正交混沌调幅通信机制的构建及关键技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
混沌保密通信是非线性动力学与通信技术的交叉学科,利用混沌的非线性以及对初值和系统参数的敏感性等特性,使得被调制的信息很难被截获和破译,从而提高通信系统的保密性。与传统的信息加密不同的是,目前开发的混沌保密通信系统不需要单独的传输密匙(公匙),而是将混沌信号作为传输信息的一部分进行传输,从一定程度上降低了加密系统的复杂性,可靠性大大提高,然而引进的混沌信号又减小了信息被破译的可能性。随着混沌研究的深入,越来越多的混沌保密通信系统被研发出来,比如混沌键控(CSK),混沌差分调制(DCSK),频域混沌差分调制(FM-DCSK),以及最近被提出来的正交混沌差分键控(QCSK)等等。
     本论文以正交混沌调幅通信机制的构建与分析为主题,从以下4个方面进行了研究和探讨:
     一、构建了正交混沌调幅通信机制。1)设计了正交混沌信号发生器,分析了正交混沌信号的特性;2)分忻目前最新的混沌调制通信系统结构——正交混沌键控系统(QCSK,quadrature chaos shift key),指出由于其结构的原因导致有用信息的传输效率较低,且接收端的解调误码率较高;3)以QCSK系统结构为蓝本,构建出一种基于混沌载波的正交调幅机制(QCAM,quadrature chaos amplitude modulation),通过分析其传输有用信息的效率是QCSK的2倍,由于在接收端的解调方式使用的载波同步相关检测,使得解调误码率较QCSK有所提高;4)分析高斯白噪声信道以及Rayleigh衰落信道对QCAM系统的影响。
     二、改进了局部投影算法,并对QCAM传输信号中的噪声进行抑制。1)分析局部投影算法的原理;2)针对原始局部投影算法中Q值的选取问题提出了一种改进的局部投影算法;3)将改进前后的局部投影算法应用到QCAM系统传输信号的噪声抑制中,抑制后的接收信号解调后的系统误码率性能有所改善,且改进后的局部投影算法改善QCAM系统误码率的效果比原算法明显。
     三、设计了QCAM通信系统的同步方案。1)分析本论文所利用的第2类混沌系统同步的充分条件;2)提出一种基于控制反馈的混沌系统网同步方案,该方案不仅使得耦合系统能够在很短的时间内达到同步,而且稳定可靠,仿真结果表明耦合混沌系统初始值的敏感性变弱;3)分析取模同步的原始模型的结构原理;4)根据QCAM系统结构的特点,结合原始取模变换方案改进出一种适用于QCAM系统的同步方案,并从误差分析和保密性两个方面对改进后的方案进行分析。
     四、研究了QCAM系统的信道盲均衡算法。1)介绍盲均衡算法的原理及其数学模型;2)研究基于粒子滤波(PF,Particle filter)算法的QCAM信道盲均衡,能较好的估计QCAM系统中经过混沌正交调制后信号的统计特性,仿真结果表明,该算法能够很好的解调有用信息;3)研究基于UKF算法(UKF,Unscented Kalman Filter)的QCAM信道盲均衡,通过对4个不同信道系数的衰弱信道进行800次的迭代后表明,盲均衡后的信道系数能够非常紧密的跟踪真实值。
The chaos security communication was an interdisciplinary study betweened non-linear dynamics and communication, which used chaos non-linear characteristic and sensitive of the starting value and system parameters. As a result, it caused the information which was modulated very difficult to intercept and break, enhancemented communications system security. The most difference between the chaos communication and traditional information encryption was that the chaos security communication carried on the chaos signal as a part of transmission informations, thus reduced system complexity and enhanced reliability. Along with chaos communication research, more and more chaos security communication systems were researched and developed, such as the chaos shift key(CSK), the chaos difference shift key(DCSK), the frequency modulation chaos difference shift key(FM-DCSK), the quadrature chaos shift key(QCSK) which was raised recently and so on.
