车辆动态系统协同仿真及刚柔耦合关键技术的研究与应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
对于现代轨道车辆的机械-电子复杂系统而言,基于多体系统(MBS, Multi-body System)的集成设计能力是非常重要的。系统集成设计能力的提高需要以下三要素的支持:具有创新思维的设计理念、多专业软件工具及其接口处理技术,其中,专业软件工具接口处理技术是体现创新思维的关键。
     从系统集成设计能力出发,通过多种类型轨道车辆动态仿真研究,以及与试验对比的经验累积,本文提出了协同仿真与设计方法体系(CSDM, Collaborative Simulation and Design Methodologies)。这一方法体系具有如下两个特点:①以控制器模型移植和瞬时工作点线性分析作为MBS与CACE (Computer Aided Control Engineering Software)接口处理技术对策;②以几何约束构建主要约束、弹性内力约束逼近辅助约束作为柔性体对MBS接口处理对策。按照上述接口关系所建立的协同仿真平台更加强调了多专业知识的集成、协同设计的交互和分析工具的互补。
     基于上述协同仿真与设计方法体系(CSDM),以四个典型工程案例为研究对象,本文进一步开展了如下基于多体系统的协同仿真及刚柔耦合应用研究与验证:
     1.为了提高磁浮车辆电磁悬挂(EMS, Electro-Magnetic Suspension)的轨道适应性及鲁棒稳定性,采用上述MBS与CACE接口处理对策,提出了单轨正交模型及2-DOF主动控制策略。侧滚摄动可以转换为两侧沉浮摄动,因此悬浮单元的2DOF主动控制实质上具有沉浮、点头、横移、摇头和侧滚等5DOF摄动的鲁棒稳定性。由于电磁铁模块运动模态截取误差的适度降低,2DOF主动控制的悬浮与导向稳定性得到提高。主动导向控制以导向电流差动方式实现了悬浮单元的轨道对中控制。在高速磁浮列车模块化组装的协同环境下,对曲线通过性能、线路匹配性能和车桥耦合机制等3个专题进行了深入研究,其中,端部横向力敏感变化及端部减载问题得到了测试数据的证实。
     2.为使轨道客车横向稳定仿真分析更好地体现其特殊的自激振动意义,提出了一种基于轮轨匹配的横向稳定性分析新方法。以某出口地铁编组车辆作为研究对象,基于MBS的多车编组非线性协同优化方式,确定了既有线路UIC54/ORE提速120km/h的优化方案。在空簧装车特性的虚拟测试与试验对比基础上,利用模板建模仿真技术,给出了一列8车编组的舒适性评价。在考虑空簧高度阀的位移滞后特性情况下,弹性联结抗侧滚扭杆的改进方案可以形成适当的抗侧滚等效刚度以确保乘坐舒适性。
     3.以新型DQ35钳夹车作为大型刚柔耦合系统研究对象,进行了重载横向稳定性、重载曲线通过安全性和空车回送速度等刚柔耦合动态仿真。仿真结果表明:由于采用了上述柔性体接口处理技术对策,大型刚柔耦合动态仿真结果具有试验可比性,如导向销横向力的动荷系数和空载短联挂回送速度等均与线路动力学试验相吻合。对于重物摩擦约束稳定性和重载小半径曲线通过等运行安全性问题,刚柔耦合动态仿真进一步给出了其动力学解释,其所提出的改进建议已在长大货车的研制与试验中被采纳。
     4.在刚柔耦合技术应用领域,为了分析结构振动对疲劳寿命的影响程度,进一步提出了一种基于刚柔耦合仿真的振动疲劳分析方法。以集装箱平车车体垂向振动加速度偏大作为是典型分析案例,基于刚柔耦合动态仿真的摩擦减振对比分析揭示了在车体弹性振动激励形成过程中,摇枕悬挂的斜楔摩擦低频卡滞是一个非常关键的影响因素。基于动应力恢复等后处理数据,通过危险点动应力的模态相关性分析和循环应力的幅频统计对比,确定了车体振动对结构疲劳的影响程度。
     本文的课题研究工作得到如下项目资助:
     1、国家“863”高技术研究发展计划项目:《复杂产品协同设计、仿真、优化一体化平台研究开发及其应用》(项目编号:2006AA04Z160);
     2、国家“863”高技术研究发展计划项目:《高速磁浮车辆研制(一)》(项目编号:2004AA505240);
     3、“十一五”国家科技支撑计划:300KM/H高速动车组现代集成制造系统(项目编号:2006BAFO1A01)。
For the complex mechatronic systems of modern railway vehicles, the integration design capability based on Multi-body System (MBS) is very crucial. To improve the systemic integration capability needs the support of the three following factors:design concept with creative thoughts, multi-discipline software tools and their interface transaction technologies, in which the interface transaction technologies between the different disciplinary software tools are the keys to represent the creative thoughts.
