提高气冷涡轮气热耦合计算精度方法的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
航空发动机正朝着提高推重比与效率的方向发展,为了达到这个目的,涡轮入口温度不断提高,目前涡轮进口温度已经远远超过了叶片材料的屈服极限,这样就必须对叶片进行有效地冷却以维持叶片的正常工作。准确地预测涡轮叶片的温度场已经成为提高冷却效率、延长叶片工作寿命的关键问题。随着计算流体力学以及计算机技术的发展,气热耦合数值模拟已经成为预测涡轮叶片温度场的重要工具,本文的工作在于采用自编程序对气冷涡轮叶片进行气热耦合数值模拟,并对影响气热耦合计算精度的物理模型进行研究,以提高实际涡轮气热耦合数值仿真的准确性与可靠性,并初步建立与完善可用于实际涡轮仿真的气热耦合仿真平台。
     冷气掺混是采用气膜冷却的涡轮主流道中很常见的物理现象,由于冷空气与燃气成分的差异,掺混必然会导致流道中工质组分的变化,进而使工质热物性变化,以某两级气冷涡轮为例,进行了考虑组分变化的气动计算,与仅采用单工质假设的结果对比发现,考虑组分变化后,不仅工质的热物性发生了变化,流场的结构以及流道中激波位置也有了较大的差异,这就表明为了提高气热耦合计算的精度,组分变化的影响是有必要考虑的。
     然后研究了计算网格对气热耦合计算的影响,气热耦合涉及到流体和固体区域两个物理场的数据传递以及耦合求解,这是一个非线性的过程,而在流固交接面流体侧存在速度与温度附面层,在这两个附面层内,速度与温度等参数变化剧烈,气热耦合过程中的非线性更加剧烈,迭代过程受网格正交性的影响很大。以NASA-MARKⅡ叶片的5411试验工况为例,分别采用H型和H-O-H型网格对涡轮流道区域进行离散,进行气热耦合计算,结果表明在流固耦合交界面流体侧采用正交性差的H型网格很容易导致计算发散,而在该区域采用正交性较好的O型网格有利于迭代的进行。
     对于采用弱耦合方式的气热耦合计算,需要采用耦合方法来实现流体与固体区域的数据传递。目前运用比较多的有两种耦合方法:间接耦合方法与直接耦合方法。采用上节中相同的算例与这两种耦合方法,分别进行了气热耦合计算。发现间接耦合方法会导致气热耦合计算的不稳定、收敛速度缓慢,而直接耦合方法则具有稳定性好,收敛速度较快的特点。
     附面层转捩是涡轮叶片表面附面层流动过程中一个很重要的流动现象,以NASA-MARKⅡ叶片的多个试验工况为算例,采用不同湍流模型和转捩模型进行气热耦合计算,结果表明附面层的流态变化对涡轮叶片的传热影响很大,而且转捩不仅存在于叶片表面,在冷却空气流量较小时,冷却腔壁表面也存在较大范围的层流、转捩区域,研究还表明对附面层内的转捩预测是影响气热耦合计算精度的很重要的因素。全湍流模型不能够预测附面层转捩的起止位置以及转捩区长度,因此不能够准确地对涡轮叶片表面的传热过程进行预测,预测的叶片表面温度与试验测量值偏差很大;而建立在间歇因子基础上的转捩模型则可以预测出附面层的流态变化,预测的叶片表面温度与试验测量值吻合最好。此外,不同的转捩模型对转捩的预测能力也不尽相同,代数转捩模型只考虑到了间歇因子沿着流向的分布,而忽略了间歇因子沿着壁面法向的变化,这导致在叶片表面的一些区域预测的结果低于试验测量值,而间歇因子输运方程则可以模拟间歇因子的三维输运效应,尽管在原理上更符合实际情况,但是该模型对计算网格的要求很高,不仅增加了计算量,也影响了计算的收敛性。与CFX10,Gama-Theta模型的结果比较表明,本文开发的气热耦合求解器在激波诱发的转捩区域预测的结果不如CFX10的结果,但是在其它区域,本文预测的结果要更接近于实验测量值。
     目前能量方程的封闭一般采用雷诺比拟方法,对湍流普朗特数取常数。但是与速度附面层类似,温度附面层也具有复合层性质,沿着壁面法线方向,湍流普朗特数是变化的。在气热耦合计算中,采用代数经验关联式对湍流普朗特数进行计算,结果表明,沿着壁面外法线方向,湍流普朗特数逐渐减小,但是在本文的计算中,考虑湍流普朗特数的变化预测的叶片表面温度与不考虑该参数变化的结果相差不大。
     最后本文对一实际燃气轮机的低压涡轮导叶进行了气热耦合数值模拟。与绝热情况相比,采用单腔内冷方式的涡轮叶片表面温度都有所降低,温度最高区域位于叶片前缘与叶片尾缘;采用尾缘劈缝冷却后,涡轮叶片尾缘温度降低幅度最大,但是在其它区域的冷却效果要受到冷却腔内冷气的流动过程影响,这在冷却系统的设计中是需要认真考虑的。同时冷空气喷入主流会改变主流燃气的成分,影响工质的气体常数与定压比热等热物性质,其中气体常数降低,但是在整个流动区域内其值变化很小,而在冷气浓度比较大的区域,考虑组分扩散影响预测的定压比热比采用单工质假设的定压比热低,在仅采用了尾缘劈缝冷却而其他区域不采用气膜冷却的条件下,冷空气从劈缝喷出进入下游区域,尾缘上游区域冷气浓度特别小,此时考虑组分扩散与否,这两种情况下的叶片型面压力差异很小,而在叶片表面大部分区域型面温度差异也很小,但是在叶片压力面靠近劈缝区域,考虑组分扩散影响后,气体常数受组分以及温度的双重影响,其值与不考虑组分扩散的结果有较大差异。
The temperature at the turbine inlet is rising to improve the engine thrust and the cycle efficiency. Such temperature has exceeded the thermal yield limit of the blade material, thus an effective cooling system is needed to maintain the engine operation. Accurately predicting the blade thermal load becomes rather essential to improve the cooling efficency of cooling system and to extend the blade operating life. Nowadays coupled heat transfer (CHT) technique has been widely applied to predict the blade thermal field. Otherwise there still are few investigations of numerical methods influencing on the CHT results. The purpose of this study is to improve the accuracy and reliability of CHT simulatioins, hence the effect of several numerical methods, including coolant diffusion, computational grids, coupling method, laminar-to-turbulent transition, closure of time-averaged energy equation and so on, on the blade thermal load prediction are investigated. And the server is HIT-3D.
