基于惯性耦合的深水钢悬链线立管非线性分析方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着油气资源勘探和开发活动不断向深海发展,涌现出了多种新型浮式结构系统以适应深海恶劣的环境载荷并较大程度地降低成本。钢悬链线立管(Steel Catenary Riser, SCR)成为了深海浮式生产系统油气输送的首选立管形式,在一定程度上克服了传统的柔性立管和顶张力立管(Top Tension Riser, TTR)在更深海域应用的局限性,被认为是深水立管系统成本有效的解决方案。由于受浮式平台运动以及深海水动力载荷的共同作用,相比于海底管线,钢悬链线立管的动力响应更加复杂。因此,对钢悬链线立管进行动态响应分析及非线性分析方法研究具有重要的科学意义和广泛的应用价值。
     本文介绍了锚缆动力分析程序CABLE3D,是2002年由美国A&M大学的Chen等人开发的三维非线性有限元分析程序。该程序可以求解两类结构的静力和动力问题,一种是无抗弯刚度且允许有较大拉伸的杆结构,另一种是有抗弯刚度且允许有较小拉伸的梁结构。基于程序CABLE3D,本文运用大挠度柔性索理论,采用具有弯曲刚度的大挠度细长梁模拟钢悬链线立管,触地点随着SCR的运动而变化,并且考虑了触地点处立管曲率的影响,同时解决了采用直梁模型模拟时单元长度受限的问题。大挠度细长梁模型模拟钢悬链线立管,对研究立管与海床的相互作用以及疲劳分析有重要作用。
     基于锚链/立管系统分析程序CABLE3D,提出了基于惯性耦合的深水钢悬链线立管与Spar平台的整体分析法,并开发出整体分析程序V-CABLE3D,这是本文的重要创新点之一。该方法是将SCR与Spar看作一个整体系统,Spar作为刚体,顶端边界条件是系泊系统/TTR的弹性位移约束和Spar平台的激励力约束,SCR的底端法向约束采用弹簧系统或弹簧阻尼系统模拟。由于Spar平台的几何对称性,将其简化为3自由度浮动圆柱体,其波浪激励力仅考虑了一阶绕射作用,运用绕射理论求解纵荡力、垂荡力和纵摇力矩。分别运用CABLE3D和V-CABLE3D程序对SCR进行动力分析,结果表明,基于惯性耦合SCR与Spar平台整体系统分析法能够较好地反映结构之间的动力效应,特别是平台惯性力对SCR动态响应的影响很大,因此不能忽略。
     本文还详细介绍了立管与海床法向相互作用模型在钢悬链线立管分析中的应用现状,主要包括立管向着海床运动时海床刚度的影响和立管拔出海底时的吸力作用。根据STRIDE围绕SCR与海床相互作用的二维模型试验,2001年Willis数值模拟得到了准确的二维吸力模型。基于该吸力模型,在海床的法向分布力中考虑吸力,进一步改进CABLE3D和V-CABLE3D程序,并分别应用改进的程序对钢悬链线立管进行动力分析,给出动态响应的时程曲线和FFT幅值谱。计算结果表明,立管拔出海底时的吸力作用将会引起立管动态响应时程曲线的小幅度高频振荡,增大了立管的极限应力。
     本文通过对新型深水钢悬链线立管国内外研究方法的分析,提出了一些新的见解和方法,为深水立管的设计和非线性分析提供理论依据,同时对钢悬链线立管在我国深海领域的应用具有一定的指导意义和参考价值。
When offshore oil and gas activities move to deeper and deeper oceans, various innovative floating structures are proposed and developed to comply with severe deep-water environments and to reduce the cost. Steel catenary risers (SCRs) for deepwater development have become a viable option for oil and gas export from floating production facilities to shore, shallow water platforms, or to subsea pipeline hubs. SCR is considered over both traditional flexible riser and TTRs in deepwater development and a cost effective solution to deepwater oil and gas production. The concept of SCR is inherently simple and is often thought of an extension of the flow line or pipeline. However, the dynamic movements experienced by the SCR from vessel motions and hydrodynamic loading result in a more complex behavior of the structure compared with flow lines and pipelines. So, dynamic response analysis and nonlinear investigation of SCR are of both great scientific significance and extensive application value.
