基于CAD-DEM-CFD耦合的气吹式排种器数字化设计方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文以一种气吹式大豆精密排种器为研究对象,在对国内外有关气固耦合理论进行深入研究的基础上,将气相按连续介质处理,通过求解控制方程分析气相运动信息,即计算流体力学方法(简称CFD);将大豆种子按离散介质处理,通过牛顿第二定律求解每个颗粒的运动速度和位移,即离散元法(简称DEM),同时考虑气相与固相的双向耦合作用,在此基础上研制出基于CAD-DEM-CFD耦合的气吹式精密排种器二维设计分析软件。采用该软件通过改变排种器的CAD模型、种子模型和仿真参数,来分析不同结构排种器的性能,以期为气吹式排种器的研究和优化设计建立一种新方法。本文的主要工作和结果如下。
     1)对3种大豆种子(吉科豆、吉新豆和吉豆)的物理力学参数进行了测试分析,包括大豆种子的含水率、密度、三轴尺寸、动静摩擦系数、刚度系数、弹性模量及碰撞恢复系数,其中静摩擦系数和碰撞恢复系数采用自制仪器测试。
     2)设计制作了内部可视的气吹式大豆精密排种器,在PSJ型排种器试验台上进行了台架试验,借助高速摄像技术和爆破分析软件分析了气吹式大豆精密排种器在不加气和加气2种情况下的工作过程与性能,包括排种性能、种子运动速度和轨迹、投种角,由分析可知:
     ①在不加气时,随着型孔轮转速(13.99 r/min~33.01 r/min)增大,排种单粒率减小、空穴率增大、双粒率无变化规律且值均小于0.6%;离型孔轮较远处的种子速度和位移很小,基本处于原位置自转或静止状态;拖带层种子和投种口种子速度均随型孔轮转速增大而增大;在型孔轮转速一定时,3种大豆种子投种角差别较小,但随转速增大投种角增大;投种后种子的运动轨迹为开口向下的抛物线,且随型孔轮转速增大抛物线开口增大;排3种大豆种子时上述变化规律基本相同;
     ②加气且吹气口方向与水平夹角成60°时,型孔轮转速一定时,随风压(0.4 kPa~ 2.0 kPa)增大,排种单粒率增大、空穴率减小,而双粒率无变化规律且值均较小,特别是转速26.67 r/min、风压1.2 kPa时,排种性能明显优于不加气时的排种性能;风压一定时,随型孔轮转速增大,排种单粒率减小、空穴率增大、双粒率无变化规律且值均较小;离型孔轮较远处种子的速度和位移很小,基本处于原位置自转或静止状态;拖带层种子速度随型孔轮转速增大而增大,随风压增大而减小;投种口种子速度随型孔轮转速增大而增大,随风压增大也增大;风压一定时,种子投种角随型孔轮转速增大而增大,与不加气时规律相同,转速一定时,投种角随风压增大而减小;投种后种子的运动轨迹为开口向下的抛物线,风压一定时,随型孔轮转速增大抛物线开口增大,型孔轮转速一定时,随风压增大抛物线开口减小;排3种大豆种子时上述变化规律基本相同;
     ③加气且吹气口方向与水平夹角成90°时,在型孔轮转速为26.67 r/min时,风压增大,排种(吉科豆)单粒率增大、空穴率减小,而双粒率无变化规律,但值均小于等于1.3%,这与倾斜进气口排种规律基本相同;投种后种子运动轨迹的抛物线开口不随风压变化而呈规律性变化,其它与夹角60°时变化规律相同。
     3)在深入研究二维结构和非结构网格生成方法的基础上,建立了2种网格生成的改进方法,即TM-魏改进法和基于局部弹簧平衡系统的布点方法,这2种方法可提高网格的贴体性、正交性、疏密性等网格质量。
     4)在对DEM、CFD和DEM-CFD耦合方法进行深入研究的基础上,基于同位网格和有限体积法建立了求解气相场的改进算法——SIMPLERC。该算法吸收了SIMPLER算法的优点,克服了SIMPLE算法对压力修正的不理想,同时吸纳了SIMPLEC算法的核心思想,即略去速度修正方程中的∑a nb (u n′b?u′P)项,因而减轻直接由压差项修正速度的负担,使速度场求解速度加快,也避免了SIMPLE算法中“不协调一致”的错误。
     5)在对CAD软件进行二次开发的基础上,研制了网格生成模块、气固耦合计算模块,并集成到了课题组研发的二维离散元软件,还采用OpenGL改善了仿真结果的动态显示效果,在此基础上研制出基于CAD-DEM-CFD耦合的气吹式精密排种器二维设计分析软件。通过对该软件的测试和实例验证,包括网格生成模块、气固耦合计算模块等,初步证明了本文开发的二维设计分析软件能实现气体和气固耦合的分析计算。
     6)根据试验测得的3种大豆种子的物理力学参数,分别采用圆形和椭圆形2种颗粒模型建立了6种大豆种子的分析模型,采用本文研制的二维设计分析软件分别对不加气和加气情况下的气吹式大豆精密排种器工作过程与性能进行了仿真分析,由仿真分析与试验结果的对比可知:
     ①不加气时仿真分析,在2种颗粒模型(圆形和椭圆形)和4种转速(13.99 r/min、20.33 r/min、26.67 r/min、33.01 r/min)情况下,排种单粒率均为100%、空穴率和双粒率均为0,与试验结果差别较大,其原因还需深入探讨;
     ②不加气时仿真分析,离型孔轮较远处种子的速度和位移很小,基本处于原位置静止状态,与试验结果基本相同;在2种颗粒模型和4种转速情况下,拖带层种子和投种口种子(吉科豆)的速度随型孔轮转速增大而增大,与试验结果变化验趋一致;圆形颗粒模型且型孔轮转速为13.99 r/min时,种子(吉科豆)投种角的仿真与试验结果误差为1.01%,种子模型为椭圆形时,投种角仿真与试验结果误差为1.49%,随着型孔轮转速的增大,2种颗粒模型投种角的仿真与试验结果误差均在增大,但仿真与试验结果的变化趋势一致;投种后种子和拖带层种子(吉科豆)运动轨迹与试验结果变化验趋一致;
     ③加气时且吹气口方向与水平成60°情况下仿真分析,在2种颗粒模型(圆形和椭圆形)、3种转速(13.99 r/min、26.67 r/min、39.35r/min)和3种风压(0.4 kPa、1.2 kPa、2.0 kPa)情况下,排种性能指标均与不加气仿真结果相似,与试验结果差别较大;离型孔轮较远处种子的速度和位移很小,基本处于原位置静止状态,与试验结果基本相同;拖带层种子速度比试验值大、投种口种子速度比试验值小,但总体变化趋势均与试验相同;风压一定时,种子(吉科豆)投种角随型孔轮转速增大而增大,与试验和不加气情况变化趋势相同,转速一定时,随风压增大投种角仿真与试验结果误差增大,但变化趋势相同;投种后种子(吉科豆)运动轨迹为开口向下的抛物线,风压一定时,抛物线开口随型孔轮转速增大而增大,与试验结果变化趋势相同,但较不加气时略小;转速一定时,投种后种子(吉科豆)运动轨迹的抛物线开口随风压增大而略减小,与试验结果变化趋势相同;拖带层种子运动轨迹的仿真与试验虽有误差,但变化趋势基本相同;
     ④加气时且吹气口方向与水平成90°情况下仿真分析,在2种颗粒模型(圆形和椭圆形)、1种转速(26.67 r/min)和3种风压(0.4 kPa、1.2 kPa、2.0 kPa)情况下,吉科豆的排种性能指标与试验差别较大;离型孔轮较远处种子的速度和位移很小,基本处于原位置静止状态,与其它情况仿真结果及试验结果基本相同;拖带层和投种口种子速度的仿真分析与试验结果变化趋势相同;投种后吉科豆轨迹为开口向下的抛物线,且随风压增大仿真与试验的误差增大,但整体变化趋势相同;拖带层种子运动轨迹的仿真与试验变化趋势相同;风压为0.4 kPa和椭圆颗粒模型时,吉科豆投种角的仿真与试验误差为4.28%,圆形颗粒模型时为8.92%,风压增大时,2种颗粒模型投种角的仿真与试验结果误差均在增大,且椭圆颗粒模型较圆形颗粒模型误差大;
