流致薄膜振动强化新风余热回收
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
通风是改善室内空气品质最有效的方式之一。新风负荷目前已占空调负荷的30-40%,其中60-80%的能量可以回收利用。针对现有新风余热回收设备的不足,本文提出了一种薄膜式新风换热器,首次利用塑料薄膜在空气流动作用下产生的振动来强化传热,提高换热器性能。
     论文对新风换热器中蕴含的流-固耦合问题进行了实验和数值模拟研究。其中,实验研究主要包括:空气低速错流流过振动薄膜在人为激励振动及流致振动条件下的传热特性;设计样机,建立了整机性能测试系统,研究了不同工况下样机的传热性能及阻力性能。数值模拟研究包括空气-薄膜耦合问题的动力模型和传热模型的建立,探讨了二维逆流及三维错流条件下空气流动和薄膜的相互作用及其对传热的影响机理,并以薄膜变形为参数定量分析了振动对传热的影响。
     研究结果表明:实验工况下,新风换热器换热效率在0.65~0.85之间,最大压降低于20.0Pa,节能效果明显。空气流动引起的薄膜振动能有效地改善传热,强化传热的程度与薄膜振动的强度成正比,薄膜变形大小(振幅)是改善传热的主要因素,变形越大,薄膜的换热效率越高。对于每种厚度的薄膜,风量存在一个上限(此时,换热通道内上下薄膜发生接触,导致换热恶化)。稳态模拟条件下,空气流动引起的薄膜变形改变了通道形状,从而改变了通道内的速度场和温度场分布。二维逆流模拟条件下,薄膜变形使得通道形状呈突扩/突缩,但变形从整体上没有强化传热,却导致压降明显增加,在高流速下甚至成倍增加;三维错流时,薄膜不同区域的变形程度不同,使得通道形状整体上不是简单的突扩/突缩变形,通道内的流场变化更加剧烈,对温度场的影响也更大,从而整体上改善了传热。
Ventilation is one of the most effective means which can improve the indoor air quality, and has already accounted for about 30-40% of the building heating and cooling energy demand but as much as 70% of this energy can be reclaimed by using Heat Recovery Ventilators (HRVs). Aiming at eliminating the shortages of existing heat recovery equipment, a novel film fresh heat exchanger was put forward, which uses airflow-induced vibration.
     Experiments as well as numerical simulation were carried out to study the fluid-structure coupling problem inherent in the fresh heat exchanger. The experimental studies mainly include: the heat transfer performance of the vibrating film induced by airflow and mechanical method, and the prototypes design of fresh air heat exchanger with different film thickness. The experimental systems for the performance of fresh air heat exchanger were set up. During the numerical study, the dynamic and heat transfer models of the airflow-film interaction were established, the interaction between the airflow and the film and its effect on heat transfer were studied under the flow styles of two-dimensional counter-current flow and three-dimensional cross-flow.
     The results show that the effectiveness of the heat exchanger varies from 0.65 to 0.85 with airflow rate, the pressure drop is less than 20.0 Pa, and has remarkable energy-saving effect. The film vibration induced by airflow can improve the heat transfer, and the enhancement extent is in proportion to the film vibration intensity. The amplitude of the film deformation is the major factor in improving the heat transfer. Larger air flow rate tends to decrease the effectiveness till some point where the channel films contact each other and makes for a worse heat transfer performance. The channel deformation induced by the steady fluid flow can change the velocity field and temperature field in the channels. The geometry of channel became converging-diverging configuration or diverging-converging configuration caused by the deformation of film, and the channel deformation did not improve the overall heat transfer performance relative to rigid channels, but the pressure drop doubles at high flow speed under the conditions of counter-current flow. Under the conditions of the three-dimensional cross-flow, the amplitude of the film deformation varies in different domain, which makes the geometry of channels are not the configuration of converging-diverging or diverging-converging in a whole. As a result, the velocity field in the channels varies more intensely, and leads to the improvement of heat transfer.