     The cable dynamic analysis program CABLE3D, which is 3-D nonlinear analysis program developed by Chen (2002) is introduced in this paper. Cable static and dynamic problems of the two structures including BAR (with bending, large elongation) and BEAM (with bending, small elongation) elements can be solved using this program. Based on the theory of a slender rod with bending stiffness, SCR is modeled as a small extensible beam considering large curve at Touch Down Point (TDP) of SCR. The situation of TDP changes along with motion of SCR. Moreover, the length of element at TDZ is not limited. The slender beam model with large curve used in SCR analysis have an important role on the study of pipe/soil interaction and fatigue analysis of SCR.
     The thesis, with its marked innovation of this subject, gives the integrated model of SCR-Spar and its mooring lines/TTRs considering inertial coupling, and the original CABLE3D is improved. Based on previous works by Garrett (1982), Ma, Webster (1994) and Chen (2002), a dynamic equation for integrated model of SCR-Spar is derived and the integrated analysis program V-CABLE3D is obtained. In the program, Spar moored by a spread mooring system is modeled as a rigid body, and mooring lines/TTRs are modeled by springs which act on the top of SCR. Both response of Spar induced by wave loads and SCR/soil interaction model (a spring-damping system) are considered in code. In the integrated analysis, the Spar can be approximated by a rigid body of three degrees of freedom (surge, heave and pitch), known as a 3-DOF body. First-order is only considered in the calculation of wave loads by diffraction method. The wave forces are calculated using approximation of diffraction method. The results of dynamic analysis of SCR by CABLE3D and V-CABLE3D show that large inertial force induced by mass of Spar has a large effect on dynamic response and it is not ignored. The method of integrated analysis considering inertial coupling factually reflects dynamic effect between SCR and Spar platform.
     The state of the art of vertical pipe/soil interaction models developed for use in SCR analysis is also described in detail. These model pipe move vertically downwards (soil stiffness) and vertically upwards (soil suction). The soil suction curve presented in this paper was the upper bound curve based on the previous STRIDE 2D pipe/soil interaction work by Willis (2001). The case studies investigated the effect of soil suction on SCR dynamic response. CABLE3D and V-CABLE3D are modified by SCR/soil interaction model with soil suction. Dynamic response of SCR with soil suction in time domain is analyzed by the improved program. The time histories of dynamic response and its amplitude spectrums by FFT at key zone of SCR are plotted in figures. The results show that soil suction has a large effect on extreme stress and induces small-amplitude and high-frequency oscillation of time histories of SCR dynamic response when the riser is pulled away from the seabed.
     The new research idea and method of deepwater SCR are proposed in this thesis through analyzing research method at home and abroad. The conclusion of this paper supplies the design and nonlinear analysis of deepwater SCR with theoretical-based calculation as well as the applications of SCR in China with the guiding significance and the reference.
引文
[1]金庆焕.深水油气是当今海洋油气勘探的主要热点[J].科学中国人,2006,(11):18-19.
    [2]李清平.我国海洋深水油气开发面临的挑战[J].中国海上油气,2006,18(2):130-133.
    [3]贾琇明,岳来群,韦子亮.有关我国深海油气资源勘探开发的几点思考.国土资源情报:能源形势与政策, 2004.
    [4]郭斌,唐文勇,张圣坤. Truss Spar平台桁架的疲劳分析方法.中国海洋平台, 2006(4).
    [5] C. A. Martins and E. Higashi. A Parametric Analysis of Steel Catenary Risers: Fatigue Behavior near the Top. Proceedings of the International Offshore and Polar Engineering Conference, 2000, Vol. 2, p54-59.
    [6] Claudio Marcio Silva Dantas, Marcos Queija de Siqueira, Gilberto Bruno Ellwanger, Ana Lucia F. Lima Torres and Marcio Martins Mourelle. A Frequency Domain Approach for Random Fatigue Analysis of Steel Catenary Risers at Brazil’s Deep Waters. Proceedings of the International Conference on Offshore Mechanics and Arctic Engineering– OMAE, 2004, Vol. 1, p199-209.