     From the viewpoint of the integration design capability, and with the groundwork of the accumulated experiences in the dynamical simulations and test contrasts of the various-type railway vehicles, Collaborative Simulation and Design Methodologies (CSDM) are proposed in this paper, which are characterized as the two following features:(1) specifying the migration of the controller model and the linearization on the working point as the interface transaction between MBS and CACE (Computer Aided Control Engineering Software); (2) representing the main constraints constructed by the geometric pairs and the slave ones approached with the elastic inner-force restrictions as flex-body interfacing to MBS. And the platform formed by these above interface transactions has emphasized more the integration of multi-discipline knowledge, the reciprocity of collaborative design, and the complementarity of analysis tool.
     With the CSDM, the four typical cases about the industrial applications of collaborative simulations based on MBS were further studied and validated in this paper.
     1. in order to improve the adjustability and robust-stability of Electro-Magnetic Suspension in MagLev vehicle to railway, Mono-rail Ortho-Model and 2-DOF active control strategy were presented by the above interface transaction technology between MBS and CACE. Since the rolling disturbance can be converted the bouncing disturbances on both sides,2-DOF active control of levitating unit has actually the rubost control stability to 5-DOF disturbances, i.e. bouncing, pitch, lateral, yaw and roll. Because of the reasonable reduction in the error of electro-magnet module's kinematic modal truncation, the 2-DOF active control stability of levitation and guidance can be gotten improved. Meanwhile the rail centering of levitating unit is achieved by the guiding active control in the differential guiding current mode. Under the collaborative environment with the modeling modularization of high-speed MagLev trainset, the three following special topic studies were furthermore investigated:the curve negociation performance, track match performance and vehicle-bridge coupling mechanism, in which the sensitive variation of lateral forces and unloading problems in both ends are received by the measuring data validation.
     2. in order that the simulation analysis of railway passenger vehicle's lateral stability may better represent the uncommon significance of self-excited vibration, a novel analysis methodology of lateral stability was proposed based on wheel/rail match. For an export tram marshalling plan, with the non-linear collaborative optimization mode of multi-vehicle trainset based on MBS, the optimization scheme was determined for increasing velocity 120km/h on existing line condition (UIC54/ORE). After the virtual measuring of assembled air-spring's characteristics and contrasting with testrig data, the comfort indices of the 8-vehicle trainset, which are assembled by template-based modeling technique, were evaluated. Under the condition of considering the displacement lag feature of air-spring's leveling valve, the suitable anti-roll equivalent stiffness can be formed by the improved solution of elastic-joined anti-roll torsion bar to ensure the ride comfort quality.
     3. As a large-scale rigid-flex coupling system, the new-built 350T Schnabel Wagon were investigated on laden lateral stability, laden curve negociation safty and tare returning velocity. These contrast simulation analyses show that:due to the application of the above flex-body interface transaction technology strategy, the large-scale flex-rigid coupling simulation has comparability with testing data, e.g., the dynamic load coefficient of lateral force of guide pin and the returning velocity of tare short-trailer, etc., are consistent with line dynamic test. For the laden run-time safty problems, e.g., the stability of the weight's friction constraints and the laden small-radius curve negociation, etc., the dynamic explainations were given by flex-rigid coupling simulations, and the improving advices proposed have be adopted in the development and tests of Long and Big Cargo Freight Cars.
     4. for the applications of rigid-flex coupling techniques, a methodology of vibration fatigue analysis was presented based on flex-rigid coupling simulation in order to analysis the influencing extent of structural vibration effects on fatigue life. Taking the case that the container flatcar's vertical vibration acceleration is on the high side as a topical analysis paradigm, the friction damping contrast analysis based on flex-rigid coupling simulations reveals that the dynamical interaction of the wedge's stick-slip friction in the bolster suspension is playing a very important role in generating the excitation of carbody's elastic vibration. With the post-processing data such as dynamic stress recovery, the influencing extent of carbody vibration to structural fatigue was determined by means of the correlation between dynamical stress and modal vibration, and the stress range histograms by which the amplitude and number of cycle stress on critcal points are contrasted stastically among the multi-condition.