引文
[1]江亿,我国建筑耗能状况及有效的节能途径,暖通空调, 2005, 35(5): 30-40
    [2] K. Zhong, Y. Kang, Applicability of air-to-air heat recovery ventilators in China, Applied Thermal Engineering, 2009, 29(5-6): 830-840
    [3]郑钢,热回收节能在空调系统中的应用,能源技术, 2005, 26(3): 124-126
    [4]寿旭日,转轮式全热交换器的结构研究,机电设备, 1996(5): 4-10
    [5] O.O. Abe, C.J. Simonson, R.W. Besant, et al., Effectiveness of energy wheels from transient measurements Part I: Prediction of effectiveness and uncertainty, International Journal of Heat and Mass Transfer, 2006, 49(1-2): 52-62
    [6] O.O. Abe, C.J. Simonson, R.W. Besant, et al., Effectiveness of energy wheels from transient measurements Part II: Results and verification, International Journal of Heat and Mass Transfer, 2006, 49(1-2): 63-77
    [7] C.E.L. Nobrega, N.C.L. Brum, Modeling and simulation of heat and enthalpy recovery wheels, Energy, 2009, doi:10.1016/j.energy.2008.08.016
    [8] Z. Wu, R.V.N. Melnik, F. Borup, Model-based analysis and simulation of regenerative heat wheel, Energy and Buildings, 2006, 38(5): 502-514
    [9] N. Ghodsipour, M. Sadrameli, Experimental and sensitivity analysis of a rotary air preheater for the flue gas heat recovery, Applied Thermal Engineering, 2003, 23(5): 571-580
    [10] L.Z. Zhang, J.L. Niu, Performance comparisons of desiccant wheels for air dehumidification and enthalpy recovery, Applied Thermal Engineering, 2002, 22(12): 1347-1367
    [11] J.L. Niu, L.Z. Zhang, Effects of wall thickness on the heat and moisture transfers in desiccant wheels for air dehumidification and enthalpy recovery, International Communications in Heat and Mass Transfer, 2002, 29(2): 255-268
    [12] S. Sanaye, H. Hajabdollahi, Multi-objective optimization of rotary regenerator using genetic algorithm, International Journal of Thermal Sciences, 2009, doi:10.1016/j.ijthermalsci.2009.02.008
    [13] M.A. Abd El-Baky, M.M. Mohamed, Heat pipe heat exchanger for heat recovery in air conditioning, Applied Thermal Engineering, 2007, 27(4): 795-801
    [14] S.B. Riffat, G. Gan, Determination of effectiveness of heat-pipe heat recovery for naturally-ventilated buildings, Applied Thermal Engineering, 1998, 18(3-4): 121-130
    [29]殷平,新型板式全热交换器研制-经济分析,暖通空调, 2006, 36(3): 53-58
    [30]殷平,新型板式全热交换器研制-产品研制及实验,暖通空调, 2005, 35(11): 56-62
    [31]周宴平,吴静怡,王如竹,全热交换器在不同室内外空气参数下能量回收性能的比较分析,太阳能学报, 2008, 29(2): 198-203
    [32]钟珂,亢燕铭,板翅式空气全热交换器热回收效率的实验研究,暖通空调, 2007, 37(2): 62-67
    [33] J. Rose, T.R. Nielsen, J. Kragh, et al., Quasi-steady-state model of a counter-flow air-to-air heat-exchanger with phase change, Applied Energy, 2008, 85(5): 312-325
    [34]苏铭,闵敬春,等风机功耗下不同构型全热换热器的性能比较,工程热物理学报, 2006, 27(6): 1038-1040
    [35]苏铭,闵敬春,通道构型对全热换热器性能的影响,清华大学学报(自然科学版), 2006, 46(8): 1485-1488
    [36]唐志伟,陈世东,郭建等,小型通风换热器的实验研究,工程热物理学报, 2006, 27(suppl.2): 128-130
    [37]郭建,唐志伟,何曙等,通风换热器的设计及实验研究,制冷与空调, 2005, (2): 5-7
    [38] J. Kragh, J. Rose, T.R. Nielsen, et al., New counter flow heat exchanger designed for ventilation systems in cold climates, Energy and Buildings, 2007, 39(11): 1151-1158
    [39] C. T'Joen, Y. Park, Q. Wang, et al., A review on polymer heat exchangers for HVAC&R applications, International Journal of Refrigeration, 2009, doi:10.1016/j.ijrefrig.2008.11.008
    [40] L. Chen, Z. Li, Z.Y. Guo, Experimental investigation of plastic finned-tube heat exchangers, with emphasis on material thermal conductivity, Experimental Thermal and Fluid Science, 2009, 33(5): 922-928
    [41]陈维汉,板翅式换热器综合考虑传热、流动与结构的优化设计,化工装备技术, 2004, 25(1): 27-32
    [42] M. Fehrm, W. Reiners, M. Ungemach, Exhaust air heat recovery in buildings, International Journal of Refrigeration, 2002, 25(4): 439-449
    [43] T.X. Li, R.Z. Wang, L.W. Wang, et al., Experimental study on an innovative multifunction heat pipe type heat recovery two-stage sorption refrigeration system, Energy Conversion and Management, 2008, 49(10): 2505-2512
    [44] Z. Li, X.H. Liu, Y. Jiang, et al., New type of fresh air processor with liquid desiccant total heat recovery, Energy and Buildings, 2005, 37(6): 587-593