    [7]石山,冉志煌,漆春茂.海洋工程深水开发浮式系统的耦合计算方法[J].中国造船, 2005, 46(4): 47~51.
    [8] William A N, Demirbilek Z. Hydrodynamic Interactions in Floating Cylinder Arrays-I: Wave Scatering. Ocean Engeering, 1988, Vol 15, No 6, pp549~583.
    [9] Qguz Yilmaz. Hydrodynamic Interactions of Waves with Group of Truncated Vertical Cylinders. Journal of Waterway Port Coastal and Ocean Eng., 1999, Vol 124, No 5, pp272~279.
    [10]董艳秋.深海采油平台波浪载荷及响应[M].天津大学出版社,2005,pp192~202.
    [11] Stephen A. Hatton, Neil Willis. Steel Catenary Risers for Deepwater Environment[C]. Proceedings-Offshore Technology Conference. Houston, USA, OTC, 1998, OTC8607.
    [12] Egil Giertsen, Richard Verley and Knut Schroder. CARISIMA a Catenary Riser/Soil Interaction Model for Global Riser Analysis[C]. Proceedings of the International Conference on Offshore Mechanics and Arctic Engineering– OMAE, 2004, Vol. 1, pp633-640
    [13] Basim B. Mekha. New Frontiers in the Design of Steel Catenary Risers for Floating Production Systems[J]. Journal of Offshore Mechanics and Arctic Engineering, 2001, Vol 123: pp153-158
    [14] Hugh Howells. Advances in Steel Catenary Riser Design[R]. 2H Offshore Engineering Ltd, 1995.
    [15] R.Y. Edwards, R.Z.M. Filho, W.F. Hennessy, C.R. Campman, H. Bailon. Load Monitoring at the Touch Down Point of the First Steel Catenary Riser Installed in a Deepwater Moored Semi-submersible Platform[C]. Proceedings-Offshore Technology Conference. Houston, USA, OTC, 1999, 2: 295-303.
    [16] Ricardo Franciss and Elton Ribeiro. Analyses of a Large diameter Steel Lazy Wave Riser for Ultra Deepwater in Campos Basin. Proceedings of the International Conference on Offshore Mechanics and Arctic Engineering, 2004, Vol. 1, 355-361
    [17] K.M. Lund, P. Jensen, D. Karunakaran, K.H. Halse. A Steel Catenary Riser Concept for Statfjord C. Proceedings of the International Conference on Offshore Mechanics and Arctic Engineering. Lisbon, Portugal, OMAE, 1998, 1-9.
    [18] M.K. Nygard, A. Sele, K.M. Lund. Design of a 25.5-in Titanium Catenary Riser for the Asgard B Platform. Proceedings - Offshore Technology Conference, Houston, USA, 2000, 3: 343-354.
    [19] G. Chaudhury, J. Kennefick. Design, Testing and Installation of Steel Catenary Risers. Proceedings of Offshore Technology Conference, Houston, USA, 1999, 2(2): 339-346
    [20] G. Chaudhury, J. Kennefick. Design, Testing and Installation of Steel Catenary Risers. Proceedings of Offshore Technology Conference, Houston, USA, 1999, 2(2): 339-346.
    [21] C.T. Gore, El Paso and Basim B. Mekha. Common Sense Requirements (CSRs) for Steel Catenary Risers (SCRs). Proceedings– Offshore Technology Conference, 2002, OTC14153.
    [22] D.R. Korth, B.S.J. Chou and G.D. McCullough. Design and Implementation of the First Buoyed Steel Catenary Risers. Proceedings– Offshore Technology Conference, OTC, 2002, 1339-1357.
    [23] H. Howells. Analysing the Practicalities of Moving to Steel Catenary Risers in the Atlantic Frontier. H Offshore Engineering Limited Technology Report, January. 1996.
    [24] S.K. Patel, D. Kumar, B. Master, D. Karunakaran. Design of Steel Catenary Riser for Deepwater Fields in Indian Offshore - A Case Study. Proceedings of the International Conference on Offshore Mechanics and Arctic Engineering– OMAE, 2001, Vol. 2, p1-6.
