乙醇发酵循环气提耦合工艺的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
乙醇工业在国民经济中占有重要的地位。随着世界石油储量的锐减和我国环境保护工作的加强,车用燃料乙醇需求逐年增加。世界上90%的乙醇都是由发酵生成,发酵法生产乙醇的过程中,产物乙醇会对微生物的生长产生抑制,在线分离乙醇是消除产物抑制最有效的途径之一,可以提高发酵效率,同时简化分离和纯化工艺。为改进传统的乙醇发酵工艺,本文系统地研究了酿酒酵母、马克思克鲁维酵母生产乙醇的发酵特性,将两个酵母菌混合发酵,结合循环气提法在线分离产物,在前人研究的基础上改进了乙醇发酵循环气提耦合工艺,增加了低温循环水浴槽,使得提取产物乙醇的回流装置处于低温状态,克服了传统气提酒精发酵工艺中的不足,从化工分离与发酵工程两方面着手强化其单元操作特性,进一步提高气提在线分离乙醇效率,同时降低乙醇提取工艺中的能耗及废液量,并最终降低乙醇的生产成本。研究表明该工艺使得乙醇发酵水平得到了明显的提高。
     本文首先通过对酿酒酵母(Saccharomices cerevisiae)、马克思克鲁维酵母(Kluyveromyces marxianus)的发酵特性的研究,结合两个菌种的发酵特点,提出了乙醇混合菌发酵,通过研究混合菌发酵的接种方式、通气条件、流加补料策略提高乙醇生产得率,并得出混合菌批式发酵的基本条件:自然pH条件下,混合培养,发酵温度为35℃,通气量为0.5vvm进行发酵。
     其次,本文在乙醇批式发酵的基础上,对CO_2循环气提在线分离乙醇发酵工艺进行了考察,针对醇水溶液体系中不同循环气量、气提初始乙醇浓度以及低温循环水浴槽的温度对气提效率的影响进行了考察,得出循环气量、低温循环水浴槽的温度分别与乙醇移出速率成线性关系,而乙醇初始浓度与乙醇移出效率成抛物线性关系;采用低温收集回流乙醇,可得到浓度高达400 g?L-1的乙醇,其分离效果明显优于常温收集;结合实际发酵中最优发酵条件,得到乙醇发酵-耦合循环气提工艺的最优条件为:在乙醇浓度达到70 g?L-1左右时开始气提,气提循环气量为0.5vvm,低温水浴槽温度控制为2℃,该条件下,既能保证较高的乙醇生产强度,又能使乙醇生产的能耗为最低,从而降低乙醇的生产成本。
     将该循环气提工艺应用至真实乙醇发酵体系中,耦合混合菌发酵,结果表明可将发酵过程中的乙醇浓度控制在35 g·L-1左右,从而有效的消除产物抑制,酵母菌长期保持较高活力,发酵时间可延长至360 h;同时,乙醇对糖的得率为0.44 g·g-1,为流加补料批式发酵的1.22倍,乙醇的生产强度为4.32 g·L-1h-1,为流加补料批式发酵的2.29倍。
The ethanol industry accounts for important role in national economy. With the increasing crisis of energy source and strengthening power of environmental protection, the demands of fuel ethanol consumption have grown very quickly in recent years. Ninety percent of the whole ethanol production in the world is generated by fermentation, but a main problem in fermentation is the product inhibition effect by the ethanol metabolized from the yeast in the process. One of the most effective method for alleviating product inhibition is in-situ ethanol separation, which can not only improve the efficiency of fermentation, but simplify the process of separation and purification. For improving the traditional ethanol fermentation technics of current alcohol industry of our country, the characteristics of Saccharomices cerevisiae and Kluyveromyces marxianus were systematically studied in this thesis, then the mixed fermentation were carried out by two yeast strains. Combined with cycled gas stripping to separate products in situ and the previous studies, the cycled gas stripping equipment were improved—a condenser was installed, so that the circumfluence equipment was all under a low temperature environment, the aim is to improve the disadvantages in the traditional fermentation with gas stripping. The study is mainly based on the characteristics of chemical engineering separation, and fermentation engineering to reduce the energy cost for ethanol distillation and the amount of the liquor wastes, the final goal is to decrease the cost. The results suggested that the new process could greatly improve the ethanol fermentation efficiency.