    [29]殷平,新型板式全热交换器研制-经济分析,暖通空调, 2006, 36(3): 53-58
    [30]殷平,新型板式全热交换器研制-产品研制及实验,暖通空调, 2005, 35(11): 56-62
    [31]周宴平,吴静怡,王如竹,全热交换器在不同室内外空气参数下能量回收性能的比较分析,太阳能学报, 2008, 29(2): 198-203
    [32]钟珂,亢燕铭,板翅式空气全热交换器热回收效率的实验研究,暖通空调, 2007, 37(2): 62-67
    [33] J. Rose, T.R. Nielsen, J. Kragh, et al., Quasi-steady-state model of a counter-flow air-to-air heat-exchanger with phase change, Applied Energy, 2008, 85(5): 312-325
    [34]苏铭,闵敬春,等风机功耗下不同构型全热换热器的性能比较,工程热物理学报, 2006, 27(6): 1038-1040
    [35]苏铭,闵敬春,通道构型对全热换热器性能的影响,清华大学学报(自然科学版), 2006, 46(8): 1485-1488
    [36]唐志伟,陈世东,郭建等,小型通风换热器的实验研究,工程热物理学报, 2006, 27(suppl.2): 128-130
    [37]郭建,唐志伟,何曙等,通风换热器的设计及实验研究,制冷与空调, 2005, (2): 5-7
    [38] J. Kragh, J. Rose, T.R. Nielsen, et al., New counter flow heat exchanger designed for ventilation systems in cold climates, Energy and Buildings, 2007, 39(11): 1151-1158
    [39] C. T'Joen, Y. Park, Q. Wang, et al., A review on polymer heat exchangers for HVAC&R applications, International Journal of Refrigeration, 2009, doi:10.1016/j.ijrefrig.2008.11.008
    [40] L. Chen, Z. Li, Z.Y. Guo, Experimental investigation of plastic finned-tube heat exchangers, with emphasis on material thermal conductivity, Experimental Thermal and Fluid Science, 2009, 33(5): 922-928
    [41]陈维汉,板翅式换热器综合考虑传热、流动与结构的优化设计,化工装备技术, 2004, 25(1): 27-32
    [42] M. Fehrm, W. Reiners, M. Ungemach, Exhaust air heat recovery in buildings, International Journal of Refrigeration, 2002, 25(4): 439-449
    [43] T.X. Li, R.Z. Wang, L.W. Wang, et al., Experimental study on an innovative multifunction heat pipe type heat recovery two-stage sorption refrigeration system, Energy Conversion and Management, 2008, 49(10): 2505-2512
    [44] Z. Li, X.H. Liu, Y. Jiang, et al., New type of fresh air processor with liquid desiccant total heat recovery, Energy and Buildings, 2005, 37(6): 587-593
    [45] X.W. Yi, W.L. Lee, The use of helical heat exchanger for heat recovery domestic water-cooled air-conditioners, Energy Conversion and Management, 2009, 50(2): 240-246
    [46] A. Nguyen, Y. Kim, Y. Shin, Experimental study of sensible heat recovery of heat pump during heating and ventilation, International Journal of Refrigeration, 2005, 28(2): 242-252
    [47] J.Y. Wu, R.Z. Wang, Y.X. Xu, Dynamic analysis of heat recovery process for a continuous heat recovery adsorption heat pump, Energy Conversion and Management, 2002, 43(16): 2201-2211
    [48] S.B. Riffat, M.C. Gillott, Performance of a novel mechanical ventilation heat recovery heat pump system, Applied Thermal Engineering, 2002, 22(7): 839-845
    [49] H. Manz, H. Huber, A. Schalin, et al., Performance of single room ventilation units with recuperative or regenerative heat recovery, Energy and Buildings, 2000, 31(1): 37-47
    [50] L. Shao, S.B. Riffat, G. Gan, Heat recovery with low pressure loss for natural veltilation, Energy and Buildings, 1998, 28(2): 179-184
    [51] C.A. Roulet, F.D. Heidt, F. Foradini, et al., Real heat recovery with air handling units, Energy and Buildings, 2001, 33(5): 495-502
    [52]丁力行,谭显辉,空气-空气能量回收装置效率测试的不确定度研究,流体机械, 2005, 33(4): 31-34
    [53] H. Manz, H. Huber, D. Helfenfinger, Impact of air leakages and short circuits in ventilation units with heat recovery on ventilation efficiency and energy requirements for heating, Energy and Buildings, 2001, 33(2): 133-139
    [54] A.E. Bergles, Heat transfer enhancement the encouragement and accommodation of high heat fluxes, ASME Journal of Heat Transfer, 1997, 119: 8-19
    [55] A.E. Bergles, ExHFT for fourth generation heat transfer technology, Experimental Thermal and Fluid Science, 2002, 26: 335-344
    [56] C.A. Balaras, A review of augmentation techniques for heat transfer surfaces in single-phase heat exchangers, Energy, 1990, 15(10): 899-906
    [57] Z.Y. Guo, D.Y. Li, B.X. Wang, A novel concept for convective heat transfer enhancement, Int. J. Heat Mass Transfer, 1998, 41(14): 2221-2225
    [58]过增元,对流换热的物理机制及其控制:速度场与热流场的协同,科学通报, 2000, 45(19): 2118-2122