     The research works in this paper are suppoted as follows:
     1.863 National High-Tech. R&D Program for Integrative-platform Development and Application of Complex Products' Collabrative Design, Simulation and Optimazition, No. 2006AA04Z160;
     2.863 National High-Tech. R&D Program for Reseach and development of Hign-speed MagLev Vehicle, PART I, No.2004AA505240;
     3. National Key Technology R&D Program in the 11th Five Year Plan of China for Concurrent Integrating Manufactory System of 300km/h High-speed Trainset, No. 2006BAF01A01
引文
[1]张亚辉,林家浩,结构动力学基础[M],大连理工大学出版社,2007.5:205-225.
    [2]邓峰岩,和兴锁,张娟,李亮,张烈霞,修正的Craig-Bampton方法在多体系统动力学建模中的应用[J],机械设计,2004,21(3):41-43
    [3]MSC.Software Corporation, ADAMS HELP/FlexTherory,2003BFLXTH-01, [EB/OL]. http://www.mscsoftware.com,2003.10
    [4]Matthew P. C., Yung-Chang T., and Christophe P., Characteristic Constraint Modes for Component Mode Synthesis[J], AIAA JOURNAL,2001,39(6):1182-1187.
    [5]于清,洪嘉振,柔性多体系统动力学的若干热点问题[J],力学进展,1999,29(2):145-154
    [6]Tero K., Timo H., Modelling of flexible members of vehicle dynamics[R], Report VALB-424, VTT Manufacturing Technology, Espoo, Finland,1999.12:25-28
    [7]朴明伟,丁彦闯,李繁,兆文忠,大型刚柔耦合车辆动力学系统仿真研究[J],计算机集成制造系统CIMS,2008,14 (5):875-881
    [8]How S-Functions Work in Writing S-Functions and Algebraic Loops in How Simulink Works, MATLAB/Smulink 5.0 Help, [EB/OL], http://www.mathworks.com,2004.10
    [9]Schiehlen W, Scholz C. Simulator coupling for mechatronic systems[A]. In:Proc.1st International Symposium on Mechatronics ISOM 2002[C]. Chemnitz, Germany, March 21-22,2002
    [10]Martin A, Antonio C. Modular dynamical simulation of mechatronic and coupled systems[A], WCCM V(Fifth World Congress on Computational Mechanics)[C], July 7-12,2002, Vienna, Austria
    [11]朴明伟,闫雪冬,兆文忠.协同仿真与设计的三个问题及技术对策[J].计算机集成制造系统CIMS,2005,11 (5):611-618.
    [12]Arnold M. and Schiehlen W., Simulation Techniques for Applied Dynamics[C], Proceedings of an Advanced School that was held at CISM International Centre for Mechanical Sciences, Udine, Italy, September 17-21,2007.-Springer Vienna New York,2009,Ⅷ,375 p.210 illus., ISBN: 978-3-211-89547-4
    [13]Casella F., Donida F., Lovera M., Beyond Simulation:Computer Aided Control System Design Using Equation-Based Object Oriented Modelling for the Next Decade[C]//EOOLT2008[C], Proceedings of the 2nd International Workshop on Equation-Based Object-Oriented Languages and Tools, Paphos, Cyprus, July 8,2008. Linkoping University Electronic Press,2008.7
    [14]舒兴高、贺启庸、洪嘉振,铁路车辆动力学与控制问题研究[J],中国铁道科学,1995.Vol.16(1).pp26-36
    [15]程海涛,王成国,钱立新,考虑车体柔性的货车动力学仿真[J],铁道学报,2004,22(6):40-45
    [16]严隽髦,翟婉明,陈清,傅茂海,重载列车系统动力学[M],中国铁道出版社,2003.1
    [17]黄运华,李芾,廖小平,傅茂海,机车车辆液气缓冲器特性研究[J],铁道学报,2005.5
    [18]常崇义,王成国,马大炜,张波,2万t组合列车纵向力计算研究[J],铁道学报,2006.2
    [19]常崇义,王成国,王永菲,赵鑫,基于响应面方法的车钩缓冲器特性曲线优化分析[J],中国铁道科学,2007,28(6):84-90
    [20]刘金朝,王成国,马大炜,张波,赵鑫,长大列车空气管系充气特性数值仿真研究[J],中国铁道科学,2004,25(1):13-19
    [21]陈泽深,王成国,王永菲,高速机车车辆动力学模拟中的轮轨接触模型[J],铁道机车车辆,2005.1
    [22]王成国,王永菲,李海涛,等.高速轮轨接触几何关系的比较分析[J].铁道机车车辆,2006,26(4): 1-5.