     Firstly, the characteristics of S. cerevisiae and K. marxianus, which were employed in all experiments, were studied, and mixed-yeasts fermentation was suggested based on the results. The ethanol production rate was expected to be improved by investigation of the mixed fermentation inoculation mode, air flow flux and fed-batch strategies The basal conditions of mixed-yeasts ethanol fermentation were obtained as: natural pH conditions, mixed cultivation, 35℃of fermentation temperature and 0.5 vvm of airflow flux for fermentation.
     Secondly, CO_2 cycle gas-stripping for separation of ethanol in situ was studied in ethanol batch or fed-batch fermentation. In this process, CO_2 produced in ethanol fermentation was circulated between fermentor and separation instrument. From the results in a gas stripping experiment with ethanol-water solution as medium, we concluded that the recycle rate of CO_2 or the temperature in the condenser was linear correlation to the efficiency of gas stripping respectively, while the concentration of ethanol in fermentor presented as a parabolic curve. In the condenser for collection of returning ethanol at low-temperature, the concentration of ethanol can reach to 400 g·L-1, which is significantly higher than that at normal temperature. Combined above results, the optimal conditions for gas stripping is: 70g·L-1 of ethanol concentration when gas-stripping started, the gas flow for the cycle at 0.5vvm, the condenser temperature at 2℃, if all the conditions were met, it could be guaranteed a higher ethanol productivity and a minimum energy consumption, thereby reducing the cost in ethanol production.
     The results of simulated gas stripping experiments indicated that when collecting ethanol at low temperature, the ethanol concentration in the condenser can reach to 400g·L-1. In ethanol fermentation with gas stripping, the ethanol productivity was 4.32g·L-1 h-1, which was 2.29 times to that in the fed-batch fermentation without gas stripping.
引文
[1]张继泉,王瑞明,孙玉英.利用木质纤维素生产燃料酒精的研究进展[J].酿酒科技, 2003,(1): 39~41
    [2] Christoph B,Licht F. World fuel ethanol-analysis and outlook[R]. Ministry of Economy Trade and Industry (METI) (Japan), August 25, 2003
    [3]叶振华.无水酒精汽车混合燃料的现状与发展[J].化工进展, 2001, (1): 4~8
    [4] Specifications for anhydrous fuel ethanol ("AEAC") and hydrous fuel ethanol ("AEHC") [S],Technical Regulation DNC - 01/91, Brazil National Department of Fuels
    [5]李永平.乙醇燃料的特点及使用性能分析[J].技术与研究城市车辆,2007, (7):55~57
    [6]张晓阳.国际燃料乙醇工业发展概况[J].玉米科学,2003,(专刊) : 88~91
    [7]张爱华.燃料乙醇是我国发展替代燃料的趋势[J].科学之友,2007, (8):33~34
    [8]陈涛.燃料乙醇行业前景分析[R]. LouisDreyfus(北京)贸易有限公司
    [9]陈良.国内外乙醇工业及其生产技术新进展[J].江苏化工, 1996, (3):27~30
    [10]路明.巴西甘蔗作物的燃料酒精转化和对我国发展燃料酒精的启示[J].作物杂志Crops, 2004,(5):1~4
