically Varying Model Structure, Mathematics and Computers in Simulation. 2008 (in Press), available at: http://www.science-direct.com/ ( accessed 17 February 2008).
    [156] S. Stanton. Analysis of a Dual Channel Switched Reluctance Motor/Generator. Work report, Ansoft Coporation, PA Pittsburgh. 2004.
    [157] D.A. Torrey. Switched Reluctance Generators and Their Control. IEEE Trans. Ind. Electron. 2002, 49(1): 3-14
    [158] B.M. Wilamowski and S. Iplikci. An Algorithm for Fast Convergence in Training Neural Networks. In Proc. IEEE ICNN. 2001, 3:1778-1782.
    [159] S. Sotirov. A Method of Accelerating Neural Network Learning. Neural Processing Letters. 2005, 22:163-169.
    [160] N. Yamashita and M. Fukushima. On the rate of convergence of the Levenberg-Marquardt method. Computing. 2001, 15: 239-249.
    [161] J.Y. Fan and Y. Yuan. On the convergence of a new Levenberg-Marquardt method. Report, AMSS, Chinese Academy of Sciences.2001.
    [162] G. Lera and M. Pinzola. Neighborhood Based Levenberg-Marquardt Algorithm for Neural Network Training. IEEE Trans. Neural Networ. 2002, 12(5): 1200-1203.
    [163]李炯成,黄汉雄.神经网络中LMBP算法收敛速度改进的研究.计算机工程与应用. 2006,(16): 46-50
    [164]黄山松.高温气冷堆动态建模中的几个问题——综述及神经网络的推广性.清华大学硕士论文. 1997.
    [165] M.A. Akcayol. Application of adaptive neuro-fuzzy controller for SRM. Advances in Engineering Software. 2004, 35: 129–137
    [166] K.M. Rahman, S. Gopalakrishnan and B. Fahimi et al. Optimized Torque Control of Switched Reluctance Motor at All Operational Regimes Using Neural Network. IEEE Trans. Ind. Appl. 2001, 37(3): 904-913
    [167]刘金琨.先进PID控制MatLab仿真.北京:电子工业出版社. 2004.
    [168] I. Moir. The All-Electric Aircraft– Major Challenges. In Proc. IEE Colloquium on All Electric Aircraft. Jun. 1998,: 2/1-2/6.
    [169] C.R. Avery, S.G. Burrow and P.H. Mellor. Electrical Generation and Distribution for the more electric aircraft. In Proc. IEEE UPEC. 2007, 1007-1012.
    [170] K.A. Dooley. Relighting a turbofan engine. US Patent, Patent Number: 20070245709. 2007.
    [171]李防战.基于特性方程的航空发动机建模与仿真.上海交通大学硕士论文. 2005
    [172]刘闯,朱学忠,曹志亮,刘迪吉. 6KW开关磁阻电机起动_发电系统设计及实现.南京航空航天大学学报. 2006.6, 32(3): 245-250.
    [173]王廷兴,李防战,孟光, Jay Fletcher.基于Modelica和Dymola的压气机系统的建模和仿真方法.燃气涡轮试验与研究. 2004.8, 17(3): 35-39.
    [174]李防战,王廷兴,孟光, Jay Fletcher.基于特性方程的燃气涡轮的建模与性能仿真.中国动力工程学报. 2005.2, 25(1): 18-22.
    [175]任志彬,孟光,王廷兴, Jay Fletcher.基于Modelica和Dymola的航空发动机燃气发生器的建模和性能仿真.航空发动机. 2006, 32(4): 36-39.
    [176] Y. Cao, X.-L. Jin, G. Meng and J. Fletcher. Computational modular model library of gas turbine. Advances in Engineering Software. 2005, 36(2): 127-134.
    [177]曹源.航空发动机系统级多场耦合分布仿真研究.上海交通大学博士论文. 2005.
    [178]王廷兴.航空发动机系统级建模与动态仿真.上海交通大学硕士论文. 2004.
    [179] P. Hill and C. Peterson. Mechanics and Thermodynamics of Propulsion. America: Addison-Wesley Publishing Company. 1992.
    [180] Q.-Z. Chen, Y.-F. Mo and G. Meng. Dymola-Based Modeling of SRD in Aircraft Electrical System. IEEE Trans. Aero. Elec. Sys. Apr. 2006, 42(1): 220-227
    [181]王占林.基于变频调速的转速模拟系统研究.北京航空航天大学博士论文. 2003.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700