     ⑤刚度系数和摩擦系数在实测范围内取值时,对仿真结果影响不大。
     综上所述可知,虽然仿真结果与试验结果有误差,但除去排种性能指标外,种子运动速度和轨迹、投种角的仿真与试验结果变化趋势一致,由此初步证明了采用DEM-CFD耦合方法和本文研制的二维设计分析软件研究气吹式大豆精密排种器的可行性。
In this paper, a kind of precision soybean metering device is treated as research object, in order to deal with the continuous gas media and analysis the gas motion information through solving equations on the basis of further research in domestic and foreign gas-solid coupling theories, as The Computational Fluid Dynamics (CFD); The soybean seeds are treated as discrete media, through Newton’s second law each granule’velocity and trajectory can be obtained, as The Discrete Element Method (DEM), meanwhile the two way coupling effect of gas-solid is taken into consideration, on this foundation a two-dimensional design and analysis software of gas blown precision soybean metering device is developed based on CAD-DEM-CFD coupling technology. We can use this software to change the metering device’s CAD model, seed model and simulation parameter to analysis the performances of different kinds of metering devices, and we can also compare the simulation results and the test results of the metering device’s experiments, looking forward to establish a novel method to the research and the optimization of air-blowing seed-metering device. The main work and results of the paper are as follows:
     1) The physical and mechanical properties of three soybean seeds (GK, GX, G)have been tested, include moisture content, density, triaxial dimension, static and dynamic friction coefficient, stiffness coefficient, elastic modulus and coefficient of restitution, which static friction coefficient and coefficient of restitution are tested by homemade instruments.
     2) A visual gas blown precision soybean metering device has been designed and tested in the PSJ-type metering device test bed, the working process and performance of the air-blowing seed-metering device are able to be analyzed in the condition both with and without gas by the use of high speed video camera technology and BLASTER’S MOTION ANALYSIS SOFTWARE, include the seeding performance, speed and trajectory of the seed, dropping angles, the analysis shows:
     ①In the condition without gas, when the rotational velocities(13.99r/min~33.01r/min) of the wheel increase, the rate of single seed decrease, the rate of empty increased, the double seed rate has no change law and values of the double seed rate are all less than 0.6%, The velocity and displacement of the seed that is far from the wheel is very small, basically at the original location or at rest. The velocity of the seed that is in towing layer and dropping exit increase while the velocity of the wheel increase. When the rotational velocity of the wheel is stable, the dropping angles of the 3 kinds of soybean seeds have little difference, but when the rotational velocities increase, they increase. After dropping the trajectory of the seed is a downwards-opening parabola and when the wheel’s velocities increase, the parabola’s opening increase. It has almost the same discipline when seeding the 3 kinds of soybean seeds.