    [23]孙善超,王成国,李海涛,等.轮/轨接触几何参数对高速客车动力学性能的影响[J].中国铁道科学,2006,27(5):93-98.
    [24]沈钢,面向对象的机车车辆动力学仿真建模研究,铁道学报[J],1998,20(2)
    [25]沈钢,Chollet H,叶志森,轮轨外形及接触问题的进一步研究[J].铁道学报,2005,27(4):25-29.
    [26]沈钢,顾江.低地板车辆的踏面外形设计及动力学仿真[J].同济大学学报,2003,31(10):1206-1211.
    [27]Shu Guangwei,Meisinger R,Shen Gang,Modeling and Simulation of Shanghai MAGLEV Train Transrapid with Random Track Iregularities[J], Schriftenreihe Fachartikel,Ohm-Hochschule Nurnberg,ISSN 1616-0762,Nr.39,2007.
    [28]翟婉明,车辆-轨道耦合动力学,北京中国铁道出版社[M],北京:中国铁道出版社,2002.
    [29]ZHAI Wan-ming.Two simple fast integration methods for large -scale dynamic problems in engineering[J].International Journal for Numerical Methods in Engineering,1996,39(24):4199-4214.
    [30]曾京,邬平波.高速列车的稳定性[J].交通运输工程学报,2005,5(2):1-4.
    [31]邬平波,曾京.确定车辆系统线性和非线性临界速度的新方法[J].铁道车辆,2000,38(5)1-4.
    [32]米罗维奇L.振动分析基础[M],上海交通大学理论力学教研室译,1983.
    [33]陈泽深,王成国.铁道车辆动力学与控制[M].北京:中国铁道出版社,2004:10-75.
    [34]朴明伟,樊令举,梁树林,兆文忠,基于轮轨匹配的车辆横向稳定性分析[J],机械工程学报,2008,44(3):22-28
    [35]王云鹏,朴明伟,兆文忠,三轴H构架式货车转向架非线性模型[J],铁道机车车辆,2007,27(6): 12-16.
    [36]Kieβling,Puschmann,Schmieder[德],电气化铁路接触网,中国电力出版社,2004.1,第一版.
    [37]ZHANG Wei-hua,MEI Gui-ming,WU Xue-jie and SHEN Zhi-yun,Hybrid Simulation of Dynamics for the Pantogragh-Catenary System,Vehicle System Dynamics,2002,Vol.38,No.6,pp393-414.
    [38]阳光武,肖守讷,金鼎昌,基于弹性构架的地铁车辆动力学分析[J],中国铁道科学,2004,25(4)42-45
    [39]阳光武,肖守讷,金鼎昌,基于虚拟样机技术的地铁车辆构架疲劳寿命仿真[J],机车电传动,2004(3):39-41
    [40]朴明伟,王婷,兆文忠,集装箱平车垂向振动问题及减振对策[J],振动与冲击,2008,24(4):117-121
    [41]朴明伟,方吉,赵钦旭,兆文忠,基于刚柔耦合仿真的集装箱车体振动疲劳分析[J],振动与冲击,2009,25(3):1-5
    [42]陆正刚,胡用生,基于磁流变阻尼器的铁道车辆结构振动半主动控制[J],机械工程学报,2006,42(6): 95-100
    [43]朴明伟,梁世宽,薛世海,兆文忠.高速磁浮列车主动悬浮与导向的2-DOF控制[J].中国铁道科学,2006.7,27(4):80-85.
    [44]朴明伟,曹玉峰,梁树林,兆文忠,高速磁浮列车组装模型及导向原理研究[J],中国铁道科学,2008,29(4):103-108
    [45]朴明伟,王建一,梁世宽,兆文忠,关于高速磁浮车辆车桥耦合机制的探讨[J],铁道机车车辆,2007,27(5):9-13
    [46]王建一,朴明伟,兆文忠,高速磁浮列车线路匹配动力学性能分析[J],铁道机车车辆,2007,27(B10):82-86.