    [11] Arnaldo Vieira de Carvalho. The Brazilian ethanol experiences fuel as fuel for transportation[R]. Biomass Energy Workshop and Exhibition, The World Bank, 2003, 2.26
    [12]王威.再生能源战略的成功典范之巴西乙醇发展战略[J].国土资源情报, 2007,(7):36~39
    [13] Jose G., Suani T,Plinio M. Ethanol learning curve—the Brazilian experience[J]. Biomass and Bioenergy, 2004,(26):301~304
    [14] Bryan M, Craf K,Ethanol Plant Development Hand book[M]. RFA,NCGA and International Bio-Synthetics. 1992
    [15] Conway R. USDA Biofuels Program[M]. Prec. The International Symposium Alcohol Fuels,1993
    [16] Scenery in energy- ethanol industry outlook 2004[R]. RFA-Renewable Fuel Association. 2004, 2
    [17] Ethanol had a good year (Renewable Fuels Association)[R]. Industrial Bioprocessing, 2003,25(3): 2
    [18] Christoph B. World fuel ethanol--analysis and outlook, http://www.fo-licht.com
    [19] Per Carstedt. Systems perspective on the global development for bioethanol[R]. BioAlcohol Fuel Foundation, 2002.4.12
    [20] Selwyn J. Ethanol in Australia[R],Queensland Independent Senate Team, 2002.9.25
    [21]王异静,秦人伟.酒精工业技术资料要览[J].北京:中国食品发酵工业研究院,2002:29~46
    [22]高露,杨大鹏.九省汽车试用“乙醇汽油”[N].经济参考报, 2004.2.25
    [23]章克昌,吴佩琮.酒精工业手册[M].北京:中国轻工业出版社, 2001
    [24]秦人伟.发酵工业废水处理[M].北京:化学工业出版社, 1998:11~13
    [25]华南工学院等编.发酵工程与设备[M].轻工业出版社, 1981
    [26]秦庆军,曹鸿飞,王宇新.发酵法生产乙醇研究进展[J].化工进展, 1998, 5:31~35
    [27] Amin G, Doelle H.W. Production of high ethanol concentrations from glucose using Zymomonas mobilis entapped in a Vertical Rotating Immobilized Cell Reactor[J]. Enzyme Microb.Technol, 1990,Vol.12 (6): 443~446
    [28] Swings J, DeLey J. The biology of Zymomonas.Bacteriol[M]. Rev:1977, 41:1~46
    [29] Kim C, Abidin Z, Ngee C., Rhee S. Pilot-scale ethanol fermentation by Zymomonas mobilis from simultaneously saccharified sago[J]. Bioresource Technology, 1992, Vol.40:1~6
    [30] Luong J.H.T. Kinetics of ethanol inbibition in alcohol fermentation[J]. Biotechnology and bioengineering, 1985, XXVⅡ: 280~285
    [31] Novak M., Strehalano P., Moreno M., Goma G.. Alcoholic fermentation:on the tihibitory effect of ethanol, Biotechnology and bioengineering[J]. 1981, XXIII: 201~211
    [32] Walsh P.K., Liu C.P., Findley M.E., Liapis A.I., Siehr D.J. Ethanol Separation from Water in a Two-stage Adsorption Process [J]. Biotechnol. Bioeng. Symp.1983. 13: 629~637
    [33]尚龙安,凌海燕,范代娣.固定化酵母乙醇萃取发酵研究[J].化学工程, 1997, 6: 111
    [34]范立梅.用大网格树脂从发酵液中吸附分离乙醇[J]. Journal of Zhejiang Agricultural University, 1999, 25(1): 59~61
    [35] Wang X.L, Tsurut, Togoh M, Nakao S. Evaluation of pore structure and electrical properties of nanofiltration membrance[J], J Chem Eng Japan, 1995, 28: 186
    [36] Rautenbach R, Janisch I. Reverse osmosis for the separation of organics from water solutions[J]. Chem Eng Process, 1998, 23: 67