     Firstly the influences of coolant diffusion on the aerodynamic and thermal parameter distribution are investigated. Coolant mixing exists in the passages of film cooled turbines. Since the components of the cooling air and the gas are different, the coolant mixing would result in the variation of gas component in the passage, and then the thermal property of gas. A two-stage film cooled turbine is selected as the test case, and the aerodynamic simulations for gas with variation components and constant component are carried out. The comparision between the numerical results reveals that the simulation for the gas with variation components predicts different flow structure and shock wave postion compared with that for the constant component gas. Hence the component variation induced by coolant mixing should be taken account of in simulations of the film cooled turbines.
     Secondly the influences of computational grids on the CHT simulation results are investigated. Physically the CHT simulation, relating to the data transimission between fluid and solid domains, is a non-linear process. Furthermore, such non-linarility is strengthened by the coupling of velocity and thermal boundary layers near the fluid/solid interface in the fluid domain. And the iteration could be affected by the orthogority of computational grids. The H-type and H-O-H-type grids are employed to discretize the turbine passage domain, and the No. 5411 case of NASA-MARKⅡvane is served as the test case. The CHT results show that the simulation with O-type grids near the fluid/solid interface in the fluid domain normally converges, while that with H-Type grids diverges.
     Thirdly the influences of coupling methods on the stability and convergence of CHT simulations are studied. There are two kinds of the methods, the indirect coupling method and the direct coupling method. With the same test case as that mentioned above, CHT simulations with different coupling methods are carried out. And the numerical results show that the simulation by the indirect coupling method is with much instability, but that by the direct coupling mthod is rather stable and it converges quickly.
     Fourthly the effects of laminar-to-turbulent transition on the thermal prediction of CHT simulations are investigated. Boundary layer transition is rather common in the boundary layer flows on the low-pressure turbine surface. With three different operating conditions of NASA-MARKⅡvane as test cases, CHT simulations by several full turbulence models and transition models are carried out. The numerical results are compared with the measured ones. It shows that the heat transfer is strongly affected by the laminar-to-turbulent transition in the boundary layer flow, and that the transition flow also exists on the cooling air channel walls when the cooling air mass flow is low. The transition predition is quite an essential factor that affects the accuracy of CHT simulations. The full turbulence models are not able to predict the transition onset and the length of transition zone, thus the simulations with such models over predict the vane thermal load. The transition models are able to predict the transition pocess, thus the simulations with such models predict thermal load much close to the measured ones. The algebraic transition model negelets the intermittency transportation along the normal direction to the wall, and it leads to lower temperature than the measured one at several nodes. The intermittency transportation equation, able to predict intermittency distribution in the complex and 3-D flow field, needs much finer grids than the algebraic one, and it costs more computational resourses. The comparision between the results by HIT-3D and those by CFX10 with Gama-Theta transition model proves the ability of HIT-3D in CHT simulations. The developed solver HIT-3D would predict results closer to the measured ones than CFX10 in the blade surface except the shock-induced transition zone.
     Fifthly the effect of time-averaged energy equation closure on the CHT simulation is studied. The Reynolds analogy is a widely applied method for closing the time-averaged energy equation in simulations of inner flows. With such method, the constant turbulent Pradtl number is always employed. Otherwise the thermal boundary layer, similar to the velocity boundary layer, could be divided into several layers. Thus the turbulent Pradtl number is not constant. An algebraic correlation is utilized to coupute the turbulent Prandtl number in the thermal boundary layer. The CHT simulation with such algebraic correlation shows that the turbulent Prandle number vanishes along the outer normal direction to the wall. The predicted profile temperature is compared with that by the simulation with constant turbulent Pradtle number, but there is slignt difference between the predicted profile temperature distributions.
     Finally the CHT simulatons of a low-pressure turbine in pratical operating conditions are carried out. And the effects of numerical methods on the thermal prediction of CHT simulations are discussed. Compared with the adiabatic results, the vane profile temperature with single cooling air channel is largely reduced, and the highest temperature in the vane surface exists at the leading and trailing edges. For the vane with two air cooling channels and a slot at the trailing edge, the traling edge is effectively cooled, but the cooling efficiency is affected by the flow in the cooling air channel. There is few even none cooling air at the upstream of vane trailing edge, and most of the cooling air flow towards the downstream of the vane. Taking account of the coolant diffusion effect, the gas constant changes slightly during the whole passage, but the constant-pressure specific heat is lower than that of consant component gas in the regions with more cooling air. The comparision between the predicted profile pressure of the CHT simulations for the gases with variable components and constant component is carried out, and little difference is found out. There is also comparision between the predicted profile temperature distributions, and the largest difference exists near the trailing edge in the pressure side.