    [59] Z.Y. Guo, W.Q. Tao, R.K. Shah, The field synergy (coordination) principle and its applications in enhancing single phase convective heat transfer, International Journal of Heat and Mass Transfer, 2005, 48(9): 1797-1807
    [60]林宗虎,汪军,李瑞阳,强化传热技术,北京:化学工业出版社, 2007
    [61] K. Sreenivasan, A. Ramachandran, Effect of vibration on heat transfer from a horizontal cylinder to a normal air stream, International Journal of Heat and Mass Transfer, 1961, 3(1): 60-67
    [62] K.K. Prasad, V. Ramanathan, Heat transfer by free convection from a longitudinally vibrating vertical plate, International Journal of Heat and Mass Transfer, 1972, 15(6): 1213-1220
    [63] W.W. Carr, W.Z. Black, Interferometric measurement of instantaneous local heat transfer from a horizontally vibrating isothermal cylinder, International Journal of Heat and Mass Transfer, 1974, 17(6): 633-642
    [64] A.S. Dawood, B.L. Manocha, S.M.J. Ali, The effect of vertical vibrations on natural convection heat transfer from a horizontal cylinder, International Journal of Heat and Mass Transfer, 1981, 24(3): 491-496
    [65] P.K. Nag, A. Bhattacharya, Effect of vibration on natural convection heat transfer from vertical fin arrays, leeters in heat andmass transfer, 1982, 9: 487-498
    [66] G.Z. Gershuni, E.M. Zhukhovitsky, A.K. Kolesnikov, et al., Vibrational convection in a horizontal fluid layer with internal heat sources, International Journal of Heat and Mass Transfer, 1989, 32(12): 2319-2328
    [67] J. Soria, W.K. Chiu, M.P. Norton, A study of unsteady laminar boundary layer flow on a flat plate using a smoke-wire/silhouette flow visualization technique, Experimental Thermal and Fluid Science, 1990, 3: 291-304
    [68] J. Soria, M.P. Norton, A simple-to-fabricate composite convective heat-transfer test surface, Applied Energy, 1990, 35: 109-123
    [69] J. Soria, M.P. Norton, The effect of transverse plate vibration on the mean laminar convective boundary layer heat transfer rate, Experimental Thermal and Fluid Science, 1991, 4: 226-238
    [70] W.S. Fu, W.J. Shieh, Transient thermal convection in an enclosure induced simultaneously by gravity and vibration, International Journal of Heat and Mass Transfer, 1993, 36(2): 437-452
    [71] D. Karanth, G.W. Rankin, K. Sridhar, A finite difference calculation of forced convective heat transfer from an oscillating cylinder, International Journal of Heat and Mass Transfer, 1994, 37(11): 1619-1630
    [72] E.I. Nesis, A.F. Shatalov, N.P. Karmatskii, Dependence of the heat transfer coefficient on the vibration amplitude frequency of a vertical thin heater, Journal of Engineering Physics and Thermophysics, 1994, 67(1-2): 696-698
    [73] G. Nicoletti, Heat and momentum transfer in flows adjacent to vibrating wall surfaces, Heat and Mass Transfer, 1996, 31: 145-151
    [74] C.H. Cheng, J.L. Hong, W. Aung, Numerical prediction of lock-on effect on convective heat transfer from a transversely oscillating circular cylinder, International Journal of Heat and Mass Transfer, 1997, 40(8): 1825-1834
    [75] C. Du, R. Turton, An experimental study of the heat transfer between near-fluidized particles and an oscillating immersed surface, International Journal of Heat and Mass Transfer, 1997, 40(10): 2351-2361
    [76] A. Klaczak, Report from experiments on heat transfer by forced vibrations of exchangers Heat and Mass Transfer, 1997, 32: 477-480
    [77] C. Gau, J.M. Wu, C.Y. Liang, Heat transfer enhancement and vortex flow structure over a heated cylinder oscillating in the crossflow direction, Journal of Heat Transfer, 1999, 121: 789-795
    [78] L. Bronfenbrener, L. Grinis, E. Korin, Experimental study of heat transfer intensification under vibration condition, Chemical Engineering & Technology, 2001, 24(4): 367-371
    [79] W.S. Fu, B.H. Tong, Numerical investigation of heat transfer from a heated oscillating cylinder in a cross flow, International Journal of Heat and Mass Transfer, 2002, 45(14): 3033-3043