    [25] C. A. Martins and E. Higashi. A Parametric Analysis of Steel Catenary Risers: Fatigue Behavior near the Top. Proceedings of the International Offshore and Polar Engineering Conference, 2000, Vol. 2, p54-59
    [26] B.J. Leira, E. Passano, D. Karunakaran, K.-A. Farnes. Analysis Guidelines and Application of a Riser-Soil Interaction Model Including Trench Effects. Proceedings of the International Conference on Offshore Mechanics and Arctic Engineering– OMAE, 2004, Vol. 23(1B): 955-962.
    [27] N.R.T. Willis and K.S. Thethi. Stride JIP: Steel Risers for Deepwater Environment– Progress Summary. OTC, 1999, Paper No 10974
    [28] C. Bridge, H. Howells, N. Toy, G. Parke and R. Woods. Full scale model test of a steel catenary riser. 2H Offshore Engineering Ltd Report
    [29] G. Moe, O. Arnisen. A Analytic Model for Static Analysis of Catenary Risers. Proceedings of the International Offshore and Polar Engineering Conference, 2001, Vol. 2, pp248-253.
    [30] Ana Lucia F. Lima Torres, M.M. Mourelle, Renato Marques C. da Silva. Fatigue Damage Verification of Steel Catenary Risers[C]. Proceedings of the International Conference on Offshore Mechanics and Arctic Engineering– OMAE, 2001, Vol. 1, pp749-759
    [31] B.B. Mekha. On the Wave and VIV Fatigue of Steel Catenary Risers connected to Floating Structures[C]. Proceedings of the International Conference on Offshore Mechanics and Arctic Engineering . Oslo, Norway, OMAE, 2002, 1: 57-63
    [32] S. F. Senra, B.P. Jacob, Ana Lucia F. L. Torres and Marcio M. Mourelle. Sensitivity Study on Fatigue Behavior of Steel Catenary Risers[C]. Proceedings of the International Offshore and Polar Engineering Conference. Kitakyushu, Japan, ISOPE, 2002, 12: 193-198
    [33] P.R. Hays. Steel Catenary Risers for Semi-submersible based Floating Production Systems[A]. Proceedings– Offshore Technology Conference[C]. Houston, USA, OTC, 1996, 4: 845-859
    [34] C.P. Pesce, J.A.P. Aranha, C.A. Martins, O.G.S. Ricardo, S. Silva. Dynamic curvature in catenary risers at the touch down point region: An experimental study and the analytical boundary-layer solution[J]. International Journal of Offshore and Polar Engineering, 1998, 8(4): 303-310.
    [35] C.P. Pesce, M.O. Pinto. First-Order Dynamic Variation of Curvature and Tension in Catenary Risers[A]. Proceedings of the International Offshore and Polar Engineering Conference[C]. Florence, Italy, ISOPE, 1996, 2: 163-174
    [36] Lauro Massao Yamada da Silveira, Clovis de Arruda Martins. A numerical method to solve the static problem of a catenary riser[A]. Proceedings of International Conference on Offshore Mechanics and Arctic Engineeing[C]. Vancouver, British Columbia, Canada, OMAE, 2004, 1: 693-702.
    [37] J.A.P. Aranha, C.A. Martins, C.P. Pesce. Analytical approximation for the dynamic bending moment at the touchdown point of a catenary riser[J]. International Journal of Offshore and Polar Engineering, 1997, 7(4): 293-300.
    [38] Douglas R Korth, Bob Shian J Choo, Gary D, Mc Cullough. Design and implementation of the first buoyed steel catenary risers [C]. //Proceedings Offshore Technology Conference. USA: OTC, 2002: 14152.
    [39] E.H. Phifer, Frans Kopp, R.C. Swanson, D.W. Allen, C.G. Langner. Design and installation of Auger steel catenary risers[A]. Proceedings-Offshore Technology Conference[C]. Houston, USA, OTC, 1994: 399-408.
    [40] A.C. Fernandes, M.M. Mourelle, O.B. Serta, S. da Silva, P.H.C.C. Parra. Hydrodynamic coefficients in the design of steel catenary risers[A]. Proceedings of the International Conference on Offshore Mechanics and Arctic Engineering[C]. Yokohama, Japan, ASME, 1997, 1(B): 271-278.