     This dissertation mainly expatiates on the analysis and design of quadrature chaos amplitude modulation scheme from the four aspects demonstrated as follows:
     Ⅰ. Designed the frame of quadrature chaos amplitude modulation communication system. 1) Quadrature chaos signal generator was designed and quadrature chaos signal performance was analysed. 2) The latest structure of chaos modulation communication system—quadrature chaos shift key (QCSK) was analyzed. Meanwhile, lower transmission efficiency of useful information and higher demodulated bit error rate (BER) at receiver resulted from its structure were emphasized. 3) Originated from QCSK system frame, a kind of quadrature chaos amplitude modulation (QCAM) system based on chaos carrier was carried out. Analysed the fact that transmission efficiency of useful information on it doubles QCSK, and because of the use of correlation detection at receiver higher demodulated bit error rate (BER) than QCSK was achieved. 4) Influence to QCAM system from Gaussian white noise channel and Rayleigh fading channel was analyzed.
     Ⅱ. Restrained noise infection to QCAM transmitted signal and improved Local Projection Algorithm'sprinciple. 1) Analyzed Local Projection Algorithm principle. 2) Proposed one kind of Improvement Local Projection Algorithm by investigating how to choose the Q value in original Local Projection Algorithm. 3) Applied the original and enhanced Local Projection Algorithms to the noise restraint in QCAM system transmission. It's clear that the demodulated signal bit error rate became negligible compared with original ones. Furthermore, the improvement Local Projection Algorithm can improve QCAM system performance evidently.
     Ⅲ. Designed one kind of QCAM communication system synchronization scheme. 1) Analyzed the second kind of chaos system synchronized sufficient condition used in this paper. 2) Proposed one kind of chaos system synchronization scheme based on control and feedback mechanism.This scheme not only make coupled system enter into synchronization quickly but also keep the system stable and reliable. The simulation result indicates that the sensibility of coupled chaotic system initial value became weak. 3) Analysed the structure and principle of mold synchronization primitive model. 4) Designed one kind of synchronization scheme that can be consistent with the structure characteristics of QCAM system and primitive mold transform scheme.Discussed the enhanced algorithm from the aspects of error analysis and privacy protection.
     Ⅳ. Research into the blind channel Equalization Algorithm in QCAM system. 1) Introduce the principle as well as the math model. 2) Investigate the blind channel QCAM system based on Particle filter (PF) Algorithm with the ability to estimate signal's statistical characteristics after chaos quadrature chaos modulation in QCAM system. Simulation result indicates that this algorithm can demodulate useful information well. 3) Investigate blind channel of QCAM system based on unscented kalman filter (UKF) and 800 times of iterative calculation in a fading channel with four different channel coefficients indicate that the channel coefficient after blind equalization can trace the true value closely.