引文
1张彦仲. 21世纪航空科学技术发展展望. International Aviation. 2001, 2:12~15
    2曹玉璋,陶智等.航空发动机传热学.北京航空航天大学出版社. 2005:5
    3 D. K. Hennecke. Turbine Cooling in Aeroengines. Von Karman Inst. LS 1982.2
    4倪金刚. CFM56方程.航空工业出版社. 2007
    5葛绍岩,刘登瀛.气膜冷却.科学出版社. 1985
    6方昌德. 2020年前航空发动机的技术发展水平对比和对策研究.综合高性能涡轮发动机技术(IHPTET)计划文集.航空航天部航空科学技术情报研究所. 1992
    7陈光.航空发动机发展综述.航空制造技术. 2000, (6):24~27
    8刘大响,程荣辉.世界航空动力技术的现状及发展动向.北京航空航天大学学报. 2002, 28(5): 490~496
    9刘大响.对加快发展我国航空动力的思考.航空动力学报. 2001, 16(1):1~7
    10韩介勤,桑地普·杜达,斯瑞纳斯·艾卡德.燃气轮机传热和冷却技术.西安交通大学出版社. 2005
    11 W. Koop. Integrated High Performance Turbine Engine Technology(IHPTET)Program. ISABE Paper, 97-7175, 1997
    12 T. L. Perelman. On Conjugated Problems of Heat Transfer. Int. J. Heat Mass Transfer. 1961,3:293~303
    13过增元.热流体学.清华大学出版社. 1992
    14 Graham C. Smith, Mary A. Hilditch. Heat Transfer Computations for High Pressure Turbines. ASME Paper, GT2001-0172, 2001
    15 D. Bohn, T. Heuer. Conjugate Flow and Heat Transfer Calculation of a High Pressure Turbine Nozzle Guide Vane. AIAA Paper, 2001-3304, 2001
    16 William D. York, James H. Laylek. Three-Dimensional Conjugate Heat Transfer Simulation of an Internally-Cooled Gas Turbine Vane. ASME Paper, GT2003-38551, 2003
    17 K. Kusterer, T. Hagedorn, D. Bohn. Improvement of a Film-Cooled Blade by Application of the Conjugate Calculation Technique. ASME Journal of Turbomachinery. 2006, 128: 572~578
    18 Douglas L. Sondak, Daniel J. Dorney. Simulations of Coupled Unsteady Fluid Dynamics and Conduction Heat Transfer in a Turbine Stage. AIAA Paper, 99-2521, 1999
    19 John A. Verdicchio, John W. Chew, Nick J. Hills. Coupled Fluid/Solid Heat Transfer Computation for Turbine Discs. ASME Paper, GT2001-0205, 2001
    20 Tadeusz Chmielniak, Wlodzmierx Wroblewski, Grzegorz Nowak, et al. Coupled Analysis of Cooled Gas Turbine Blades. ASME Paper, GT2003-38657, 2003
    21 A. Montenay, L. Pate, J. M. Duboue. Conjugate Heat Transfer Analysis of an Engine Internal Cavity. ASME Paper, GT2000-282, 2000
    22 Takashi Yamae, Toyoki Yoshida, Shunji Enomoto, etc.. Conjugate Simulation of Flow and Heat Conduction with a New Method for Faster Calculation. ASME Paper, GT2004-53680, 2004
    23 A. Heselhaus, D. T. Vogel. Numerical Simulation of Turbine Blade Cooling with Respect to Blade Heat Conduction and Inlet Temperature Profiles. AIAA Paper, 95-3041,1995
    24 Hongjun Li, Alain J. Kassab. Numerical Prediction of Fluid Flow and Heat Transfer in Turbine Blades with Internal Cooling. AIAA Paper, 94-2933,1994
    25 Christopher P. Rahaim, Robert J. Cavalleri. Coupled Finite Volume and Boundary Element Analysis of Conjugate Heat Transfer Problems. AIAA Paper, 96-1809, 1996
    26 L. D. Hylton, M. S. Milhec, E. R. Turner, et al. Analytical and Experimental Evaluation of the Heat Transfer Distribution Over the Surface of Turbine Vanes. NASA-CR-168015, 1983
    27 D. Bohn, C. Tummers. Numerical 3-D Conjugate Flow and Heat Transfer Investigation of a Transonic Convection-Cooled Thermal Barrier Coated Turbine Guide Vane with Reduced Cooling Fluid Mass Flow, ASME Paper, GT2003-38431, 2003
    28 Karsten Kusterer, Dieter Bohn, Takao Sugimoto, et al. Conjugate Calculations for a Film-Cooled Blade under Different Operating Conditions. ASME Paper, GT2004-53719, 2004
    29 James D. Heidmann, Alain J. Kassab, Erlendur Steinthorsson, et al. Conjugate Heat Transfer on a Realistic Film-Cooled Turbine Vane. ASME Paper, GT2003-38553, 2003
    30 T. Takahashi, K. Watanabe. Thermal Conjugate Analysis of a First Stage Blade in a Gas Turbine. ASME paper, GT2000-251, 2000
    31 T. Sakai, T. Ogata, A. Nomoto. Elastoplastic and Creep Analysis of a First Stage Blade in a Land Based Gas Turbine under Steady State Operating. ASME paper, GT2000-196, 2000
    32董平.航空发动机气冷涡轮叶片的气热耦合数值模拟研究.哈尔滨工业大学博士论文. 2009
    33苏生,胡捷,刘建军等.复杂空冷叶片换热特性研究.燃气涡轮试验与研究. 2008, 21(3): 26~31
    34沈煜欣,刘建军.热传导对微型涡轮动叶性能影响的数值模拟.工程热物理学报. 2008, 29(11): 1831~1834
    35 K. H. Yu, Z. F. Yue, J. Wang. Parametric Modelling and Multidisciplibary Design Optimization of 3-D Internally Cooled Turbine Blades. AIAA paper, 2007-7719, 2007
    36 N. Grzegorz, W. Wlodzimierz, C. Tadeusz. Optimizatioin of Cooling Passages within a Turbine Vane. ASME Paper, GT2005-68552, 2005
    37陈懋章.粘性流体动力学基础.高等教育出版社, 2002
    38陶文铨.数值传热学(第2版).西安交通大学出版社, 2001
    39 U. Piomelli. Large-Eddy Simulation: Achievements and Challenges. Progress in Aerospace Sciences. 1999, 35:335~362
    40崔桂香,许春晓,张兆顺.湍流大涡数值模拟进展.空气动力学学报. 2004, 22(2): 121~129