    [80]冷学礼,程林,杜文静,流体低速横掠振动圆管的传热特性研究,工程热物理学报, 2003, 24(2): 328-330
    [81] L.A. Florio, A. Harnoy, Use of a vibrating plate to enhance natural convection cooling of a discrete heat source in a vertical channel, Applied Thermal Engineering, 2007, 27: 2276-2293
    [82] J. Bo, M.CH. Tian, X.L. Leng, et al., Numerical simulation of flow and heat transfer characteristics outside a periodically vibrating tube, Journal of Hydrodynamics, 2008, 20(5): 629-636
    [83] E.I. Eid, M.E. Gomaa, Influence of vibration in enhancement of heat transfer rates from thin plannar fins, Heat Mass Transfer, 2009, 45: 713-726
    [84]田茂诚,程林,张冠敏等,流体诱导振动复合强化传热的理论分析,工程热物理学报, 2002, 23(3): 330-332
    [85]程林等,流体诱导振动复合强化传热的实验研究,工程热物理学报, 2002, 23(4): 485-487
    [86] M.C. Tian, L. Cheng, Y.Q. Lin, et al., Heat transfer enhancement by crossflow-induced vibration, Heat Transfer-Asian Research, 2004, 33(4): 211-218
    [87] L. Cheng, T. Luana, W. Dua, et al., Heat transfer enhancement by flow-induced vibration in heat exchangers, International Journal of Heat and Mass Transfer, 2009, 52(3-4): 1053-1057
    [88] J.S. Go, A.J. Kim, G. Lim, et al., Heat transfer enhancement using flow-induced vibration of a microfin array, Sensors and Actuators A: Physical, 2001, 90(3): 232-239
    [89] J.S. Go, Design of a microfin array heat sink using flow-induced vibration to enhance the heat transfer in the laminar flow regime, Sensors and Actuators A: Physical, 2003, 105(2): 201-210
    [90] K. Yakut, B. Sahin, Flow-induced vibration analysis of conical rings used for heat transfer enhancement in heat exchangers, Applied Energy, 2004, 78(3): 273-288
    [91]陈福,结构入水问题的流固耦合仿真分析,硕士学位论文,清华大学, 2008
    [92] Z. Cheng, M. Paraschivoiu, Parallel computations of finite element output bounds for conjugate heat transfer, Finite Elements in Analysis and Design, 2003, 39(7): 581-597
    [93] A. Horvat, I. Catton, Numerical technique for modeling conjugate heat transfer in an electronic device heat sink, International Journal of Heat and Mass Transfer, 2003, 46(12): 2155-2168
    [94] E. Divo, A.J. Kassab, A meshless method for conjugate heat transfer problems, Engineering Analysis with Boundary Elements, 2005, 29(2): 136-149
    [95] J. Wang, M. Wang, Z. Li, A lattice Boltzmann algorithm for fluid-solid conjugate heat transfer, International Journal of Thermal Sciences, 2007, 46(3): 228-234
    [96] F. Meng, M. Wang, Z. Li, Lattice Boltzmann simulations of conjugate heat transfer in high-frequency oscillating flows, International Journal of Heat and Fluid Flow, 2008, 29(4): 1203-1210
    [97] W.D. Henshaw, K.K. Chand, A composite grid solver for conjugate heat transfer in fluid-structure systems, Journal of Computational Physics, 2009, 228(10): 3708-3741
    [98] J. Pozorski, J.P. Minier, Stochastic modelling of conjugate heat transfer in near-wall turbulence, International Journal of Heat and Fluid Flow, 2006, 27(5): 867-877
    [99] Y.T. Yang, S.Y. Tsai, Numerical study of transient conjugate heat transfer of a turbulent impinging jet, International Journal of Heat and Mass Transfer, 2007, 50(5-6): 799-807
    [100] O. AydIn, Conjugate heat transfer analysis of double pane windows, Building and Environment, 2006, 41(2): 109-116
    [101] Y.P. Cheng, T.S. Lee, H.T. Low, Numerical simulation of conjugate heat transfer in electronic cooling and analysis based on field synergy principle, Applied Thermal Engineering, 2008, 28(14-15): 1826-1833
    [102] Z. Luan, M.M. Khonsari, Analysis of conjugate heat transfer and turbulent flow in mechanical seals, Tribology International, 2009, 42(5): 762-769
    [103] F. Duchaine, S. Mendez, F. Nicoud, et al., Conjugate heat transfer with large eddy simulation for gas turbine components, Comptes Rendus Meanique, 2009, 337(6-7): 550-561
    [104] A. Zhang, K. Suzuki, A comparative study of numerical simulations for fluid-structure interaction of liquid-filled tank during ship collision, Ocean Engineering, 2007, 34(5-6): 645-652