引文
[1]H.Dedieu,M.P.Kennedy,M.Hasler.Chaos shift keying:modulation and demodulation of a chaotic carrier using self-synchronizing Chua's circuit.IEEE Trans.Circuits Syst.Ⅱ,1993,40:634-642P
    [2]M.Hasler,T.Schimming.Chaos communication over noisy channels.Int.J.Bifurc.Chaos,2000,10:719-735P
    [3]K.Abed-Meraim,W.Qiu,Y.Hua.Blind system identification.Proc.IEEE,1997,85:1310-1322P
    [4]L.Tong,G.Xu,T.Kailath.Blind identification and equalization based on second order statistics:A time domain approach.IEEE Trans.Inform.Theory,1994,40:340-349P
    [5]K.Abed-Meraim,E.Moulines,P.Loubaton.Prediction error method for second order blind identification.IEEE Trans.Signal Processing,1997,43:694-704P
    [6]J.K.Tugnait.Blind estimation of digital communication channel impulse response.IEEE Trans.Commun.,1994,42:1606-1616P
    [7]P.A.Nelson,F.Orduna-Bustamante,H.Hamada.Inverse filter design and equalization zones in multichannel sound reproduction.IEEE Trans.Speech Audio Processing,1995,3:185-192P
    [8]A.Kumar,S.K.Mullick.Attractor dimension,entropy and modeling of speech time series.Electron.Lett.,1990,26(21):1790-1791P
    [9]F.Takens.Detecting strange attractor in turbulence,in Dynamical Systems and Turbulence,New York:Springer-Verlag,1981,366-381P
    [10]A.Abel,M.G(o|¨)tz,W.Schwarz.Statistical analysis of chaotic communication schemes,in Proc.ISCAS,Monterey,CA,1998,4:465-468P
    [11]F.Mitschke.Acausal filters for chaotic signals.Phys.Rev.A,1990,41(2):1169-1171P
    [12]吕金虎,陆君安,陈士华.混沌时间序列分析及其应用.武汉大学出版 社,2002
    [13]F.C.M.Lau,C.K.Tse.Chaos-Based Digital Communication Systems.Heidelberg,Germany:Springer-Verlag,2003
    [14]T.Yang,L.O.Chua.Chaotic digital code-division multiple access(CDMA)communication systems.Int.J.Bifurc.Chaos,1997,7(12):2789-2805P
    [15]G.Mazzini,G.Setti,R.Rovatti.Chaotic complex spreading sequences for asynchronous DS-CDMA.Part Ⅰ:system modeling and results.IEEE Trans.Circuits Syst.I,1997,44:937-947P
    [16]G.Mazzini,G.Setti,R.Rovatti.Chaotic complex spreading sequences for asynchronous DS-CDMA-part Ⅱ:some theoretical performance bounds.IEEE Trans.Circuits Syst.I,1998,45:496-506P
    [17]G.Kolumbán,M.P.Kennedy,G.Kis.Multilevel differential chaos shift keying,in Proc.5th Int.Specialist Workshop on Nonlinear Dynamics of Electronics Systems(NDES'97),Moscow,Russia,1997,191-196P
    [18]Z.Jáko,G.Kis,G.Kolumbán.Multiple access capability of the FM-DCSK chaotic communications system,in Proc.8th Int.Specialist Workshop on Nonlinear Dynamics of Electronics Systems(NDES'2000),Cantania,Italy,2000,52-55P
    [19]L.S.Tsimring,A.R.Volkovskii,S.C.Young,N.F.Rulkov.Multi-user communication using chaotic frequency modulation,in Proc.Int.Symp.Nonlinear Theory and Its Applications(NOLTA'01),Miyagi,Japan,2001,561-564P
    [20]F.C.M.Lau,M.M.Yip,C.K.Tse,S.F.Hau.A multiple-access technique for differential chaos shift keying.IEEE Trans.Circuits Syst.I,2002,49:96-104P
    [21]W.M.Tam,F.C.M.Lau,C.K.Tse,M.M.Yip.An approach to calculating the bit-error rates of a coherent chaos-shift-keying digital conmunication system tinder a noisy multiuser environment.IEEE Trans.Circuits Syst.I,2002.49:210-223P