     ②When filling gas and the blowing direction has a 60°angle between horizon, if the wheel’s velocity is unchanged, the single seed rate increase, the empty rate decrease, while the double-seed rate has no change law and values of the double-seed rate are small according to the increase of wind pressure(0.4kPa~2.0kPa), especially when the rotation velocity is 26.67r/min and the wind pressure is 1.2kPa, the seeding performance is better than no-gas condition. If the wind pressure is unchanged, the single seed rate increase, the empty rate decrease, while the double-seed rate has no change law and values of the double-seed rate are small according to the increase of wheel’s velocity, the same tendency with no-gas condition. The velocity and displacement of the seed that is far from the wheel is very small, basically at the original location or at rest. The velocity of the seed that is in towing layer increase while the velocity of the wheel increase and decrease while the wind pressure increase. If the wind pressure is unchanged, the dropping angle increase according to the increase of wheel’speed, the same tendency with no-gas condition. If the rotation speed is unchanged, the dropping angles decrease according to the increase of wind pressure. After dropping the trajectory of the seed is a downwards-opening parabola and if the wind pressure is unchanged, the parabola’s opening increase according to the increase of wheel’s velocity, if the wheel’s velocity is unchanged, the parabola’s opening decrease according to the increase of wind pressure. It has almost the same discipline when seeding the 3 kinds of soybean seeds.
     ③When filling gas and the blowing direction has a 90°angle between horizon, if the wheel has a velocity of 26.67r/min, the seeding(GK) single seed rate increase, the empty rate decrease, while the double-seed rate has no change law and values of the double-seed rate are less than or equal to 1.3%, the result is just in contrast with the way of incline blown seeding. After dropping the trajectory of the seed is parabola which the opening has no regular change according to the change of wind pressure, except this, it has the same discipline with the 60°angle.
     3) Based on deep researching of two-dimensional structured and unstructured grid’s generation method, improvements of two grid generation have been established, as the TM-Wei improvement and spring balance system based method, these two methods are able to improve the body-fitted, orthogonal nature and the density of the gird quality.
     4) Based on deep researching DEM, CFD and the coupling method of DEM-CFD, an improved algorithm—SIMPLERC has been established according to collocated grid and finite volume method. This algorithm has absorbed the advantages of SIMPLER algorithm and overcome the defective of SIMPLER algorithm in pressure correction, at the same time it has absorbed the core idea of SIMPLER algorithm, as omitting the item in velocity correction equation, so as to reduce the burden directly from rate of pressure, accelerate the speed of solving in velocity field and avoid the‘inconsistent’mistake happened in SIMPLER algorithm too.
     5) Based on redevelopment of CAD software, grid generation module, gas-solid coupling calculation module has been developed and integrated into the two-dimensional DEM software developed by the research group. OpenGL has also been used to improve the dynamic display of simulation result. On the foundation of this, CAD-DEM-CFD coupling analysis software has been developed. By instances of the software testing and validation, including grid generation module, gas-solid coupling calculation module etc, it demonstrated the two-dimensional design and analysis software introduced in this paper is able to work out the gas and gas-solid coupling calculation.
     6) According to the physical and mechanical parameters of three soybean seeds tested in experiment, six kinds of soybean seed analysis model have been established using round and oval-shaped particle model, the working processes and performances of the gas blown precision soybean metering device both in gas and no-gas condition have been simulated by the software introduced in this paper, comparison between simulation and experimental results shows:
     ①When the simulation without gas, in the condition of 2 particle models(round and oval-shaped) and 4 rotation speeds(13.99r/min、20.33r/min、26.67r/min、33.01r/min), each of the seeding single seed rate is 100%, each of the empty rate and double seed rate is 0, it has great difference with the test bed result and the reason needs further study.
     ②When the simulation without gas, the velocity and displacement of the seed which is far from the wheel is very small, basically at the original location or at rest, basically the same with the test. In the condition of 2 particle models and 4 rotation speeds, the velocity of the seed(GK) which is in towing layer and dropping exit increase according to the increase of wheel’s velocity, the same changing tendency with the test. When using the round-shaped particle model and the wheel’s velocity is 13.99r/min, the test error of dropping angle between simulation and test is 1.01%. When using oval-shaped model, the error is 1.49%, increase while the wheel’s velocity increase, the dropping angles error of two seed models increase both, but the changing tendency are the same with test. After dropping, the trajectory of seeds and seeds in towing layer has the same changing tendency with test.
     ③When filling gas and the blowing direction has a 90°angle between horizon, in the condition of 2 particle models(round and oval-shaped), 3 rotation speeds(13.99r/min、26.67r/min、39.35r/min) and 3 wind pressures(0.4kPa、1.2kPa、2.0kPa), the seeding performances are familiar with the simulation without gas and has a large difference between test results. The velocity and displacement of the seed that is far from the wheel is very small, basically at the original location or at rest, basically the same with the test. The velocity of the seed in towing layer is larger than the test result, the velocity of the seed in dropping exit is smaller than the test result, but the whole changing tendency is the same with the test result. When the wind pressure is unchanged, the dropping angle (GK) increase according to the increase of wheel’s velocity, it has the same changing tendency with test result and no-gas condition. When the rotation speed is unchanged, the dropping angle’s error between simulation and test increase, but they have the same changing tendency. After dropping the trajectory of the seed is a downwards-opening parabola, when the wind pressure is unchanged, the parabola’s opening increase according to the increase of wheel’s velocity, it has the same changing tendency with the test result, but smaller than no-gas condition. When the rotation speed is unchanged, after dropping the trajectory of the seed (GK) is a parabola which its opening decreases according to the increase of wind pressure, it has the same changing tendency with test result. Although the trajectory of seed in towing layer in simulation has error when compared with test result, they have the same changing tendency.