    41周力行,胡砾元,王方.湍流燃烧大涡模拟的最近研究进展.工程热物理学报. 2006, 27(2):331~334
    42 D. C. Wilcox. Turbulence Modeling for CFD. DCW Industries, Inc., 1993
    43是勋刚.湍流.天津大学出版社, 1994
    44 L. Prandtl.über die ausgebildete turbulenz. ZAMM. 1925, 5:136~139
    45 E. R. Van Driest. On Turbulent Flow Near a Wall. Journal of the Aeronautical Sciences. 1956, 23:1007~1011
    46 F. H. Clauser. The Turbulent Boundary Layer. Advances in Applied Mechanics, Academic Press, New York, 1956:1~51
    47 S. Corrsin, A. L. Kistler. The Free-Stream Boundaries of Turbulent Flows. NACA-TN-3133, 1954
    48 P. S. Klebanoff. Characteristics of Turbulence in a Boundary Layer with Zero Pressure Gradient, NACA-TN-3178, 1956
    49 T. Cebeci, A. M. O. Smith. Analysis of Turbulent Boundary Layers. Appl. Math. & Mech., Academic Press, 1974
    50 B. S. Baldwin, H. Lomax. Thin-Layer Approximation and Algebraic Model for Separated Turbulent Flows. AIAA Paper, 78-257, 1978
    51 R. Dhinnagaran, T. K. Rose. Two-Dimensional Jet Interaction Flowfield Predictions with an Algrbraic Trubulence Model. AIAA Paper, 95-2242, 1995
    52刘瑞韬,徐忠.分流叶片位置对高转速离心压气机性能的影响.空气动力学学报. 2005, 23(1): 129~134
    53王军旗,李素循,孙茂.超声速横喷干扰湍流场数值模拟.空气动力学学报. 2006, 24(4): 403~409
    54司海青,王同光.数值模拟有外挂物的空腔流动.空气动力学学报. 2007, 25(3): 404~409
    55 L. Prandtl.über ein neues Formelsystem für die ausgebildete Turbulenz. Nacr. Akad. Wiss. G?ttingen, Math-Phys. Kl. 1945:6~19
    56 P. R. Spalart, S. R. Allmaras. A One-equation Turbulence Model for Aerodynamic Flow. AIAA Paper, 92-0439, 1992
    57 B. S. Baldwin, T. Barth. A One Equation Turbulence Transport Model for High Reynolds Number Wall Bounded Flows. AIAA Paper, 92-0439, 1992
    58林麟.可压缩湍流封闭模型初探——湍动能K方程.厦门大学学报(自然科学版), 1996, 35(1):17~20
    59王丹华,马威,陆利蓬. S-A湍流模型在分离流动模拟中的改进.推进技术. 2008, 29(5):539~544
    60 D. Gaitonde, J. S. Shang. Performance of Eddy-Viscosity-Based Turbulence Models in Three-Dimensional Turbulent Interaction. AIAA Journal, 1996, 34(4): 844~847
    61 R. Paciorri, W. Dieudonne, G. Degrez, et al. Validation of the Spalart-Allmaras Turbulence Model for Application in Hypersonic Flows. AIAA Paper, 97-2323, 1997
    62黄玉娟,李晓东,陈江.湍流模型对涡轮数值模拟结果的影响.工程热物理学报. 2007, 28(Suppl.1):97~100
    63杨永,段毅,张强.超声速大迎角分离流中三种湍流模型的比较研究.空气动力学报. 2006, 24(3):371~374
    64 E. P. Jones, B. E. Launder. The Prediction of Laminarization with Two EquationModel of Turbulence. International Journal of Heat and Mass Transfer. 1972, 15:574~580
    65 K. Y. Chien. Prediction of Channel and Boundary-Layer Flows with a Low-Reynolds-Number Turbulence Model. AIAA Journal. 1982, 20:33~38
    66 Z. Yang, T. H. Smith. New Time Scale Based k ?εModel for Near Wall Turbulence. AIAA Journal. 1993, 31:1191~1198
    67李国君,丰镇平,徐克鹏.可压缩k ?ω方程湍流模型及其应用.工程热物理学报. 1999, 20(3):309~312
    68 D. C Wilcox. Reassessment of the Scale-Determining Equation for Advanced Turbulence Models. AIAA Journal, 1988, 26(11):1299~1310
    69 F.R.Menter. Two-Equation Eddy-Viscosity Turbulence Models for Engineering Applications. AIAA Journal, 1994, 32(8):1598~1605
    70 T. J. Coakley. Turbulence Modeling Methods for the Compressible Navier-Stocks Equations. AIAA Paper, 83-1693, 1983
    71叶孟琪,陈义良.复杂剪切湍流场中湍流模型的研究.水动力学研究与进展. 1996, 11(3):227~283
    72刘正先,苗永淼.有曲率影响的湍流流场中几种k ?ε模型的数值模拟.天津大学学报. 2000, 33(1):98~100
    73 D. S. Tandra, A. Kaliazine, D. E. Cormach, et al. Numercal Simulation of Supersonic Jet Flow Using a Modified k ?εModel. International Journal of Computational Fluid Dynamics. 2006, 20(1):19~27
    74 H. P. Soo, A. Sumanta, H. K. Jang. An Improved Formulation of k ?εTurbulence Models for Supersonic Base Flow. AIAA Paper, 2005-4707, 2005
    75钱炜祺,蔡金狮.一种新的非线性k ?ε两方程湍流模型.空气动力学报. 1999, 17(4):392~397
    76韩省思,叶桃红,朱明等.应用修正的k ?ε模型研究超声速H2/Air燃烧.推进技术. 2008, 29(2):158~162
    77 D. C. Wilcox. Comparison of Two-Equation Turbulence Models for Boundary Layers with Pressure Gradient. AIAA Journal. 1993, 31(8):1414~1421
    78母忠强,乔渭阳,罗华玲.某涡轮级三维流畅非定常数值研究.推进技术. 2009, 30(2):169~174
    79王志博,姚惠之,张楠.指挥台围壳对潜艇尾流影响的计算研究.船舶力学. 2009, 13(2):196~202
    80谷正气,姜波,何忆斌.基于SST湍流模型的超车时汽车外流场变化的仿真分析.汽车工程. 2007, 29(6):494~496
    81陆犇,李凌波,姜培学等.气膜冷却平板通道的数值模拟.热能动力工程. 2005, 20(4):441~445
    82袁新.可压缩粘性流动中双方程湍流模型的选择.工程热物理学报. 1998, 4(19), 427~432
    83 J. Xiao, C. G. Gu, X. W. Shu. Application of Weighted Non-Oscillatory abd Non-Free-Paramter Dissipation Difference Scheme in Calculating the Flow of Vibrating Flat Cascade. Chinese Journal of Mechanical Engineering. 2007, 20(6):69-73