    [22]U.Parlitz,L.Kocarev.Using surrogate data analysis for unmasking chaos communication systems. Int. J. Bifur. Chaos, 1997, 7(3): 407-413P
    [23] H. Leung, T. Lo. Chaotic radar signal processing over the sea. IEEE J.Oceanic Eng., 1993, 18: 287-295P
    [24] O. G. Barbashov, A. L. Fradkov, O. G. Maleev, N. A. Romashov, D. A.Yushmanov. On the improvements of speaker-independent isolated word recognition using chaotic model. in Proc. 1st Int. Conf. on Control of Oscillations and Chaos, 1997, 1: 142-143P
    [25] S. H. Isabelle, A. V. Oppenheim, G. W. Wornell. Effects of convolution on chaotic signals, in Proc. 1992 ICASSP, 1992, IV: 133-136P
    [26] Cuomo K M, Oppenheim A V. Chaotic signals and systems for communications[A]. Proceedings of the International Conference on Acoustics,Speech,and Signal Processing, 1993,3:137-140P
    [27] Farmer J D, Sidorowich J J. Optimal shadowing and noise reduction[J].Physical D,1991(47):373-392P
    [28] Hloger K, Thomas S. Nonlinear time series analysis[M]. Cambridge:Cambridge University Press,2003
    [29] Stephen M. Hammel. A noise reduction method for chaotic systems. Physics Letters A, 1990,148:421-428P
    [30] Dedieu H, Ogorzalek M J. Using nonlinear dynamics to improve the noise performance of chaos communication systems[A]. Intemational Conference on Electronics,Circuits and systems[C].Lisboa,Poatugal,1998.111-114P
    [31] H. Dedieu, A. Kisel. Communications with chaotic time series: Probablistic methods for noise reduction. Int. J. Circ. Theor. Appl., 1999, 27(6):577-587P
    [32] H. Leung, X. Huang. Parameter estimation in chaotic noise. IEEE Trans.Signal Processing, 1996,44:2456-2463P
    [33] Pecora LM, Carroll TL. Synchronization in chaotic systems. Physical Review Letters, 1990, 64: 821-824P
    [34] Zhang Xingzhou, Song Chunyan, Qiao Yulong. Design and Performance Research of a Chaotic Secure Communication Scheme Based on Active-Passive Synchronization Chinese Journal of Electronics.2005,14(2):298-292P
    [35]R.Mainieri,J.Rehacek.Projective Synchronization in Three-Dimensional Chaotic Systems.Phys.Rev.Lett.1999,82(15):3042-3045P
    [36]Daolin Xu.Control of projective synchronization in chaotic systems.Physical Review E,Vol.63,027201,2001
    [37]Daolin Xu and Chin Yi Chee.Controlling the ultimate state of projective synchronization in chaotic systems of arbitrary dimension.Physical Review E,Vol.66,046218,2002
    [38]Junan Lu,Xiaoqun Wu,Jinhu L(u|¨).Synchronization of a unified chaotic system and the application in secure communication.Physics Letters A,2002,305:365-370P
    [39]Zhigang Li,Daolin Xu.A secure communication scheme using projective chaos synchronization.Chaos,Solitons and Fractals,2004,22:477-481P
    [40]Daolin Xu,Zhigang Li,Steven R.Bishop.Manipulating the scaling factor of projective synchronization in three-dimensional chaotic systems.CHAOS,2001,11(3):439-442P
    [41]施伟锋.Logistic映射及其混沌特性研究[J].光电技术应用,2004,19(2):53-56页
    [42]纪飚,陆佶人.一种新的混沌同步及保密通信方式.通信学报.1998,19(9):47-52页
    [43]T.Ushio.Design of Chaotically Synchronized System Based on Observers.IEICE,1996,179-A(8):1412-1417P