     ④When filling gas and the blowing direction has a 90°angle between horizon, in the condition of 2 particle models (round and oval-shaped), 3 rotation speeds(13.99r/min、26.67r/min、39.35r/min) and 3 wind pressures(0.4kPa、1.2kPa、2.0kPa), the seeding performance of GK seed are the same with incline blown seeding and no-gas seeding. The velocity and displacement of the seed that is far from the wheel is very small, basically at the original location or at rest, basically the same with other test. The velocity of the seed (GK) that is in towing layer and dropping exit has the same changing result with test result. After dropping the trajectory of the seed (GK) is a parabola which its error between simulation and test increase according to the increase of wind pressure, but they have the same changing tendency. The trajectory of seed in towing layer has the same changing tendency with test result. When the wind pressure is 0.4kPa and using oval-shaped particle model, the dropping angle of GK seed has an error of 4.28% compared with test result, and 8.92% when using round-shaped model, but when the wind pressure increase, the errors of the two seed model both increase, and oval-shaped model has a larger number than round one.
     ⑤When using the stiffness coefficient and friction coefficient in the range of measured values, it has little effect to the simulation result.
     In summary we can see, although there is error between simulation and test result, except the performance of seeding, the velocity, trajectory and seeding angle all have the same changing tendency with test result, so it initially proved that using DEM-CFD coupling method and the software introduced in this paper to research gas blown precision soybean metering device is feasible.
引文
[1]中国农业机械化科学研究院.农业机械设计手册(上册)[M].北京:中国农业科学技术出版社, 2007. 344-364.
    [2]何雄奎,刘亚佳.农业机械化[M].北京:化学工业出版社,2006.
    [3]张列南.基于离散元法的大豆精密排种器的数字化设计方法研究[D].长春:吉林大学, 2009.
    [4]马成林,于海业,张守勤,等.大豆垅上双条精密播种单体. 99206669[P], 2000.
    [5]孙裕晶.虚拟样机技术及其在精密排种部件设计中的应用[D].长春:吉林大学,2005.
    [6]梁留锁,马旭.精密播种机数字化设计的研究现状与展望[C]//走中国特色农业机械化道路——中国农业机械学会2008年学术年会论文集(下册),济南, 2008.
    [7]胡树荣,马成林,李慧珍,等.气吹式排种器锥孔的结构参数对排种质量影响的研究[J].农业机械学报, 1981, 12(3): 21-31.
    [8]马成林.气吹排种器充填原理的研究[J].农业机械学报, 1981, 12(4): 1-13.
    [9]马成林,王十周,张守勤,等.气力轮式排种器试验研究[J].农业机械学报, 1990, 9(03): 28-34.
    [10]马成林,李胜武.提高气吹排种器充填极限速度的研究[J].吉林工业大学学报, 1981, (3): 28-37.
    [11]左春晨,马成林,吴成武,等.工业电视在气力轮式排种器研究中的应用[J].农业工程学报, 1991, 7(1): 37-42.
    [12]胡树荣,马成林,李慧珍,等.气吹式排种器的排种频率和气流速度对排种质量影响的研究[J].吉林工业大学学报, 1981, (4): 26-35.
    [13]左春柽,马成林,张守勤,等.新型气力精密排种器的空气动力学原理[J].农业工程学报, 1997, 9(3): 110-114.
    [14]韩信,韩殿柱,纪春武. 2BDY-6型高速气力精密播种机简介[J].现代化农业, 2003, (6): 33.
    [15]孙裕晶,马成林,李萌.加压条件下气力轮式精密排种器性能分析[J].农业机械学报, 2009, 40(7): 72-77.
    [16]孙裕晶,马成林,王海.气力轮式精密排种器大豆充种过程试验研究[J].农机化研究, 2006, 10(10): 147-150.
    [17]孙裕晶,马成林,张勇智.基于均匀设计的精密排种器结构优化方法[J].吉林大学学报(工学版), 2004, 34(4): 569-572.
    [18]杨松华,孙裕晶,马成林,等.气力轮式精密排种器参数优化[J].农业工程学报, 2008, 24(2): 116-120.
    [19]李成华,高玉芝.倾斜圆盘气吹式播种器设计及试验研究[J].沈阳农业大学学报, 2007, 38(6): 830-836.
    [20]李成华,高玉芝,张本华.气吹式倾斜圆盘排种器排种性能试验[J].农业机械学报, 2008, 39(10): 90-94.
    [21]左春柽,马成林,张守勤.气力轮式排种器动压充种机理及试验研究[J].农业机械学报, 1998, 29(S1): 51-54.
    [22]汤楚宙,向卫兵,谢方平.气吹式杂交水稻精播排种器型孔型式的试验研究[J].农业工程学报, 1999, 15(1): 241-243.
    [23]孙裕晶,马成林,牛序堂,等.基于离散元的大豆精密排种过程分析与动态模拟[J].农业机械学报, 2006, 37(11): 45-48.
    [24]张守勤,马成林,王成和,等.气力轮式排种器型孔的流场及作用[J].农业机械学报, 1991, 12(4): 26-31.
    [25]田凤国.内循环流化床气固流动数值模拟与试验研究[D].上海:上海交通大学, 2007.
    [26] Jackson R. The mechanics of fluidized beds[J]. Trans. Transactions of the Institution of Chemical Engineers, 1963, 41: 13-28.
    [27] Murray J D, On the mathematics of fluidization. Part 2. steady motion of fully devedoped bubbles[J]. Journal of Fluid Mechanics, 1965, 22: 57-80.
    [28] Anderson T B, Jackson R. A fluid mechanical description of fluidized beds [J]. Industrial & Engineering Chemistry Fundamentals, 1967, 6: 527-539.