    [47]Valasek M., Steinbauer P., Kolar J., Dvorak J., Concurrent Design of Railway Vehicles by Simulation Model Reuse[J], Acta Polytechnica Vol.43 No.6/2003:9-15
    [48]Groβe-Hovest M., Fischer G., Velten, B., Cervello, S., Hybrid WHEELSET cuts weight and noise[J], Railway gazette international (2006), September, S.592-595 (ISSN:0373-5346)
    [49]Stanca., M., Stefanini, A., Gallo, R., Development of an Integrated Design Methodology for a New Generation of High Performance Rail Wheelsets[A]//Proceedings of the 16th European MDI User Conference[C], Berchtesgaden, Germany,14-15 November,2001.
    [50]Lewis,R., Braghin, F., Ward, A., Bruni, S., Dwyer-Joyce, R.S., Bel Knani, K., Bologna, P.,2003, Integrating Dynamics and Wear Modelling to Predict Railway Wheel Profile Evolution[A]//Proc.6th International Conference on Contact Mechanics and Wear of Rail/Wheel Systems (CM2003)[C], Gothenburg, Sweden, pp.7-16. (ISBN 91-631-3928-6).
    [51]SCHIEHLEN W., Survey of the Sectional and Introductory Lectures[J], Vehicle System Dynamics Supplement 35 (2001), pp.3-5
    [52]Kortiim W., VACULIN O., Is Multibody Simulation Software Suitable for Mechatronic Systems?[J], Vehicle System Dynamics Supplement 40 (2003), p.1-16
    [53]Arnold M., Simulation Algorithms in Vehicle System Dynamics[R], Martin-Luther-University Halle, Department of Mathematics and Computer Science, Technical Report 27(2004).
    [54]Kriiger W.R., Vaculin, O., Kortum W., Multi-Disciplinary Simulation of Vehicle System Dynamics[C]. Proc. Reduction of Military Vehicle Acquisition Time and Cost through Advanced Modeling and Virtual Product Simulation[A], RTO-MP-089.2003
    [55]M. Arnold, A. Carrarini, A. Heckmann, G. Hippmann:Modular dynamical simulation of mechatronic and coupled systems[C]. Proceedings of WCCM V, Fifth World Congress on Computational Mechanics[A], July 7-12,2002, Vienna, Austria,2002
    [56]ELLIOT A S, A Highly Efficient, General-Purpose Approach for Co-Simulation with ADAMS[C], Proc.15th European ADAMS User's Conference[A],2000
    [57]FANG-CHUNG T., GREGORY M. H., A Gluing Algorithm for Network-Distributed Multibody Dynamics Simulation [J], Multibody System Dynamics,6:377-396,2001
    [58]Vaculin O., Kruger W.R., Val'asek M., Overview of coupling of multibody and control engineering tools[J], Vehicle System Dynamics,41:415-429,2004.
    [59]Schlotter M., Multibody System Simulation with SimMechanics[EB/OL], www.mathworks.com, May 2003
    [60]Bruls O., Duysinx P., Golinval J.C., A SYSTEMATIC MODEL REDUCTION METHOD FOR THE CONTROL OF FLEXIBLE MULTIBODY SYSTEMS[C]//XXI ICTAM/[A],15-21 August 2004, Warsaw, Poland
    [61]Braccesi C., Landi L., Scaletta R., New dual meshless Flexible body methodology for multi-body dynamics:simulation of generalized moving loads[C], Proc. Instn Mech. Engrs[A], Part K:J. Multi-body Dynamics,2004,218(1):51-62
    [62]Hiroyuki S., Mikkola A. M., Shabana A. A., A Non-incremental Nonlinear Finite Element Solution for Cable Problems, ASME Journal of Mechanical Design,2003,125,4, p.342-350
    [63]Gerstmayr J., Nonlinear constraints in the absolute coordinate formulation, Acta Mechanica[J],2007, 192(1-4):191-211
    [64]Bauchau O. A, Bottasso C. Trainelli L. L., Robust integration schemes for flexible multibody systems[J], Computer Methods in Applied Mechanics & Engineering,2003,192 (3/4):395-421
    [65]Bauchau O. A, A self-stabilized algorithm for enforcing constraints in multibody systems[J], International Journal of Solids & Structures,2003,40 (13/14):3253-3272
    [66]冯康,秦孟兆,Hamilton动力体系的Hamilton算法[J]自然科学进展,1991,1(2):110-120
    [67]钟万勰,欧阳华江,邓子辰,计算结构力学与最优控制[M],大连:大连理工大学出版社,1993
    [68]刘铸永,洪嘉振,柔性多体系统动力学研究现状与展望[J],计算力学学报,2008,25(4):411-416
    [69]董兴建,孟光,蔡国平,叶林,旋转柔性梁的动力学建模及分析[J],振动工程学报,2006.12,19(4):488-492.