    84 S. S. Lee, D. W Choi. On Coupling the Reynolds-Averaged Navier-Stokes Equations with Two-Equation Turbulence Model Equations. Internaltional Journal for Numerical Methods in Fluids. 2006, 50:165-197
    85 V. Yakhot, S. A. Orazg. Renormalizatioin Group Analysis of Turbulence: Basic Theory. J. Scient Comput. 1986, 1:3~11
    86李相国,马保国,王信刚等.用RNG. k ?ε模型数值模拟预旋分解炉内的湍流流动.水泥工程. 2005, 4:21~23
    87成立,刘超,周济人等.基于重整化群湍流模型的双向轴流泵出水结构研究应用基础与工程科学学报. 2005, 13(4):401~408
    88邹春,刘朝霞,张立麒等.不同湍流模型比较模拟撞击流.华中科技大学学报(自然科学版). 2006, 34(9):72~74
    89蔡树棠,刘宇陆.湍流理论.上海交通大学出版社, 1993: 145~152
    90 G. X. L, R. Dirk. Numerical Simulation of the Turbulent Nonpremixed Flame with Second-Moment Turbulence Closure Models. Journal of Combustion Science and Technology. 2004, 10(2):107~113
    91王海刚,刘石.用雷诺应力模型计算旋风分离器中气-固两相流动.工程热物理学报. 2004, 25(Suppl.):189~192
    92杨胜,张扬军,涂尚荣等.汽车外部复杂流场计算得湍流模型比较.汽车工程. 2003, 25(4):322~325
    93周丰,梁书秀,孙昭晨.动水环境中射流喷角对射流特性影响数值模拟.大连理工大学学报. 2007, 47(4):583~588
    94 D. F. Fletcher, G. J. Brown. Numerical Simulation of Solid Suspension via Mechanical Agitation: Effect if the Modelling Approach, Turbulence Model andHindered Setting Drag Law. International Journal of Computational Fluid Dynamics. 2009, 23(2):173~187
    95 J. Zhang, C. K. Zhu. Simulation of Swirlng Turbulent Flow and Combustion in a Combustor. Numerical Heat Transfer, Part A. 2009, 55:448~464
    96符松.湍流模式——研究现状和发展趋势.应用基础与工程科学学报. 1994, 2(1): 1~15
    97 D. C. Haworth, S. B. Pope. A Generalized Langevin Model for Turbulent Flows. Phys. Fluids. 1986, 29(2):387~405
    98 H. F. Wang, Y. L. Chen. A PDF Simulation of the Lifted Turbulent H2/N2 Jet Flame. Chinese Journal of Computational Physics. 2006, 23(1):73~79
    99 H. W. Ge, G. Eva. Simulation of a Turbulent Spray Flame Using Coupled PDF Gas Phase and Spray Flamelet Modelling. Third European Combustion Meeting ECM, 2007
    100黄庆,朱旻明,叶桃红等. PDF方法模拟钝体驻定的湍流扩散火焰.计算物理. 2008, 25(6):733~743
    101王方,周力行,许春晓等.用ASOM和PDF方程模型模拟湍流射流燃烧.燃烧科学与技术. 2007,.13(5):431~436
    102 P. A. Durbin. Separated Flow Components with k ?ε?v2Model. AIAA Journal. 1995, 33(4):659~664
    103 S. Parneix, P. A. Durbin. Numerical Simulation of 3D Turbulent Boundary Layers Using the V2F Model. Annual Research Brief. Center for Turbulence Research, NASA/Stanford Univ., 1997:135~148
    104 F. S. Lien, P. A. Durbin. Non-Linear k ?ε?v2 Modeling with Application to High-Lift. Summer Program Proceedings. Center for Turbulence Research, NASA/Stanford Univ., 1996:267~286
    105 B. Sunden, J. Larocque. Simulation of Heat Transfer From Swirling Impinging Jets. ASME Paper, GT2005-68896, 2005
    106 J. Luo, E. H. Bazinsky. Conjugate Heat Transfer Analysis of a Cooled Turbine Vane Using the V2F Turbulence Model. ASME Paper, GT2006-91109, 2006
    107高歌,熊焰.不可压湍流平均流与拟序流的各向异性模式理论及其数值验证.航空动力学报. 2000, 15(1):1~12
    108李维冰,高歌.解决湍流圆/平射流异常现象的数值研究.航空动力学报. 2001, 16(3):262~266
    109任鑫,高歌.使用GAO-YONG湍流方程组对翼型扰流的计算.航空学报. 2007, 28(增刊):S28~S34
    110任鑫,李百合,尹幸愉.使用GAO-YONG湍流方程组计算翼型分离流.航空动力学报. 2007, 22(1):73~78
    111伏晓艳,高歌.运用GAO-YONG湍流模型对扩亚器内跨声速流动的数值模拟.推进技术. 2008, 29(2):139~142
    112 P. R. Spalart, W. H. Jou, M. Strelets, et al. Comments on the Feasibility of LES for Wings and on Hybrid RANS/LES Approach. First AFOSR International Conference on DNS and LES, Ruston, LA, USA, 1997
    113 P. R. Spalart, S. Dech, M. L. Shur, et al. A New Version of Detached-Dddy Simulation, Resistant to Ambiguous Grid Densities. Theor. Comput. Fluid Dyn. 2006, 20:181~195
    114顾春伟,奉凡,李雪松等. DES模型在压气机亚音转子中的应用探讨.工程热物理学报. 2008, 29(6):951~956
    115李栋,焦予秦, Igor Men’shov得. Detached-Eddy Simulation方法模拟不同类型翼型的失速特性.航空学报. 2005, 26(4):406~410
    116 S. Z. Tu, A. Shahrouz, P. Reena, et al. An Impementation of the Spalart-Allmaras DES Model in an Implicit Unstructured Hybrid Finite Volume/Element Solver for Incompressible Turbulent Flow. International Jounral for Numerical Methods in Fluids. 2009, 59:1051~1062
    117肖志祥,陈海昕,李启兵等.采用RANS/LES混合方法研究分离流动.空气动力学学报. 2006, 24(2):218~222
    118 D. Home, M. F. Lightstone, M. S. Hamed. Validation of DES-SST Based Turbulence Model for a Fully Developed Turbulent Channel Flow Problem. Numerical Heat Transfer, Part A. 2009, 55:337~361
    119梁德旺,吕兵.关于二方程湍流模型的考虑.航空动力学报, 1999,.14(3):289~292
    120 F. M. White. Viscous Fluid Flow. McGraw Hill, 1991
    121 R. S. Amano. Development of a Turbulent Near Wall Model and Its Application to Separated and Reattached Flows. Journal of Numerical Heat Transfer. 1984, 7:59~75