    [29] Liu D Y. Fluid dynamics of two-phase systems [M]. Beijing: Higher Education Press, 1993.
    [30]李长志,王莹,董鹏.湍流气固两相流动数值模拟理论研究的最新进展[J].电站系统工程, 2002, 18(3): 19-20.
    [31] Ding J, Gidaspow D. A bubbling fluidization model using kinetic theory of granular flow [J]. AIChE Journal, 1990, 36(4): 523-538.
    [32] Gidaspow D, Syamlal M, Seo Y C. Hydrodynamics of fluidization of single and binary size particles:supercomputer modeling[C]//in fluidization V: proceedings of the 5th engineering foundation conference on fluidization. New York: AIChE Engineering Foundation, 1986.
    [33] Kuipers J AM, Swaaij W P M V. Simulation of three dimensional riser flow using the kinetic theory of granular flow[C]. Proceedings of the 6th inernational conference on circulating fluidized beds, Edited by JoachimWerther, Wurzburg, Germany, 1999.
    [34]张政,谢灼利.流体-固体两相流的数值模拟[J].化工学报, 2001, 52(1): 19-20.
    [35]郑建祥,刘文铁,赵云华,等.分解炉内气固两相流动特性的数值模拟[J].硅酸盐学报, 2005, 7(33).
    [36] Shyy W, Mittal R. Solution methods for the incompressible navier-stokes equations. in: johnson R W, ed. the handbook of fluid dynamics [M]. Boca Raton: CRC Press, 1998.
    [37] Patankar S V, Spalding B. A calculation procedure for heat mass and momentum transfer in three dimensional parabolic flows [J]. International Journal of Heat and Mass Transfer, 1972, 15: 1787-1806.
    [38] Patankar S V. Numerical heat transfer and fluid flow [M]. Washington, DC: Hemisphere, 1980.
    [39] Patankar S V. A calculation procedure for two-dimensional elliptic situations [J]. Numer Heat Transfer, 1981, 4: 409-425.
    [40] Liu X L, Tao W Q, He Y L. A simple method for improving the SIMPLER algorithm for numerical simulations of incompressible fluid flow and heat transfer problems [J]. Computer engineering, 2005, 22: 921-939.
    [41] Doormaal J P V, Raithby G D. Enhancements of the SIMPLE method for predicting incompressible fluid flows [J]. Numerical Heat Transfer, 1984, 7: 147-163.
    [42] Doormaal J P V, Raithby G D. An evaluation of the segregated approach for predicting incompressible fluid flow [J]. American Society of Mechanical Engineers, 1985, 85(9).
    [43] Raithby G D, Schneider G E. Elliptic system: finite difference method II[C]//In: Minkowycz W J, Sparrow E M, Pletcher R H, et al. eds. Handbook of Numerical Heat Transfer. New York: Wiley, 1988. 241-289.
    [44] Issa R I. Solution of implicitly discredited fluid flow equation by operator-splitting [J]. Journal of Computational Physics, 1985, 62: 40-65.
    [45] Yen R H, Liu C H. Enhancement of the SIMPLE algorithm by an additional explicit corrector step [J]. Numerical Heat Transfer, Part B, 1993, 24: 127-141.
    [46]屈治国.流动传热问题先进算法及其在强化空气对流传热应用中的研究[D].西安:西安交通大学, 2005.
    [47] Tao W Q, Qu Z G, He Y L. A novel segregated algorithm for incompressible fluid flow and heat transfer problems-CLEAR (coupled and liked equations algorithm revised). Part 1: Mathematical formulation and solution procedure [J]. Numerical Heat Transfer, Part B, 2004, 45(1):1-18.
    [48] Tao W Q, Qu Z G, He Y L. A novel segregated algorithm for incompressible fluid flow and heat transfer problems-CLEAR (coupled and liked equations algorithm revised). Part 2: Applications examples [J]. Numerical Heat Transfer, Part B, 2004, 45(1):19-48.
    [49] Cheng Y P, Lee T S, Low H T, et al. An efficient and robust numerical scheme for the SIMPLER algorithm on non-orthogonal curve-linear coordinates: CLEARER [J]. Numerical Heat Transfer, Part B, 2007, 51: 433-461.
    [50] Sun D L, Qu Z G, He Y L, et al. An efficient segregated algorithm for incompressible fluid flow and heat transfer problems-IDEAL (inner doubly-iterative efficient algorithm for linked-equations) Part I: Mathematical formulation and solution procedure [J]. Numerical Heat Transfer, Part B, 2008, 53: 1-17.
    [51] Sun D L, Qu Z G, He Y L, et al. An efficient segregated algorithm for incompressiblefluid flow and heat transfer problems-IDEAL (inner doubly-iterative efficient algorithm for linked-equations) Part II: Application examples [J]. Numerical Heat Transfer, Part B, 2008, 53: 18-38.
    [52]孙东亮,屈治国,何雅玲,等.基于三维同位网格的高效稳定的分离式算法IDEAL[J].科学通报, 2008, 53(24): 3014-3025.
    [53]刘向军,石磊,徐旭常.稠密气固两相流欧拉-拉格朗日法的研究现状[J].计算力学学报, 2007, 24(2): 66-72.
    [54] Ottjes J A. Digital simulation of pneumatic transport [J]. Chemical Engineering Science, 1978, 33: 783-786.
    [55] Campbell C S, Brennen C E. Computer simulation of granular shear flows [J]. Journal of Fluid Mechanics, 1985, 51: 167-188.
    [56] Tanakat, Tsuji Y. Numerical simulation of gas-solid two-phase flow in a vertical pipe: on the effect of inter-particle collision [J]. Gas-Solid Flows, ASME, 1991, 121: 123-128.