    [70]杨辉,洪嘉振,余征跃.刚柔耦合建模理论的实验验证[J].力学学报,2003,35(2):253-256.
    [71]CAI G. P., HONG J.Z., YANG S.X., Modal study and active control of a rotating flexible cantilever beam[J], International Journal of Mechanical Science,2004,46:871-889
    [72]Pan W., Mao S., Haug E., J. Solis D., Efficient Modal Approach for Flexible Multibody Dynamic Simulation[J], MECHANICS BASED DESIGN OF STRUCTURES AND MACHINES,2003, 31(1):1-23.
    [73]Majed A., Henkel E. E., Wilson C., Improved Method of Mixed-Boundary Component-Mode Representation for Structural Dynamic Analysis[J], JOURNAL OF SPACECRAFT AND ROCKETS, 2005,42(5):825-831
    [74]Heckmann A., Arnold M., Vaculin O.:A modal multifield approach for an extended flexible body description in multibody dynamics[J]. Multibody System Dynamics,2005,13(1):299-322.
    [75]Priebsch H.H, Fankhauser C., Advantages of Prediction Techniques up to 1 kHz for Vehicle Development[C]//Styrian Noise, Vibration & Harshness Congress, in Styrian, Austria,2 (2003), S. 14-1-14-15
    [76]D. Negrut, R. Rampalli, G. Ottarsson, and A. Sajdak, On an Implementation of the HHT Method in the Context of Index 3 Differential Algebraic Equations of Multibody Dynamics[J], ASME Journal of Computational and Nonlinear Dynamics,2007,2 (1):73-85.
    [77]Negrut D., and Ortiz J., A Practical Approach for the Linearization of the Constrained Multibody Dynamics Equations[J], ASME Journal of Computational and Nonlinear Dynamics,2006, Vol.1, Issue 3, pp.230-239.
    [78]Iwan W D, Yang I M., Application of statistical linearization techniques to nonlinear multi-degree-of-freedom system [J].Journal of Applied Mechanics, Transactions of the ASME, 1972,39(2):545-550.
    [79]Fisette P, Postiau T, Sass L, Samin J. C. Fully Symbolic Generation of Complex Multibody Models[J], Mechanics Based Design of Structures and Machines,2002,30 (1),31-82.
    [80]Giles D.W., Dallas C. K., Simulating Mechanical Systems in Simulink with SimMechanics[EB/OL], www.mathworks.com, May 2003
    [81]Zhang, G., Castanier, M. P., Pierre, C., and Mourelatos, Z. P., Vibration and Power Flow Analysis of a Vehicle Structure Using Characteristic Constraint Modes[C]//SAE Paper 2003-01-1602, Proceedings of the SAE Noise & Vibration Conference and Exhibition, Traverse City, MI, May 2003.
    [82]李云钢、常文森,磁浮列车悬浮系统的串级控制,自动化学报,Vol.25,No.2,1999.3,pp247-251
    [83]Roger Goodall, Dynamics and Control for Single-stage EMS Maglev Suspensions[C], Topic8-2, MAGLEV'2004 Proceedings[A], The 18th International Conference on Magnetically Levitated Systems and Linear Drives, Shanghai China, Oct 2004:926-934.
    [84]胡叙洪.高速磁浮工程线路平面缓和曲线线型选择研究[J].铁路标准设计,2005, (8):6-9.
    [85]陈泽深,王成国,铁路车辆动力学与控制[M],中国铁路出版社,2004.5,pp157-162.
    [86]Bosgra O H, Kwakernaak H, Meinsma J. Design Methods of Control Systems[Z]. Delft, The Netherlands:Notes for a course of the Dutch Institute of Systems and Control,2003:213-220.
    [87]刘德生,李杰,张锟.基于反馈线性化的EMS型磁浮列车非线性控制器设计[J].国防科技大学学报,2005,27(2):96-101.