    [44]U.Parlitz,L.O.Chua,L.Kocarev,K.S.Halle,A.Shang.Transmission of digital signals by chaotic synchronization.Int.J.Bifurc.Chaos,1992,2:973-977P
    [45]G.Kolumbán,M.P.Kennedy,L.O.Chua.The role of synchronization in digital communications using chaos-part Ⅱ:chaotic modulation and chaotic synchronization.IEEE Trans.Circuits Syst.I,1998,45:1129-1140P
    [46] G. Kolumban, M. P. Kennedy. The role of synchronization in digital communications using chaos—part III: Performance bounds for correlation receivers. IEEE Trans. Circuits Syst., 2000, 47: 1673-1683P
    [47] A. R. Volkovskii, L. S. Tsimring. Synchronization and communication using chaotic frequency modulation. Int. J. Circuit Theory Applicat., 1999,27: 569-576P
    [48] T. Yang, L. O. Chua. Impulsive stabilition for control and synchronization of chaotic system: Theory and application to secure communications. IEEE Trans. Circuits Syst.. I, 1997,44: 976-988P
    [49] C. W. Wu, L. O. Chua. A simple way to synchronize chaotic systems with applications to secure communication systems, Int. J. Bifur. Chaos,1993,3(6): 1619-1627P
    [50] L. Kocarev, K. S. Halle, K. Eckert, L. O. Chua. Experimental Demonstration of Secure Communication via Chaotic Synchronization, Int. J. Bifurcation Chaos, 1992, 2:709-713P
    [51] Sushchik M, Tsimring L S, Volkovskii A R. Performance analysis of correlation-based communication schemes utilizing chaos [J]. IEEE Trans. Circuits Syst. I (S1057-7122), 2000,47(12): 1684-1691P
    [52] Kolumban G. Theoretical noise performance of correlator-based chaotic communication schemes [J]. IEEE Trans. Circuits Syst. I (S1057-7122),2000,47: 1692-1701P
    [53] Kolumban G, Kis G, JakoZ, Kennnedy M P. FM-DCSK: A robust modulation scheme for chaotic communications [J]. IEICE Trans. Fund.Electron., Commun. Comput. Sci. (S0916-8508), 1998, E-81A(9):1798-1802P
    [54] Galias Zbigniew, Maggio Gian Mario. Quadrature Chaos-Shift Keying:Theory and Performance Analysis [J]. IEEE Trans. Circuits Syst. I (S1057-7122), 2001,48(12): 1510-1519P
    [55] Kolumban G, Kis G. Multipath performance of FM-DCSK chaotic communications system [C] Proc. IEEE Int. Symp. Circuits and Systems, ISCAS'OO. Geneva: IEEE, 2000: 433-436P
    [56] M. P. Kennedy, G. Kolumban. Chaos Communications: from Theory to Implementation. Proc. ECCTD'97,1997,1: 272-277P
    [57] Kolumban G, Kennedy M P, Kis G. Determination of symbol duration in chaos-based communications. In Proc on NDES, 1997, 217-222P
    [58] G. Kolumban, M. P. Kennedy, Z. Jako, G. Kis. Chaotic communications with correlator receivers: theory and performance limits. Proc.IEEE, 2002,90:711-732P
    [59] F. C. M. Lau, K. Y. Cheong, C. K. Tse. Permutation-based DCSK and multiple access DCSK systems. IEEE Trans. Circuits Syst. I, 2003, 50:733-742P
    [60] W. M. Tarn, F. C. M. Lau, C. K. Tse. Analysis of bit error rates for multiple access CSK and DCSK communication systems. IEEE Trans. Circuits Syst.,2003, 50:702-707P
    [61] Oppenheim A V, et al. signal processing in the context of chaotic signals. Proe IEEE ICASSP, Mar 1992