    [41] Luciano de A. Campos, C. A. Martins. Nonlinear dynamic response of a steel catenary riser at the touch-down point[A]. Proceedings of the International Offshore and Polar Engineering Conference[C]. Stavanger, Norway, ISOPE, 2001, 2: 234-238.
    [42] B. Bostrom, G. Svano, G. Eiksund, B.J. Leira, A. Bjorset. Response effects of riser-soil interaction modeling[A]. Proceedings of the International Conference on Offshore Mechanics and Arctic Engineering[C]. Lisbon, Portugal, ASME, 1998, OMAE98-3093.
    [43] C.P. Pesce, C.A. Martins. Riser-soil interaction: local dynamics at TDP and a discussion on the eigenvalue problem[A]. Proceedings of the International Conference on Offshore Mechanics and ArcticEngineering[C]. Vancouver, Canada, ASME, 2004, 23(1): 583-594
    [44] C.J. Wajnikonis, P.E. CEng. VIV Predictions of an SCR in Sheared Ocean Currents. Proceedings of the 2002 Engineering Technology Conference on Energy, 2002, Vol. 2/B, pp707-727.
    [45]候建军,东昉,石爱国,尹建川.锚泊状态下锚链作用力的计算方法.大连海事大学学报,2005,31(4):10-14
    [46]王林,石晓兵,陈平,罗平亚,周俊昌.海洋深水钻井锚链的动力特性探讨.西南石油大学学报,2004,26(5):24-27
    [47]郝春玲,滕斌.不均匀可拉伸单锚链系统的静力分析.中国海洋平台,2003,(4):18-22
    [48]聂孟喜,王旭升,王晓明,张琳.风、浪、流联合作用下系统系泊力的时域计算方法.清华大学学报(自然科学版),2004,44(9):1214-1217
    [49]肖越、王言英.浮体锚泊系统计算分析.大连理工大学学报,2005,45(5):682-686
    [50]付世晓,范菊,陈徐均,崔维成.考虑浮体弹性变形的锚泊系统分析方法.船舶力学,2004,8(2):47-54
    [51]郭海燕,傅强,娄敏.海洋输液立管涡激振动响应及其疲劳寿命研究.工程力学,2005,22(4): 220-224
    [52]程保荣,张卫国.带柔性接头的深海立管动力特性和非线性静力响应分析.工程力学,1997,14(2):102-107
    [53]谢彬、段梦兰、秦太验、孙政策、李杰.深水立管断裂力学及可靠性评估研究进展.石油学报,2004,95(3):95-100
    [54]宋儒鑫.深水开发中的海底管道和海洋立管.船舶工业技术经济信息,2003,218(8): 31-42
    [55]黄维平,李华军.深水开发的新型立管系统——钢悬链线立管(SCR)[J].中国海洋大学学报,2006(5): 775-780.
    [56] R S Glanville, J R Paulling, J E Halkyard, et al. Analysis of the Spar type floating drilling production and storage structure. Offshore Technology Conference, 1991, 916701, pp57-68.
    [57] J.E Halkyard. Status of Spar platform for Deepwater Production Systems. Proceeding of the Sixth International Offshore and Polar Engineering Conference, Vol.1, P262-272, 1996
    [58] B B Mekha, D C Weggel, C P Johnson, J M Roesset. Effect of Second Diffraction Force on the Global Response of Spars. Proceedings of the Sixth International Offshore and Polar Engineering Conference, 1996(1), pp273-280.
    [59] Z.Ran, M.H. Kim. Nonlinear coupled response of a tethered Spar Platform in waves. Proceedings of the Sixth International Offshore and Polar Engineering Conference,Vol.l,P281-288,1996.
    [60] Z Ran, M H Kim, W Zheng. Coupled dynamic analysis of a moored Spar in random waves and currents(Time-domain vs. Frequency-domain Analysis) . Jounal of Offshore Mechanics and Arctic Engineering, 1999,121:194~200
    [61] XiaoHong Chen. Studies on dynamic interaction between deep-water floating structures and their mooring/tendon system. [博士论文], Ocean Engineering Program, Civil Engineering Department, Texas A&M University, College Station, Texas, 2002.