    [105] F. Flori, B. Giudicelli, B. Di Martino, A numerical method for a blood-artery interaction problem, Mathematical and Computer Modelling, 2009, 49(11-12): 2145-2151
    [106]郭术义,陈举华,流固耦合应用研究进展,济南大学学报(自然科学版), 2004, 18(2): 123-126
    [107] J.F. Sigrist, D. Broc, C. Laine, Dynamic analysis of a nuclear reactor with fluid-structure interaction: Part I: Seismic loading, fluid added mass and added stiffness effects, Nuclear Engineering and Design, 2006, 236(23): 2431-2443
    [108] M. A. Fernandez, J.F. Gerbeau, C. Grandmont, A projection algorithm for fluid-structure interaction problems with strong added-mass effect, Comptes Rendus Mathematique, 2006, 342(4): 279-284
    [109] R. van Loon, P.D. Anderson, F.N. van de Vosse, et al., Comparison of various fluid-structure interaction methods for deformable bodies, Computers & Structures, 2007, 85(11-14): 833-843
    [110]胡潇毅,一类流固耦合问题的数值算法及风场中摇曳树木的物理仿真,博士学位论文,浙江大学, 2008
    [111]岳宝增,彭武,王照林, ALE迎风有限元研究进展,力学进展, 2005, 35(1): 21-29
    [112]张雄,陆明万,王建军,任意拉格朗日-欧拉描述法研究进展,计算力学学报, 1997, 14(1): 91-102
    [113] L. Zhang, A. Gerstenberger, X.D. Wang, et al., Immersed finite element method, Computer Methods in Applied Mechanics and Engineering, 2004, 193(21-22): 2051-2067
    [114] D. Kim, H. Choi, Immersed boundary method for flow around an arbitrarily moving body, Journal of Computational Physics, 2006, 212(2): 662-680
    [115] C.H. Tai, K.M. Liew, Y. Zhao, Numerical simulation of 3D fluid-structure interaction flow using an immersed object method with overlapping grids, Computers & Structures, 2007, 85(11-14): 749-762
    [116] W.X. Huang, H.J. Sung, An immersed boundary method for fluid-flexible structure interaction, Computer Methods in Applied Mechanics and Engineering, 2009, 198(33-36): 2650-2661
    [117] I. Ramiere, P. Angot, M. Belliard, A fictitious domain approach with spread interface for elliptic problems with general boundary conditions, Computer Methods in Applied Mechanics and Engineering, 2007, 196(4-6): 766-781
    [118] A.N. Pati, Fluid-structure interaction for a pressure driven flow, Mathematical and Computer Modelling, 2008, 47(1-2): 1-26
    [119] X. Shi, N. Phan-Thien, Distributed Lagrange multiplier/fictitious domain method in the framework of lattice Boltzmann method for fluid-structure interactions, Journal of Computational Physics, 2005, 206(1): 81-94
    [120] X. Shi, S.P. Lim, A LBM-DLM/FD method for 3D fluid-structure interactions, Journal of Computational Physics, 2007, 226(2): 2028-2043
    [121] C. Antoci, M. Gallati, S. Sibilla, Numerical simulation of fluid-structure interaction by SPH, Computers & Structures, 2007, 85(11-14): 879-890
    [122] A. Rafiee, K.P. Thiagarajan, An SPH projection method for simulating fluid-hypoelastic structure interaction, Computer Methods in Applied Mechanics and Engineering, 2009, 198(33-36): 2785-2795
    [123] M. Heil, An efficient solver for the fully coupled solution of large-displacement fluid-structure interaction problems, Computer Methods in Applied Mechanics and Engineering, 2004, 193(1-2): 1-23
    [124] X. Chen, G.C. Zha, M.T. Yang, Numerical simulation of 3-D wing flutter with fully coupled fluid-structural interaction, Computers & Fluids, 2007, 36(5): 856-867
    [125] C.W. Hirt, A.A. Amsden, J.L. Cook, An arbitrary lagrangian-eulerian computing method for all flow speeds, Journal of Computational Physics, 1997, 135(2): 203-216
    [126] T.J.R. Hughes, W.K. Liu, T.K. Zimmermann, Lagrangian-eulerian finite element formulation for incompressible viscous flows, Computer Methods in Applied Mechanics and Engineering, 1981, 29(3): 329-349
    [127] W.K.Liu, H. Chang, .J.S. Chen, et al., Arbitrary lagrangian-eulerian petrov-galerkin finite elements for nonlinear continua, Computer Methods in Applied Mechanics and Engineering, 1988, 68: 259-310
    [128] J.P. Ponthot, T. Belytschko, Arbitrary lagrangian-eulerian formulation for element-free Galerkin method, Computer Methods in Applied Mechanics and Engineering, 1998, 152(1-2): 19-46