    [88]张佩竹.长沙磁悬浮试验线定线参数研究探讨[J].铁道工程学报,2002,(2):6-10.
    [89]赵春发,翟婉明.低速磁浮车辆导向方式及其横向动态特性[J].中国铁道科学,2005,26(16):28-32.
    [90]赵春发,翟婉明,王其昌.低速磁浮车辆曲线通过动态响应仿真分析[J].中国铁道科学,2005,26(3):94-98.
    [91]Shinichi KUSAGAWA, Jumpei BABA, Katsuhiko SHUTOH, Eisuke MASADA. Comparison of Total Performances for High-Speed EMS-type Magnetically Levitated Railway Vehicle[C]. Topic8-4, MAGLEV'2004 Proceedings[A], The 18th International Conference on Magnetically Levitated Systems and Linear Drives, Shanghai China, Oct 2004:942-952
    [92]D'Arrigo A, Rufer A. Design of an Integrated Electromagnetic Levitation and Guidance System for SwissMetro[C]//EPE 99 -European Conference on Power Electronics and Applications. Ecole Polytechnique Federale de Lausanne, Switzerland,7-9 September,1999:1-10.
    [93]Boudali H, Williams R D, Giras T C.A Simulink simulation framework of a MagLev model [J]// Proceedings of the I MECH E Part F Journal of Rail and Rapid Transit,217(3), Professional Engineering Publishing,1 September 2003:227-236
    [94]国家磁浮技术交通工程技术研究中心.车辆设计载荷取值[R].上海:上海磁浮中心,2003.
    [95]胡叙洪,高速磁浮工程线路平面缓和曲线线型选择研究[J].铁路标准设计,2005(8):6-9.
    [96]吴耀庭编著.铁路曲线及其养护[M].中国铁道出版社2001.8:31-80.
    [97]Hosoda Y, Kawashima M, Iwaya M, et al. Curvature Running Test Results of HSST Vehicle[J]. IEEE Transactions on Magnetics,1987, MAG223 (5):2344-2346.
    [98]周宪忠,关于我国高速铁路缓和曲线德探讨,西南交通大学学报,1996.2,31(1):69-74
    [99]朴明伟,兆文忠.CMT高速磁浮列车动力学与控制研究[Z].结题报告,大连交通大学课题组,2006.5
    [100]CMT高速车走行机构结构说明[Z],技术文件,上海磁悬浮轨道技术研究中心,2005.4
    [101]刘德生,李杰,常文森,EMS型磁浮列车模块的运动解耦研究[J],铁道学报,2006.6,28(3): 22-26
    [102]Gert Schwindt, Ulrich Hauke, Andreas Fried, Interaction Vehicle/Guideway:Guideway Design Aspects for the Munich Airport Link[C], Topic5-6, MAGLEV'2004 Proceedings[A], The 18th International Conference on Magnetically Levitated Systems and Linear Drives, Shanghai China, Oct 2004:504-514.
    [103]李云钢,常文森,龙志强.EMS磁浮列车的轨道共振和悬浮控制系统设计[J].国防科技大学学报,1999,21(2):93-96
    [104]唐怀平,高芳清.磁浮列车系统动力特性及耦合振动试验研究[J].西南交通大学学报,2001,36(2):147-152.
    [105]赵春发,翟婉明,蔡成标,磁浮车辆/高架桥垂向耦合动力学研究[J],铁道学报,2001.10,23(5):27-33
    [106]赵春发,翟婉明,常导电磁悬浮动态特性研究[J],西南交通大学学报,2004.8,39(4):464-468
    [107]Wanming ZHAI, Chunfa ZHAO, Chengbiao CAI, Dynamic Simulation of the EMS Maglev Vehicle-Guideway-Controller Coupling System[C], Topic5-15, MAGLEV'2004 Proceedings[A], The 18th International Conference on Magnetically Levitated Systems and Linear Drives, Shanghai China, Oct 2004:567-574.
    [108]李云钢,常文森,龙志强.EMS磁浮列车的轨道共振和悬浮控制系统设计[J].国防科技大学学报,1999,21(2):93-96
    [109]Shi Xiao-hong, Liu Heng-kun, She Long-hua, Chang Wen-sen, Vibration Analysis of Elastic-Rigid Coupling EMS Maglev System[C], Topic5-10, MAGLEV'2004 Proceedings[A], The 18th International Conference on Magnetically Levitated Systems and Linear Drives, Shanghai China, Oct 2004:533-538.