    [62] Xiaohong Chen, Jun Zhang, Wei Ma.“On dynamic coupling effects between a spar and its mooring lines”Ocean Engineering, 2001, (28):863~887.
    [63] Kim, M.H., Ran, Z., Zheng, W. Hull/mooring coupled dynamic analysis of a truss spar in time domain. International Jounal of Offshore and Polar Engineering 11, 2001, pp.42~54.
    [64] A.K. Agarwal, A.K. Jain. Nonlinear coupled dynamic response of offshore Spar platforms under regular sea waves. Ocean Engineering, 2003, (30):517~551.
    [65] I Anam, J M Roset, M Hon. Effect of nonlinear wave kinematics on dynamic response of Spars. Journal of Engineering Mechanics, September, 2002, pp:925~934.
    [66] K Sadeghi, A Incecik, M J Downie. Response analysis of a Truss Spar in the frequency domain. Journal of Engineering Mechanics, September, 2002, pp925~934.
    [67] Longbin Tao, K Y Lim, K Thiagarajan. Heave response of classic Spar with variable geometry. Transactions of the ASME, 2004.2, pp90~95.
    [68] Spanos Pol D., Ghosh Rupak, et al. Coupled Analysis of a Spar Structure: Monte Carlo and Statistical Linearization Solutions[J]. Journal of Offshore Mechanics and Arctic Engineering, 2005, Vol 127: 11~16.
    [69] William A.N., Demirbilek Z. Hydrodynamic interactions in floating cylinder array-I. wave scattering . Ocean Engineering, 1988,15(6):549~583.
    [70]胡志敏,董艳秋,张建民.张力腿平台波浪载荷计算.中国海洋平台,2002,17(3):6~11.
    [71]李玉成,滕斌.波浪对海上建筑物的作用.北京:海洋出版社,2002.
    [72] A.K.Agawral, A.K.Jain. Dynamic behvaior of offshore Spar Platforms under regular sea wvaes. Ocean Engineering, 2003 Vol(30) : 487~516.
    [73] A.K.Agawral, A.K.Jain. Nonlinear Coupled Dynamic Response of offshore Spar Platforrms under regular sea waves. Ocean Engineering, 2003 Vol(30): 517~551.
    [74] Anthi Miliou, Spencer J., et al. Fluid Dynamic Loading on Curved Riser Pipes [J]. Journal of Offshore Mechanics and Arctic Engineering, 2003, 125 (3) :176:182.
    [75] Roderick Y., Edwards Jr., Hennessy, Craig R., Campman, and Hector Bailon. Load Monitoring at the Touch Down Point of the First Steel Catenary Riser Installed in a Deepwater Moored Semi-submersible Platform [C]. Procedings of Offshore Technology Conference, USA:OTC, 1999,Vol 2:295:303.
    [76] Kjell Morisbak Lund, Petter Jensen, Daniel Karunakaran, et al. A Steel Catenary Riser Concept for Statjord C [C]. Proceedings of the International Conference on Offshore Mechanices and Arctic Engineering.Portugal: ASME, 1998:98-1361.
    [77] Gautam Chaudhury, Jonathan Kennefick. Design, Testing and Installation of Steel Catenary Riser [C]. Proceedings of Offshore Technology Conference. USA: OTC, 2(2):339-346.
    [78] Ricky Theti. Soil Interaction Effects on Simply Catenary Riser Response [J]. Pipe @ Pipeline Interational, 2001, 46(3): 15-24.
    [78] Daniel Karunakaran, Kjell M, Lund, Nils T. Nordsve. Steel Catenary Riser Configurations for North Sea Field Developments[C]. Proceedings-Offshore Technology Conference, 1999, (2): 331-338.
    [80] Ghiath Manour. The Impact of the Second Order Vessel Motion on the Fatigue Life of Steel Catenary Risers [C]. Proceedings of the International Conference on Offshore Mechanics and Arctic Engineering. Canada: ASME, 2004, Vol 1: 1177-1180.