    [57] Tsuji Y, Tanaka T, Ishida T. Lagrange numerical simulation of plug flow of cohesion less particles in a horizontal pipe [J]. Powder Technology, 1992, 71(3): 239-250.
    [58] Tsuji Y, Kawaguchi T, Tanaka T. Discrete particle simulation of two-dimensional fluidized Bed [J]. Powder Technology, 1993, 77(1): 79-87.
    [59] Hoomans B P B, Kuipers J A M, Briels W J, et al. Discrete particle simulation of bubble and slug formation in a two-dimensional gas-fluidized: a hard-sphere approach [J]. Chemical Engineering Science, 1996, 51(1): 99-108.
    [60] Hoomans B P B, Granular dynamics of gas-solid two-phase flow [J]. Netherlands: Maastricht, 1999. 146-149.
    [61] Hoomans B P B, Kuipers J A M, SwaaijW P M V. Granular dynaics simulation of segregation phenomena in bubbling gas-fluidized beds [J]. Powder Technology, 2000, 109(1-3):41-48.
    [62] Yuan Z L. Study on fluidized region of particles using direct simulation method [J]. Combustion Science and Technology, 2001, 7(2): 120-122.
    [63] Cundall P A. A discrete numerical model for granular assembles [J]. Géotechnique, 1979, 29(1): 47-65.
    [64] Lu Z, Negi S C, Jofriet J C. A numerical model for flow of granular materials in silos. Part 1: model development [J]. Journal of Agricultural Engineering Research, 1997, 68: 223-229.
    [65] Zhang X, Vu-Quoc L. Simulation of chute flow of soybeans using an improved tangential force displacement model [J]. Mechanics of Materials, 2000, (32): 115-129.
    [66] Sakaguchi E, Suzuki M, Favier J F, et al. Numerical simulation of the shaking separation of paddy and brown rice using the discrete element method [J]. Journal of Agricultural Engineering Research, 2001, 79(30): 307-315.
    [67] Momozu M, O ida A, Yamazaki M, et al. Simulation of a soil loosening process bymeans of the modified distinct element method [J]. Journal of Terramechanics, 2003, 39: 207-220.
    [68] Landry W, Wener B T. Computer simulation of self organized wind ripple patterns [J]. Physica D, 1994, 77: 238~360.
    [69]杨富军,王嘉骏,冯连芳,等.气固两相流模拟中曳力模型的研究[C]//第一届全国化学工程与生物化工年会论文摘要集(上), 2004.
    [70] Wen C Y, Yu Y H. Mechanics of fluidization [J]. Chemical Engineering Progress, 1966, 62(62):100-111.
    [71] Ergun S. Fluid flow th rough packed columns [J]. Chemical Engineering Progress, 1952, 48(2): 89-94.
    [72] Helland E, OccelliR, Tadrist L. Computation study of fluctuating motion and cluster structures in gas-particle flows [J]. International Journal of Multiphase Flow, 2002, 28(2):199-223.
    [73] Felice R D. The voidage function for fluid-particle interaction systems[J]. International Journal of Multiphase Flow, 1994, 20(1):153-159.
    [74] Xu B H, Yu A B. Chew S J, et al. Numerical simulation of the gas-solid flow in a bed with lateral gas blasting[J]. Powder Technology, 2000, 109(123):13-26.
    [75] Masayuki Horio. Numerical simulation of fluidized bed processes-review of lastest achievements of numerical simulation and discussion on the future [J], Conference papers Seventh China-Japan Symposium, 2000.
    [76] GB/T 3543.6-1995农作物种子检验规程水分测试[S].
    [77]张小璐.数据融合在种子含水率测量中的研究[D].上海:上海交通大学, 2007.
    [78]张波屏编译.播种机械设计原理(第一版)[M].北京:机械工业出版社, 1982.
    [79]张德文,李林,王惠民.精密播种机械[M].北京:农业出版社, 1982,第一版.
    [80] Deshapande S D, Bal S, Ojha T P L. Physical properties of soybean[J]. Journal of Agricultural Engineering Research, 1993, 56: 89-98.
    [81] LoCurto G. J, Zakirov V, Bucklin R A. Soybean friction properties[C]//ASAE Annual international meeting sponsored byASAE, Minneapolis, MN, 1997.
    [82] Chung T M, Verma L R,Wright M E. A device for friction measurement of grains [J]. Transactions of the ASAE, 1984, 27(6): 1938-1941, 1944.
    [83] ASAE S368.4 DEC2000 (R2006). Compression test of food materials of convex shape[S]. St Joseph: American Society of Agricultural and Biological Engineers, 2006.
    [84] http://baike.baidu.com/view/30660.htm百度百科.
    [85] Misra R N and Young J H. A model for predicting the effect of moisture content on the modulus of elasticity of soybeans [J]. Transactions of the ASAE, 1981, 24(5): 1338-1241, 1347.
    [86]刘传云,张强,毛志怀.大豆表观接触弹性模量的测试[J].粮食与饲料工业, 2007, (10): 12-14.
    [87] LoCurto G J, Zhang X, Zakirov V et al. Soybean impacts: experiments and dynamicsimulations [J]. Transactions of the ASAE, 1997, 40(3): 789-794.
    [88] Paulsen M R. Fracture resistance of soybeans to compressive loading [J]. Transaction of the ASAE, 1978: 1210-1216.
    [89]李政权.基于离散元法的小麦排种器的数字化设计方法研究[D].长春:吉林大学, 2009.
    [90]苏彬,王大海.基于泊松方程的二元翼型网格生成技术[J].中国民航飞行学院学报, 2002, 13(4): 31-33.