    [110]周又和,武建军,郑晓静.磁浮列车的动力稳定性分析与Liapunov指数[J].力学学报,2000,32(1):42-51
    [111]国际铁路联盟,UIC519等效锥度的确定方法[S], ISBN2-7461-0844-5,2004.
    [112]International Union of Railways, UIC 510-2 OR Trailing stock:wheel and wheelsets, conditions concerning the use of wheels of various diameters[S], ISBN2-7461-0405-9,2004.
    [113]国际铁路联盟,UIC 861-1 O 54kg/m标准钢轨断面[S],中国铁道出版社,1969.
    [114]MSC.Software Corporation, Statements in Solver/ADAMS, Integrator, MSC.ADAMS HELP [EB/OL]. http://www.mscsoftware.com,2004.10
    [115]孙 彰,罗世辉,地铁车辆悬挂参数优化与动力学性能评价方法[J],城市轨道交通研究,2005(4):39-43.
    [116]原亮明,宫相太,刘爽堑,王渊,铁道车辆空气弹簧垂向动态特性分析方法的研究[J],中国铁道科学,2004,25(4):37-41
    [117]Rail/ADAMS, Kretteck, MSC.ADAMS HELP, [EB/OL]. http://www.mscsoftware.com,2004.10
    [118]倪 昌,曲线地段设备限界的计算原理[J],城市快轨技术,2004,17(4):24-26
    [119]UIC CODE 505-5 OR Basic conditions common to Leaflets 505-1 to 505-4[Z], International Union of Railways,1988.1.
    [120]UIC CODE 505-1 OR Kinemiatic guage for powered uints used on international services[Z], International Union of Railways,2003.11.
    [121]姜建东,付茂海,李芾,客车转向架抗侧滚扭杆装置特性分析[J],铁道机车车辆,2004,24(5):4-7
    [122]UIC Code 518 OR, Testing and approval of railway vehicles from the point of view of their dynamic behavior-safety-track fatigue-ride quality,2nd edition,2003, International Union of Railways, Paris.
    [123]王新锐,陈政南,载重350t新型钳夹车静、动强度试验研究报告[R].研究报告,2007-JL-39,铁道科学研究院.2007.5
    [124]王新锐,双层集装箱车动力学及线路运行研究课题总结报告[R],铁道科学研究院,TY字第2123号,2006.6.
    [125]程海涛,胡洪涛,王多军,平车重车垂向振动加速度值偏大的原因分析[J],铁道车辆,2004,42(9):1-4。
    [126]杨爱国,于连友,韩建民,胡海滨,交叉支撑转向架摩擦减振装置摩擦副试验研究[J],铁道车辆,2005,43(8):14-18。
    [127]王勤忠,曹志礼,金新灿,货车转向架摩擦减振器相对摩擦因数的测试及评定研究[J],铁道车辆,2001,39(5):6-8。
    [128]刘宏友,杨爱国,影响转K6型转向架动力学性能的2个主要因素分析[J],铁道学报,2006,28(2):32-38。
    [129]GB/T5599—85,铁道车辆动力学性能评定和试验鉴定规范[S],国家标准局,1985
    [130]方海容,丁旺才,孙启国,伴随变阻尼作用的干摩擦下的车辆系统非线性动力学分析[J],摩擦学学报,2004,24(6):546-549.
    [131]韩建民,徐向阳,崔世海,李卫京,王金华,铁道车辆用新型减振材料的摩擦磨损行为研究[J],摩擦学学报,2005,25(4):369-373.
    [132]Ambrogi, F., Braccesi, C., Cianetti, F., State of stress evaluation of mechanical components synthesis[C]//In Proceedings of the 15th European ADAMS Users'Conference[A], Rome, Italy, 2000.
    [133]Bishop N., Stuart K., Alan C., Using MSC.Fatigue to Estimate the Fatigue Damage Caused to Vibrating Automotive Components[C]//MSC Worldwide Automotive Conference, Munchen, Deutschland,1999
    [134]姚起杭,姚军,工程结构的振动疲劳问题[J],应用力学学报,2006,23(1):12-15
    [135]田葆栓,我国长大货物车的最新进展与关键技术问题[J],铁道车辆,2006,43(1):16-18.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700