    [129] A. Masud, M. Bhanabhagvanwala, R.A. Khurram, An adaptive mesh rezoning scheme for moving boundary flows and fluid-structure interaction, Computers & Fluids, 2007, 36(1): 77-91
    [130] Z. Xu, M. Accorsi, Finite element mesh update methods for fluid-structure interaction simulations, Finite Elements in Analysis and Design, 2004, 40(9-10): 1259-1269
    [131]王跃先,陈军,阮雪榆, ALE有限元方法中的网格运动算法,上海交通大学学报, 2001, 25(10): 1539-1542
    [132] M. Souli, A. Ouahsine, L. Lewin, ALE formulation for fluid-structure interaction problems, Computer Methods in Applied Mechanics and Engineering, 2000, 190(5-7): 659-675
    [133] P.R.B. Devloo, D.D. Fernandes, S.M. Domes, et al., A finite element model for three dimensional hydraulic fracturing, Mathematics and Computers in Simulation, 2006, 73(1-4): 142-155
    [134] J. De Hart, G.W.M. Peters, P.J.G. Schreurs, et al., A three-dimensional computational analysis of fluid-structure interaction in the aortic valve, Journal of Biomechanics, 2003, 36(1): 103-112
    [135] H. Eloranta, T.P. rssinen, P. Saarenrinne, Fluid–structure interaction of a splitter plate in a convergent channel, Experiments in Fluids, 2005, 39: 841-855
    [136] P. Girodroux-Lavigne, J.P. Grisval, S. Guillemot, et al., Comparison of static and dynamic fluid-structure interaction solutions in the case of a highly flexible modern transport aircraft wing, Aerospace Science and Technology, 2003, 7(2): 121-133
    [137] M. Gluck, M. Breuer, F. Durst, et al., Computation of wind-induced vibrations of flexible shells and membranous structures, Journal of Fluids and Structures, 2003, 17(5): 739-765
    [138] J. Park, T. Siegmund, L. Mongeau, Analysis of the flow-induced vibrations of viscoelastically supported rectangular plates, Journal of Sound and Vibration, 2003, 261(2): 225-245
    [139] J. Park, L. Mongeau, T. Siegmund, An investigation of the flow-induced sound and vibration of viscoelastically supported rectangular plates: experiments and model verification, Journal of Sound and Vibration, 2004, 275(1-2): 249-265
    [140] M. Gluck, M. Breuer, F. Durst, et al., Computation of fluid-structure interaction on lightweight structures, Journal of Wind Engineering and Industrial Aerodynamics, 2001, 89(14-15): 1351-1368
    [141] J. Donea, S. Giuliani, J.P. Halleux, An arbitrary lagrangian-eulerian finite element method for transient dynamic fluid-structure interactions, Computer Methods in Applied Mechanics and Engineering, 1982, 33(1-3): 689-723
    [142] A. Masud, T.J.R. Hughes, A space-time Galerkin/least-squares finite element formulation of the Navier-Stokes equations for moving domain problems, Computer Methods in Applied Mechanics and Engineering, 1997, 146(1-2): 91-126
    75[143] N. Takashi, T.J.R. Hughes, An arbitrary lagrangian-eulerian finite element method for interaction of fluid and a rigid body, Computer Methods in Applied Mechanics and Engineering, 1992, 95(1): 115-138
    [144] G. Dubini, R. Pietrabissa, F.M. Montevecchi, Fluid-structure interaction problems in bio-fluid mechanics: a numerical study of the motion of an isolated particle freely suspended in channel flow, Medical Engineering & Physics, 1995, 17(8): 609-617
    [145]王辉,大型水轮机振动分析及粘性流体与弹性结构祸合的有限元格式,博士学位论文,清华大学, 1997
    [146] S.M. Rifai, Z. Johan, W.P. Wang, et al., Multiphysics simulation of flow-induced vibrations and aeroelasticity on parallel computing platforms, Computer Methods in Applied Mechanics and Engineering, 1999, 174(3-4): 393-417
    [147] S.M. Rifai, J.C. Buell, Z. Johan, et al., Automotive design applications of fluid flow simulation on parallel computing platforms, Computer Methods in Applied Mechanics and Engineering, 2000, 184(2-4): 449-466
    [148] A.N. Brooks, T.J.R. Hughes, Streamline upwind/Petrov-Galerkin formulations for convection dominated flows with particular emphasis on the incompressible Navier-Stokes equations, Computer Methods in Applied Mechanics and Engineering, 1982, 32(1-3): 199-259