    [81] Hugh Howells. Steel Catenary Risers West of Shetlands. The Journal of Offshore Technology. 1996, 4(2): 6-7.
    [82] Christopher Bridge, Katherine Laver, et al. Steel Catenary Riser Touchdown Point Vertical Interaction Model [C]. Offshore Technology Conference. Houston, USA: OTC, 2004:16628.
    [83] H.H. Wang, Y.D. Chin. Challenges in Deepwater Riser System Design and Analysis. Pipes and Pipelines International, 2001, 46(3): 5-14
    [84] Carl G Langner, Bharat C Shah. Code Conflicts for High Pressure Flowlines and Steel Catenary Risers [C]. Proceedings– Offshore Technology Conference. USA: OTC 1997, Vol 4: 21-34.
    [85] Jack Pollack, Kent B Davies, David C Riggs. A Feasibility Study for Steel Catenary Risers Connected to a Spread-moored Monohull in a Field Offshore Brazil [C]. Proceedings of the International Conference on Offshore Mechanics and Arctic Engineering. Mexico: ASME, 2003, Vol 12: 771-780.
    [86]竺艳蓉.海洋工程波浪力学[M].天津大学出版社, 1991.
    [87] Love, A.E.H.. A Treatise on the Mathematical Theory of Elasticity. 4th Edition, Dover Publications, New York, 1944.
    [88] Nordgren, R.P. On computation of the motion of elastic rods. ASME Journal of Applied Mechanics, 1974, September, 777-780.
    [89] Garrett, D.L.. Dynamic analysis of slender rods. Journal of Energy Resources Technology, 1982, Transaction of ASME 104, 302-307.
    [90] Paulling, J.R., Webster, W.C. A consistent large-amplitude analysis of the coupled response of a TLP and tendon system. Proceedings of Offshore Mechanics and Arctic Engineering (OMAE) , 1986, Tokyo, Japan, Vol.3, pp. 126-133.
    [91] Ma, W., Webster, W.C. An Analytical Approach to cable Dynamics: Theory and User Manual. 1994, SEA GRANT PROJECT R/OE-26.
    [92] Lindahl, L., Sj?berg, A.. Dynamic analysis of mooring cables. The Second International Symposium on Ocean Engineering and Ship and Handling, Gothenburg, Sweden, 1983, pp281-319.
    [93]张智. Spar平台系泊系统计算及波浪载荷研究. [硕士论文] .天津大学,2005.
    [94]张帆,杨建民,李润培. Spar平台的发展趋势及其关键技术[J].中国海洋平台,2005,(2).
    [95]郝春玲,滕斌.不均匀可拉伸单锚链系统的静力分析.大连理工大学,大连116024.
    [96]聂武,刘玉秋.海洋工程结构动力分析.哈尔滨:哈尔滨工程大学出版社,2002.pp:128-139.
    [97] Lindahl, L., Sj?berg, A.. Dynamic analysis of mooring cables. The Second International Symposium on Ocean Engineering and Ship and Handling. Gothenburg, Sweden, ,1983, pp. 281-319.
    [98]张海燕,赵文斌,唐友刚.深水Spar平台主体波浪载荷计算.中国海洋大学学报,2008,38(3): 508-512.
    [99] Orcina, 2000. Visual Orcaflex User Manual, Version 7.4c. Orcina Limited, Daltongate, U.K.
    [100]郭斌,唐文勇,张圣坤. Truss Spar平台桁架的疲劳分析方法.中国海洋平台, 2006, 21(4): 36~41.
    [101] Nigel Alderton, Ricky Thethi. Choosing the most appropriate rigid catenary riser design for various deepwater and harsh environments. Advance in Riser System & Subsea Technologies for Deepwater Euroforum, Aberdeen Thistle Hotel, Aberdeen, May 1998.
    [102] Christopher Bridge, Neil Willis. Steel Catenary Risers– Results and Conclusions from Large Scale Simulations of seabed interaction. 14th Annual Conference Deep Offshore Technology, 2002.
    [103] 2H Offshore Engineering Ltd ?“STRIDE JIP ? Pull-out Resistance of a Pipe in a Clay Soil”, Report No.1500-RPT-006, Rev 02, (June 2002).

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700