    [37]李春艳,方富林,夏海平,丁马太,蓝伟光.膜分离法提纯2-酮基-L-古龙酸的研究[J].厦门大学学报, 2001, 40(4): 903~907
    [38]赵红,胡冬琴,聂实践,罗薇,郑忠,雅昊.中空纤维超滤膜在多核苷酸磷酸化酶纯化中的应用[J].膜科学与技术, 1995, 15(2): 27
    [39]徐飞,李桂水,楼文君.膜分离技术在发酵液提取浓缩中的应用[J].过滤与分离, 2006, 16(2): 26~28
    [40]刘荣娥.膜分离技术[M].北京:化学工业出版社, 1998. 21
    [41] Matsumun M, Mark H, Elimination of ethanol inhibition by pervaporation[J]. Biotechnol Bioeng, 1986, 32: 534
    [42] Matson S. L, Quinn J. A. Membrane reactors in bioprocessing[J]. Ann NY Acad Sci, 1986, 469: 152
    [43]杨斌,吕燕萍,高孔荣,邓子新. PS-Ti超滤膜反应器进行酶水解预处理的蔗渣和酶回收的研究[J].膜科学与技术, 1998, 18(30):15
    [44] Cheryan M, Mehai A M, Membrane separation in Biotechanology[M]. New York: Marcel Dekker, 1986,255
    [45]杨斌,吕燕萍,高孔荣.乙醇连续发酵与膜超滤耦合过程的研究[J].华南理工大学学报,1995, (4): 8
    [46] Garcia A, Jones P. Use of candid rugose lipase immobilized in a spiral wound membrane reactor for the hydrolysis of milk fat[J]. Enzyme Microb Technol, 1992, 14: 535
    [47] Melzoch K., Rychtera M., Markvichov N S. Application of a membrane recycle bioreactor for Continuous Ethanol Production[J]. Applied Microbiology & Biotechnology, 1991, 34(4): 469~472
    [48]吴国斌,戚俊清,吴山东.膜蒸馏分离技术研究进展[J],化工装备技术, 2006, 27(1): 21~24
    [49]王湛.膜分离技术基础[M].北京:化学工业出版社, 2000: 256
    [50]秦庆军,贾鸿飞,王宇新.乙醇气提发酵与载气蒸馏耦合过程实验[J].过程工程学报, 2002, 2: 11~14
    [51] Cysewski GR, Wilke CR. Rapid ethanol fermentation using vacuum and cell recycle[R], Biotechnol Bioeng, 1977, 19(11):25~43
    [1]张丽君.乙醇发酵-循环气提耦合工艺的研究[D].长安大学:长安大学, 2007.7
    [2]肖炘,生物过程中的分立、耦合、并行机制及其在纤维素制酒精中的应用[C],博士论文, 1999, 12
    [3]徐浩.工业微生物学基础及其应用[M].科学出版社, 1991:66
    [4]朱浩里.气提、真空耦合发酵乙醇研究[D].北京:清华大学, 2002
    [5]谢希贤,武改红,陈宁.利巴韦林混合菌发酵工艺条件优化[J].现代化工,2007,27(S2):303~305
    [6]尚龙安,凌海燕,范代娣.固定化酵母乙醇萃取发酵研究[J].化学工程, 1997, 6: 111
    [7]张丽君,程可可,张建安,刘建.乙醇发酵与气提分离耦合工艺的研究[C].第三届全国化学工程与生物化工年会, 2006: 325~356
    [8] Qian Bozhang, The fullness Actuality and Trendency of Fuel Ethanol[J]. Study and Discuss, 2006, 6(6):16~18
    [9] Walsh P K, Liu C P, Findley M E, Liapis,A.I., Siehr,D.J. Ethanol Separation from Water in a Two-stage Adsorption Process [J]. Biotechnol. Bioeng. Symp., 1983, 13:629~637
    [10]沈文豪.气提法从发酵液中分离醇的模拟实验[J].上海大学学报(自然科学版), 1996, 2(2):212~218
    [11] Taylor F, Michael J. K, Goldberg N, James C. Continuous Fermentation and Stripping of Ethanol[J]. Biotechnol. Prog., 1995, 1:963~968
    [12] Chang H P, Qing H G, Simultaneous Fermentation and Separation in the Ethanol and ABE Fermentation[J]. Separation and Purification Methods, 1992, 21(2):127~174
    [13]岑沛霖,顾兵,王衍平,郑一舟. CO2循环、活性炭吸附酒精发酵的研究[J].化学反应工程与工艺, 1988, 4(1):30~35
    [14] Taylor F, Kurantz J M, Goldberg N, James C. Control of Packed Column Fouling in the Continuous Fermentation and Stripping of Ethanol[J], Biotechnol. Bioeng., 1996, 51:33~39
    [15]张君,刘红娟,刘德华.不同类型载气对乙醇气提发酵的影响[J].过程工程学报, 2005, 5:349~352

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700