    122郭尚群,赵坚行. RNG k ?ε模型数值模拟油雾燃烧流场.航空动力学报. 2005, 20(5):807~812
    123周红梅,苏莫明,连洁等.叶栅通道湍流流场的数值模拟方法的研究.机械设计与制造. 2007, 2:80~82
    124雷雨冰,袁亚雄,赵坚行.壁面函数在复杂流场计算中的应用.弹道学报. 2003, 15(2):1~5
    125 H. Tennekes, J. L. Lumley. A First Course in Turbulence. MIT Press, 1972
    126 T. H. Shih. Fundamentals in Turbulence Modeling. State Key Laboratory for Turbulence Research, Beijing University, 1999
    127 X. Zheng, C. Liao, C. Liu, etc. Multigrid Multiblock Computation of Incompressible Flows Using Two-Equation Turbulence Models. AIAA Journal. 97-0602, 1997
    128邓向阳.双方称湍流模型在叶轮机械三维粘性数值计算中的应用.哈尔滨工业大学硕士学位论文, 2002
    129 G. Kalizin, A. R. B. Gouldet, J. J. Benton.. Application of Two-Equation Turbulence Models in Aircraft Design. AIAA Paper, 96-0327, 1996
    130 T. M. Younga, B. Humphreysb, J. P. Fieldingc. Investigation of Hybrid Laminar Flow Control (HLFC) Surfaces. Aircraft Design. 2001, (4):127~146
    131 Matthieu Marquill Ie., Uwe Ehrenstein. On the Onset of Nonlinear Oscillations in a Separating Boundary-Layer Flow. Journal of Fluid Mech.. 2003, 490:169~188
    132 R. E. Mayle. The Role of Laminar-Turbulent Transition in Gas Turbine Engines. Journal of Turbomachinery, 1991, 113:509~537
    133 Régis Houtermans, Thomos Coton, Tony Arts. Aerodynamic Performance of a Very High Lift LP Turbine Blade with Emphasis on Separation Prediction. ASME Paper, GT2003-38802, 2003
    134 R. J. Howel, O. N. Ramesh, H. P. Hodson, et al. High Lift and Aft-Loaded Profiles for Low-Pressure Turbines. ASME Journal of Turbomachinery. 2001, 123:181~188
    135 M. F. Blair, R. P. Dring, H. D. Joslynet. The Effect of Turbulence and Stator/Rotor Interactions on Turbine Heat Transfer Part 1: Design Operating Conditions. ASME Paper, 88-GT-125, 1988
    136 L. Prandtl.über die Entstehung der Turbulenz ZAMM ll. 1931:407~409
    137 J. T. Stuart. On the Non-linear Mechanics of Wave Disturbances in Stable and Unstable Parallel Flows Part 1: The Basic Behavior in Plane Poiseuille Flow. Journal of Fluid Mech.. 1960, 9:353~370
    138 A. D. D. Craik. Nonlinear Resonant Instability in Boundary Layers. Journal of Fluid Mech., 1971, 50:343~413
    139 T. Herbet. Secondary-Instability of Plane Channel Flow to Sub-Harmonic Three-Dimensional Disturbances. Phys. Fluids. 1983, 26:871~874
    140 T. Herbet. Parabolized Stability Equations. Annu. Rev. Fluid Mech. 1997, 29:245~283
    141马亮,徐坦.自由剪切流中沿流向二次失稳研究.水动力学研究与进展. 2007, 22(5):640~646
    142董亚妮,周恒.二维超音速边界层中三波共振和二次失稳机制的数值模拟研究.应用数学和力学. 2006, 27(2):127~133
    143 T. Hetsch, U. Rist. The Influence of Sweep on the Linear Stability of a Series of Swept Laminar Seperation Bubbles. European Journal of Mechanics B/Fluids. 2009, 28:494~505
    144 Blackburn H M, Barkley D, Sherwin S J. Convective Instability and Transient Growth in Flow over a Backward-Facing Step. J. Fluid Mech. 2008, 603:271~304
    145张永明,周恒. PSE在超声速边界层二次失稳问题中的应用.应用数学和力学. 2008, 29(1):1~7
    146 A. M. O. Smith, N. Gamberoni. Transition, Pressure Gradient and Stability Therry. Report ES 26338, Douglas Aircraft Co., El Segundo, California, 1956
    147 J. L. Van, A. Ingen. Suggested Semi-Empirical Method for the Calculation of Boundary Layer Transition Region. Report UTH-74, Univ. of Techn., Dept. of Aero. Eng., Delft, 1956
    148苏彩虹,周恒.稳定性分析和转捩预报.应用数学和力学. 2007, 28(5):505~513
    149 Krumbein Andreas. e N Transition Prediction for 3D Wing Configurations Using Database Methods and a Local, Linear Stability Code. Aerospace Science and Technology. 2008, 12:592~598
    150 K. A. Stephani, D. B. Goldstein. DNS Study of Transient Disturbance Growth and Bypass Transition due to Realistic Roughness. AIAA Paper, 2009-585, 2009
    151 Ferrante Antonino, Pantano Carlos, Matheou George, et al. On the Effects of the Upstream Conditions on the Transition of an Inclined Jet into a Supersonic Cross-Flow. AIAA Paper, 2009-1511, 2009
    152 M. Stripf, A. Schulz, H. J. Bauer. Modeling of Rough Wall Boundary Layer Transition and Heat Transfer on Turbine Airfoils. ASME Paper, GT2006-90316, 2006
    153 D. C. Wilcox. A Model for Transition Flows. AIAA Paper, 77-126, 1977
    154 R. C. Schmidt, S. V. Patankar. Simulation Boundary Layer Transition with Low-Reynolds-Number k ?ε. Turbulence Models: Part 1 An Evaluation of Prediction Characteristics. Journal of Turbomachinery. 1991, 113:10~17
    155 S. K. Roberts, M. I. Yaras. Modeling of Boundary-Layer Transition. ASME Paper, GT2004-53664, 2004