    [91] Thompson J F, Thames F C, Mastin C W. Automatic numerical generation of body-fitted curvilinear coordinate system field containing any number of arbitrary two-dimension bodies [J]. Journal of Computational Physics, 1974, 15: 299-319.
    [92]武利龙,陈斌.基于气泡堆积的非结构网格生成技术[J].西安交通大学学报, 2009, 43(1): 29-33.
    [93] Zhou X Y, Liu S Q. A robust algorithm for constrained Delaunay triangulation [J]. Chinese Journal of Computers, 1996, 19(8): 615-626.
    [94] Weatherill N P, Hassan O. Efficient three dimensional delaunay triangulation with automatic point creation and imposed boundary constrains [J]. International Journal for Numerical Methods in Engineering, 1994, 37:2005-2039.
    [95] Ito Y, Shih A M, Erukala A K, et al. Parallel unstructured mesh generation by an advancing front method [J]. Mathematics and Computers in Simulation, 2007, 75: 200-209.
    [96] Thomas P D, Middlecoff J F. Direct control of the grid point distribution in meshes generated by elliptic equations [J]. AIAA Journal, 1980, 18: 652-656.
    [97]刘玉玲.直接控制网格节点分布的曲线网格生成技术研究[J].应用力学学报, 2007, 24(4): 637-640.
    [98]魏文礼,王玲玲,金忠青.曲线网格生成技术研究[J].河海大学学报, 1998, 26(3): 92-96.
    [99] Varga R S, Matrix iterative analysis [M]. Prentic-Hall. Englewood Cliffs, N. J, 1962.
    [100]潘维.超细煤粉再燃机理及改造方案的数值模拟研究[D].浙江:浙江大学, 2005, 108.
    [101]杜敏,陶建华.非结构网格生成法在二维潮流数学模型中的应用[J].海洋技术, 2005, 24(1): 58-63.
    [102] Talmor D. Well-spaced points for numerical methods [D]. Pittsburgh: Carnegie Mellon University, 1997.
    [103]杨明芳.基于离散元法的玉米排种器的数字化设计方法研究[D].长春:吉林大学, 2009.
    [104] Mishra B K. A review of computer simulation of tumbling mill by the discrete element method: partI—contact mechanics [J]. International Journal of Mineral Processing, 2003, 71: 73-93.
    [105]申燕芳.基于离散元法的精密排种器设计与工作过程的仿真分析[D].长春:吉林大学, 2005.
    [106]福勒特丘C A J,方保镕译.计算流体动力学的有限元和有限差分法的比较[J].华水科技情报, 1985, (4): 147-152.
    [107]齐清兰.有限差分法在计算流体力学中的应用[J].河北工程技术高等专科学校学报, 1994, (4): 44-48.
    [108]齐清兰.有限差分法在计算流体力学中的应用(续)[J].河北工程技术高等专科学校学报,1995,(Z2): 50-59.
    [109]刘长虹,黄虎.有限元法对汽车尾部外形的流体动力学分析方法探讨[J].机床与液压, 2006, (8): 197-242.
    [110]刘云贺,俞茂宏,陈厚群.流体固体动力耦合分析的有限元法[J].工程力学, 2005, 22(6): 1-6.
    [111]赵键.薄板和不可压流体耦合振动的边界元法研究[J].中山大学学报(自然科学版), 1996, 35(1): 7-11.
    [112]恽伟君,段根宝,应周兴,等.流固耦合振动流体边界元拟湿模态综合法[J].交通部上海船舶运输科学研究所学报, 1991, 14(2): 7-16.
    [113] Luo Y Y. Fluid boundary element method and orthogonal transform of double complex variables [J]. Applied Mathematics and Mechanics (English Edition), 2003, 24(1): 109-116.
    [114]杨德全,韩庆书.二维粘性流动的边界元方法[J].水动力学研究与进展(A辑), 1995, 10(1): 20-27.
    [115]王建瑜,欧阳洁.圆管内上随体Maxwell流体流动的谱方法逼近[J].科学技术与工程, 2006, 6(17): 2619-2624.
    [116]焦裕建,王天军.不可压缩流体外部问题的混合谱方法(英文)[J].上海师范大学学报(自然科学版), 2008, 37(6): 551-556.
    [117]付强.管内上随体Maxwell流体非定常流动的谱方法研究[J].四川师范大学学报(自然科学版), 2003, 26(4): 279-283.
    [118]宋道云,方波,江体乾,等.黏弹性流体在圆管内流动的谱方法模拟计算[J].力学与实践, 2002, 24(6): 18-20.
    [119]姜海梅,尹洪军,苏宇驰,等.用有限体积法对粘弹性流体的扩张流动进行数值模拟[J].特种油气藏, 2009, 16(1): 75-79.
    [120]阮春蕾,欧阳洁,刘帅强.基于非结构化网格同位有限体积法的粘弹流体数值模拟[J].高分子材料科学与工程, 2009, 25(9): 160-167.
    [121]李人宪.有限体积法基础(第2版)[M].北京:国防工业出版社, 2008.
    [122]于建群,付宏,刘振宇,等.基于CAD模型的离散元法边界建模方法:中国, 200510016835.7[P], 2006-7-26.
    [123]付宏,董劲男,于建群.基于CAD模型的离散元法边界建模方法[J].吉林大学学报(工学版), 2005, 35(6): 626-631.
    [124]于建群,付宏.基于离散元法的数字化设计软件及应用[C]//第三届中国CAE工程分析技术年会论文集, 2007.
    [125]颜辉,于建群,付宏,等.离散元法软件与CAD软件集成开发研究[J].现代情报, 2007, 9(9): 209-211.