    [149] T.J.R. Hughes, M. Mallet, A. Mizukami, A new finite element formulation for computational fluid dynamics: ii beyond SUPG, Computer Methods in Applied Mechanics and Engineering, 1986, 54: 341-355
    [150] T.J.R. Hughes, L.P. Franca, M. Mallet, A new finite element formulation for computational fluid dynamics: VI. Convergence analysis of the generalized SUPG formulation for linear time-dependent multidimensional advective-diffusive systems, Computer Methods in Applied Mechanics and Engineering, 1987, 63(1): 97-112
    [151] T.E. Tezduyar, M. Senga, Stabilization and shock-capturing parameters in SUPG formulation of compressible flows, Computer Methods in Applied Mechanics and Engineering, 2006, 195(13-16): 1621-1632
    [152] T.E. Tezduyar, M. Senga, SUPG finite element computation of inviscid supersonic flows with YZβshock-Capturing Computers & Fluids, 2007, 36(1): 147-159
    [153] T.J.R. Hughes, L.P. Franca, G.M. Hulbert, A new finite element formulation for computational fluid dynamics: VIII. The galerkin/least-squares method for advective-diffusive equations, Computer Methods in Applied Mechanics and Engineering, 1989, 73(2): 173-189
    [165] L.P. Franca, G. Hauke, A.M. c, Revisiting stabilized finite element methods for the advective–diffusive equation, Computer Methods in Applied Mechanics and Engineering, 2006, 195: 1560-1572
    [166] T.E. Tezduyar, Finite elements in fluids: stabilized formulations and moving boundaries and interfaces, Computers & Fluids, 2007, 36(2): 191-206
    [167] T.E. Tezduyar, M. Behr, J. Liou, A new strategy for finite element computations involving moving boundaries and interfaces-the deforming-spatial-domain/space-time procedure: I. The concept and the preliminary numerical tests, Computer Methods in Applied Mechanics and Engineering, 1992, 94(3): 339-351
    [168] T.E. Tezduyar, M. Behr, J. Liou, et al., A new strategy for finite element computations involving moving boundaries and interfaces-the deforming-spatial-domain/space-time procedure: II. Computation of free-surface flows, two-liquid flows, and flows with drifting cylinders, Computer Methods in Applied Mechanics and Engineering, 1992, 94(3): 353-371
    [169]王建军,陆明万,张.雄,流体力学Petrov-Galerkin有限元法研究进展,计算力学学报, 1998, 15(4): 495-502
    [170]王建军,陆明万,张.雄等,流体力学广义GLS/PG方法基本理论,水动力学研究与进展, 2002, 17(3A): 294-303
    [171]卢艳华,新风板式换热器的流动与传热特性,硕士学位论文,天津大学, 2007
    [172] J.P. Holman, heat transfer (ninth edition), New York: McGraw-Hill, 2002
    [173] ASHRAE, 2008 ASHRAE Handbook HVAC: Systems and Equipment, Atlanta, GA: ASHRAE, 2008
    [165] L.P. Franca, G. Hauke, A.M. c, Revisiting stabilized finite element methods for the advective–diffusive equation, Computer Methods in Applied Mechanics and Engineering, 2006, 195: 1560-1572
    [166] T.E. Tezduyar, Finite elements in fluids: stabilized formulations and moving boundaries and interfaces, Computers & Fluids, 2007, 36(2): 191-206
    [167] T.E. Tezduyar, M. Behr, J. Liou, A new strategy for finite element computations involving moving boundaries and interfaces-the deforming-spatial-domain/space-time procedure: I. The concept and the preliminary numerical tests, Computer Methods in Applied Mechanics and Engineering, 1992, 94(3): 339-351
    [168] T.E. Tezduyar, M. Behr, J. Liou, et al., A new strategy for finite element computations involving moving boundaries and interfaces-the deforming-spatial-domain/space-time procedure: II. Computation of free-surface flows, two-liquid flows, and flows with drifting cylinders, Computer Methods in Applied Mechanics and Engineering, 1992, 94(3): 353-371
    [169]王建军,陆明万,张.雄,流体力学Petrov-Galerkin有限元法研究进展,计算力学学报, 1998, 15(4): 495-502
    [170]王建军,陆明万,张.雄等,流体力学广义GLS/PG方法基本理论,水动力学研究与进展, 2002, 17(3A): 294-303
    [171]卢艳华,新风板式换热器的流动与传热特性,硕士学位论文,天津大学, 2007
    [172] J.P. Holman, heat transfer (ninth edition), New York: McGraw-Hill, 2002
    [173] ASHRAE, 2008 ASHRAE Handbook HVAC: Systems and Equipment, Atlanta, GA: ASHRAE, 2008

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700