    156 A. M. Savill. Some Recent Progress in the Turbulence Modeling of Bypass Transition. R. M. C. So, C. G. Speziale and B. E. Launder, Near-Wall Turbulent Flows, Elsevier, 1993:829
    157 A. M. Savill. One-Point Closures Applied to Transition. M. Hall?ck et al., Turbulence and Transition Modeling, Kluwer, 1996:233~268
    158 Y. B. Suzen, P. G. Huang, L. S. Hultgren, et al. Predictions of Separated and Transitional Boundary Layers under Low-Pressure Turbine Airfoil Conditions Using an Intermittency Transport Equation. Journal of Turbomachinery. 2003, 125(3):455~464
    159 A. M. Savill. Evaluating Turbulence Model Prediction of Transition: an ERCOFTAC SIG Project. Appl. Sci. Research. 1992, 51:555
    160 http://transition.imse.unige.it
    161 H. W. Emmons. The Laminar-Turbulent Transition in a Boundary Layer Part 1. Journal of Aerospace Science. 1951, 018(7):490~498
    162 S. Dhawan, R. Narasimha. Some Properties of Boundary Layer during the Transition from Laminar to Turbulent Flow Motion. Journal of Fluid Mechanics. 1958, 3:418~436
    163 K. K. Chen, N. A. Thyson. Extension of Emmons’Spot Theory to Flows on Blunt Bodies. AIAA Journal. 1971, 09(5):821~825
    164 W. J. Solomon, G. J. Walker, J. P. Gostelow. Transition Length Prediction for Flows with Rapidly Changing Pressure Gradients. Journal of Turbomachinery. 1996, 118(4):744~751
    165 B. J. Abu-Gharmam, R. Shaw. Natural Trnasitioin of Boundary Layers: the Effects of Turbulence, Pressure Gradient, and Flow History. Journal of Mechanical Engineering Science. 1980, 22(5):213~228
    166刘沂秋,邵玲,郭玉波等.转捩模型在叶栅粘性流数值模拟中的应用方法研究.节能技术. 2003, 21(4):9~10
    167杨琳,邹正平,宁方飞等.边界层转捩的数值模拟.航空动力学报. 2005, 20(3):355~360
    168 J. R. Cho, M. K. Chung. A k-ε-ωEquation Turbulence Model. Journal of Fluid Mechanics. 1992, 237:301~322
    169 J. Steelant, E. Dick. Modeling of Bypass Transition with Conditioned Navier-Stokes Equation Coupled to an Intermittency Transport Equation. Int. J. Num. Meth. Fluids. 1996, 23:193~220
    170 Y. B. Suzen, P. G. Huang. Modeling of Flow Transition Using an Intermittency Transport Equation. ASME Journal of Fluids Engineering. 2000, 122:273~284
    171 Y. B. Suzen, P. G. Huang, L. S. Hultgren, et al. Predictions of Separated and Transitional Boundary Layers under Low-Pressure Turbine Airfoil Conditions Using an Intermittency Transport Equation. Journal of Turbomachinery. 2003, 125(3):455~464
    172 J. Vicedo, S. Vilmin. Intermittency Transport Modeling of Separated Flow Transition. ASME Paper, GT2003-38719, 2003
    173 C. Dopazo. On Conditioned Averages for Intermittent Turbulent Flows. J. Fluid Mech.. 1977, 81:433-438
    174 J. Coupland. Transition Modeling for Turbomachinery Flows. ERCOFTAC Bulletin, 1995:5~8
    175 Koen Lodefier, Bart Merci, Chris De Langhe, et al. Transition Modeling with the SST Turbulence Model and an Intermittency Transport Equation. ASME Paper, GT2003-38282, 2003
    176 Koen Lodefier, Erik Dick. An Unsteady RANS Transition Model with Dynamic Description of Intermittency. ASME Paper, GT2005-68714, 2005
    177 R. D. Stieger, H. P. Hodson. The Transition Mechanism of Highly-Loaded LP Turbine Blades. ASME Paper, GT2003-38304, 2003
    178 F. R. Menter, R. B. Langtry, S. R. Likki. A Correlation-Based Transition Model Using Local Variables, Part 1-Model Formulation. ASME Paper, GT2004-53452, 2004
    179 Rene Pecnik, Wolfgang Sanz, Paul Pieringer. Numerical Investigation of Unsteady Boundary Layer Transition Induced by Periodically Passing Wakes with an Intermittency transport Equation. ASME Paper, GT2004-53204, 2004
    180 A. M. Savill. A Synthesis of T3 Test Case Predictions, Numerical Simulation ofUnsteady Flows and Transition to Turbulence, O. P. et al., Cambridge University Press, 1992:404~442
    181 P. Stadtmüller, L. Fottner. A Test Case for the Numerical Investigation of Wake Passing Effects on a Highly Loaded LP Turbine Cascade Blade. ASME Paper, GT2001-311, 2001
    182 F. R. Menter, Y. Esch, S. Kubacki. Transition Modeling Based on Local Variables. 5th International Symposium on Turbulence Modeling and Measurements, Mallorca, Spain, 2002
    183 R. B. Langtry, F. R. Menter, S. R. Likki, et al. A Correlation-Based Transition Model Using Local Variables, Part 2-Test Cases and Industrial Applications. ASME Paper, GT2004-53454, 2004
    184 W. M. Kays. Turbulent Prandtl Number——Where Are We?. International Journal of Heat Transfer. 1994, 37(5):284~295
    185 J. Kim, P. Moin. Transport of Passive Scalars in a Turbulent Channel Flow. Turbulent Shear Flows 6, Berlin, 1989:85~96