    [126]于建群,申燕芳,牛序堂,等.组合内窝孔精密排种器清种过程的离散元法仿真分析[J].农业工程学报, 2008, 24(5): 105-109.
    [127]于建群,付宏,李红,等.离散元法及其在农业机械工作部件研究与设计中的应用[J].农业工程学报, 2005, 21(5): 1-5.
    [128]于建群,付宏.基于离散元法的数字化设计软件及其在农业机械工作部件研究与设计中的应用[C]//中国力学学会学术大会2009(CCTAM2009),河南郑州, 2009.
    [129]袁月明.气吸式水稻芽种直播排种器的理论及试验研究[D].长春:吉林大学, 2005.
    [130]章本照,印建安,张宏基.流体力学数值方法[M].机械工业出版社, 2003.
    [131]王承尧,王正华,杨晓辉.计算流体力学及其并行算法[M].国防科技大学出版社, 2002.
    [132]苏铭德,黄素逸.计算流体力学基础[M].北京:清华大学出版社, 1997.
    [133]刘安源.流化床内流动、传热及燃烧特性的离散颗粒模拟[D].北京:中国科学院研究生院(工程热物理研究所), 2002.
    [134] Gdiaspow D. Multiphase flow and fluidization: continuum and kinetic theory descriptions [M]. San Diego: Academic Press, 1994.
    [135]帕坦卡(Patankar) S V.传热与流体流动的数值计算[M].张政译,北京:科学出版社, 1984.
    [136] Peric M. Computational methods for fluid dynamics[M]. Berlin: Springer, 2001.
    [137] Peric M, Kessler R, Scheuerer G. Comparison of finite-volume numerical methods with staggered and colocated grids[J]. Computers and Fluids, 1988, 16: 389-403.
    [138]褚开维.流化床中气固两相相互作用行为的数值模拟[D].西安:西安建筑科技大学, 2001.
    [139]李晓光.煅烧水泥熟料用大颗粒流化床的动力学特性研究[D].西安:西安建筑科技大学, 2006.
    [140]任合斌.流化床内流动、传热与燃烧特性的DEM数值模拟[D].武汉:华中科技大学, 2006.
    [141]范金禾.喷动床中气固两相流数值模拟[D].西安:西安建筑科技大学, 2006.
    [142]陶文铨.数值传热学(第1版)[M].西安:西安交通大学出版社, 2001.
    [143] Rhie C M, Chow W L. Numerical study of the turbulent flow past an airfoil with trailing edge separation [J]. AIAA Journal, 1983, (11).
    [144] Xu B H, Yu A B. Numerical simulation of the gas-solid flow in a fluidized bed by combining discrete particle method with computational fluid dynamics [J]. Chemical Engineering Science, 1997, 52(16): 2785-2809.
    [145]谢灼利,张政.气力输送的数值模拟研究[J].北京化工大学学报, 2001, 28(1): 22-27.
    [146]欧阳洁,李静海,崔俊芝.颗粒轨道模型中相间耦合关系及曳力计算的研究[J].动力工程, 2004, 24(6): 854-862.
    [147]王芳,欧阳洁.不等粒径流化床的软球模拟[J].化工学报, 2005, 56(8): 1467-1473.
    [148] Ouyang J, Li J H, Sun G G. The simulations of annulus-core structure in CFB[J]. Chinese Journal of Chemical Engineering, 2004, 12(1): 27-32.
    [149] Sun G G, Li J H, Gong F Z, et al. Stochastic analysis of particle-fluid two-phase flows [J]. Chinese Science Bulletin, 2000, 45(9): 805-810.
    [150]黄云清.数值计算方法[M].北京:科学出版社, 2010.
    [151]陶文铨.数值传热学(第2版)[M].西安:西安交通大学出版社, 2004.
    [152]于建群,付宏,冯占荣.基于离散模型和离散与连续耦合模型的数值方法及其应用[C]//2010年国际农业工程大会论文集: 5-21-5-28.
    [153]柯宇,舒宣武.基于ObjectARX的开发和调试技术[C]//第十一届全国工程建设计算机应用学术会议.北京:中国建材工业出版社, 2002: 254-258.
    [154]蒋新生,徐辉,周建忠.基于AutoCAD开放式系统软件的用户菜单开发[J].重庆工业高等专科学校学报, 2001, 16(2): 83-109.
    [155]齐舒创作室. AutoCAD2000中文版高级教程[M].北京:中国水利水电出版社, 2000, 466~486.
    [156]王秋艳.采用OpenGL实现机械部件的离散元法仿真分析[D].长春:吉林大学, 2005.
    [157]乌兰.三维离散元法计算仿真软件的研究[D].长春:吉林大学, 2007.
    [158]郭敬山.组合玉米和组合超球颗粒模型的三维离散元法算法研究[D].长春:吉林大学, 2010.
    [159]张潮.贴体坐标转换在河冰模拟中的应用研究[D].合肥:合肥工业大学, 2007.
    [160]朱培烨,王红建. Delaunay非结构网格生成之布点技术[J].航空计算技术, 1999, 29(3): 21-25.
    [161]王文强.离散元方法及其在材料和结构力学响应分析中的应用[D].合肥:中国科学技术大学, 2000.
    [162]焦红光,李靖如,赵继芬,等.关于离散元法计算参数的探讨[J].河南理工大学学报(自然科学版), 2007, (26): 88-93.
    [163]杨洋,唐寿高,王居林.颗粒离散元法中阻尼系数、刚度系数和时步的选取方法[J].计算机辅助工程, 2007, 16(3): 65-68.
    [164]尹冠生,黄义.散粒体-贮仓结构-地基的动力特性分析[J].应用力学报, 2002, 19(4): 92-97.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700