    186 R. A. Antonia. Reynolds Shear Stress and Heat Flux Calculations in a Fully Developed Turbulent Duct Flow. International Journal of Heat Mass Transfer. 1990, 34(8):2013~2018
    187 A. J. Reynolds. The Prediction of Turbulent Prandtl and Schmidt Numbers. International Journal of Heat Mass Transfer. 1975, 18:1055~1069
    188 Z. Y. Han, R. D. Reitz. A Temperature Wall Function Formulation for Variable–Density Turbulent Flows with Application to Engine Convective Heat Transfer Modeling. Int. J. Heat Mass Transfer. 1997, 40(3):613~625
    189 H. Akbari, A. Mertol, A. Gadgil, et al. Development of a Turbulent Near-Wall Model and Its Application to Channel Flow. Warme-und-stoffubertragung. 1986, 20:189~201
    190 Y. Nagano, C. Kim. A Two-Equation Model for Heat Transfer in Wall Turbulent Shear Flows. Journal of Heat Transfer, Transaction of the ASME. 1998, 110:583~589
    191 T. P. Sommer, R. M. C. So, Y. G. Lai. A Near-Wall Two-Equation Model for Turbulent Heat Flux. Int. J. Heat Mass Transfer. 1992, 35(12):3375~3387
    192 C. B. Hwang, C. A. Lin. A Low Reynolds Number Two-Equation kθ?ε~θModel to Predict Thermal Fields. Int. J. Heat Mass Transfer. 1999, 42:3217~3230
    193 Hiroshi Kawamura, Yoshitsune Kurihara. Modeling of Turbulent Scalar Transport in Homogeneous Turbulence. Int. J. Heat Mass Transfer. 2000, 43:1935~1945
    194 W. P. Jones, P. Musonge. Closure of the Reynolds Stress and Scalar Flux Equation. Phys. Fluids. 1988, 31(12):3589~3604,
    195 Y. G. Lai, R. M. C. So. Near-Wall Modeling of Turbulent Heat Fluxes. Int. J Heat Mass Transfer. 1990, 33(7):1429~1440
    196 Y. H. Dong, X. Y. Liu, L. X. Zhuang. An Investigation of the Prandtl Number Effect on Turbulent Heat Transfer in Channel Flows by Large Eddy Simulation. Acta Mechanica. 2002, 159:39~51
    197 J. Kim, P. Moin. Transport of Passive Scalars in a Turbulent Channel Flow. Turbulent Shear Flows, J. C. Andre, et al., New York, Springer-Verlag, 1989, 6: 85~96
    198 Hojin Kong, Haecheon Choi, Joon Sik Lee. Direct Numerical Simulation of Turbulent Thermal Bpundary Layers. Phys. Fluids. 2000, 12(10):2555~2568
    199李海滨.涡轮叶栅中的冷气掺混及气热耦合研究.哈尔滨工业大学博士学位论文,2002:27~31
    200王松涛.叶轮机三维粘性流场数值方法与弯叶栅内涡系结构的研究.哈尔滨工业大学博士学位论文,1999
    201 J. M. Conley. Modification of the MML Turbulence Model for Adverse Pressure Gradient Flows. AIAA Paper, 94-2715, 1994
    202 C. Prakash. Some Experiences with the Standard k ?ε, RNG and Chen Turbulence Models. National Turbulent Combustion Model Meeting, NASA Lewis, 1995
    203 M. Kato, B. E. Launder. Modeling Flow-Induced Oscillation in Turbulent Flow around a Square Cylinder. ASME FED, 1993, 157:189~199
    204 P. A. Durbin. On the k ?εStagnation Point Anomaly. International Journal of Heat Fluid Flow. 1996, 17:89~90
    205 G. Medic, P. A. Durbin. Toward Improved Prediction of Heat Transfer on Turbine Blades. Journal of Turbomachinery. 2002, 124:198~192
    206 Rene Pecnik, Wolfgang Sanz, Paul Pieringer. Numerical Investigation of Unsteady Boundary Layer Transition Induced By Periodically Passing Wakes with an Intermittency Transport Equation. ASME Paper, GT2004-53204, 2004
    207朱自强.应用计算流体力学.北京,北京航空航天大学出版社, 1998:134
    208 M. E. Crawford, W. M. Kays. STAN5—A Program for Numerical Computation of Two-Dimensional Internal and External Boundary Layer Flows. NASA-CR-2742, 1976
    209 R. J. Boyle. Navier-Stokes Analysis of Turbine Blade Heat Transfer. Journal of Turbomachinery. 1991, 113:392~403
    210 T. H. Pulliam, D. S. Chaussee. A Diagonal Form of an Implicit Approximate Factorization Algorithm. Journal of Computational Physics. 1981, 39:371~390
    211 S. K. Godunov. A Finite-Difference Method for the Numerical Computation of Discontinuous Solutions of the Equations of Fluid Dynamics. Mathematicheskii Sbomik. 1959; 47:271~306
    212 L. H. Smith. The Radial Equilibrium Equation of Turbomachinery. ASME Journal of Engineering and Power. 1966; 88(1):1~22
    213袁宁,王松涛,张振家等.涡轮级三维粘性流场的数值模拟.航空动力学报. 1999, 14(2):135~138
    214 Z. X. Han, B. H. Dennis. Simultaneous Prediction of External Flow-Field and Temperature in Internally Cooled 3-D Turbine Blade Material. ASME Paper, 2000-GT-253, 2000
    215 Takashi Yamane, Toyoaki Yoshida, Shunji Enomoto, et al. Conjugate Simulation of Flow and Heat Conduction with a New Method for Faster Calculation, ASME Paper, GT2004-53680, 2004
    216董平,黄鸿雁,冯国泰.高压燃气涡轮径向内冷叶片气热耦合的数值分析.航空动力学报. 2008, 23(2):201~207

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700