    [62] Cuomo KM , Oppenhelm A V. Circuit implementation of synchronized chaos with applications to communication Phys Rev Lett, 1993,71(1):65-68P
    [63] CuomoK M , Oppenheim A V, Strogatz S H. Synchronzation of Lorenz-based chaotic circuits with applications to communications. IEEE Trans Circuits Syst(II), 1993, 40(10): 626-633P
    [64] Peroca L M, Carroll T L. Synchronzation in chaotic systems. Phys Rev Lett, 1990,64: 821-824P
    [65] Peroca L M. Carroll T L. Driving system with chaotic signals. Phys Rev A,1991,44:2374-2383P
    [66] Carroll T L. Peroca L M. Synchronizing chaotic circuits. IEEE Trans Circuits Syst, 1991, 38: 453-456P
    [67] Peroca L M. Carroll T L. Synchronized chaotic signal and systems. In: Proc IEEE ICASSP, Mar 1992
    [68]Frey D R.Chaotic digital encoding:an approach to secure.IEEE Trams Circuits Syst(Ⅱ),1993,40(10):660-666P
    [69]卢侃等编译.混沌动力学.上海:上海翻译出版公司,1990
    [70]Takens F.Detectittg strange attractors in turbulence.Springer Lecture Notes In Mathematics,,Springer-Verlag:New York,Heidelberg,Berlin,Vol.898
    [71]刘孝贤,刘晨.Lorenz系统的动力学特性及对称特性.山东工业大学学报,1998,28(6):501-508页
    [72]Min L Q,Zhang X H,Yang M.Secure Communication by Generalized Chaotic Synchronizatio[J].Univ,Sci.and Technol.Beijing,2003,10(2):75-78P
    [73]厉小润,赵辽英,赵光宙.参数不确定混沌系统的白适应同步.浙江大学学报:工学版 2005,39(12):1993-1997页
    [74]陈滨,刘光祜,张勇,周正欧.混沌同步的充分条件及应用.物理学报.2005,54(11):5039-5047页
    [75]高铁杠,陈增强,袁著祉.混沌系统的混合同步及其在安全通信中的应用.通信学报.2005,26(3):21-24页
    [76]陈明杰,李殿璞,张爱筠.混沌系统的一种广义同步方法.哈尔滨工程大学学报.2005,26(1).59-62页
    [77]黄丽蒂,姚婷妤,赵文艳.混沌系统的自适应变结构同步及其在保密通信中的应用.电路与系统学报.2006,11(2):103-107页
    [78]何思远,邵玉斌,何连智.混沌掩盖的同步通信技术.沈阳航空工业学院学报.2005,22(5):59-62页
    [79]胡国杰,冯正进.基于混沌同步的混沌加密系统安全性[J].上海交通大学学报.2003,37(10):1588-1591页
    [80]张伟亭.基于混沌同步的数字保密通信[D].大连海事大学,2007,3
    [81]王兴元,段朝锋.基于线性状态观测器的混沌同步及其在保密通信中的应用.通信学报,2005,26(6):105-112页
    [82]厉小润,赵辽英,赵光宙.基于状态观测器的超混沌同步保密通信系统[J].系统工程与电子技术.2003,9:75-77页
    [83]孙克辉,唐汇国.张泰由.离散混沌系统的线性和非线性反馈同步法及 其条件.信息与控制.2004,33(4):413-418页
    [84]陈滨,刘光祐,张勇.时滞反馈混沌同步及其抗噪优越性[J].电子科技大学学报.2005,34(4):452-455页
    [85]蒋国平,王锁萍.一类混沌系统的单向耦合同步方法及其条件.控制与决策.2001,16(6):898-902页
    [86]蒋国平,程艳云.一类混沌系统耦合同步的充分条件及其应用.南京邮电学院学报.2002,22(3):62-67页
    [87]汪芙平,王赞基,郭静波.一种基于数字信道的连续混沌通信系统.电子学报.2003,31(1):127-130页
    [88]Johnson G A,Mar D J,Carroll T L,et al.Synchronization and parameter tracking in chaotic systems[A].Proc.of the fourth experimental chaotic conference,World Scientific[C].Singapore,1998,407-412P
    [89]W.A.Gardner.A new method of channel identification.IEEE Trans.Conitnun.,1991,39(6):813-817P
    [90]H.Lung.System identification using chaos with application to equalization of chaotic modulation system.IEEE Trans.Circuits Sjsr.I,45(3):314-320P
    [91]Z.Zhu,H.Leung.Identification of linear system driven by chaotic signals using nonlinear prediction.IEEE Trans.Circuits Sjsf.I,2002,49(2):170-180P
    [92]Eng J C,Tse C K.On-line adaptive chaotic demodulator based on radial-basis-function neural networks[J].Phys.Rev.E,2001,63(026202):1-10P
    [93]Feng J C,Tse C K,Lau F C M.A Neural-network-based channel-equalization strategy for chaos-based communication systems[J].IEEE Trans.on Circuits and Systems-part Ⅰ,2003,50:954-957P
    [94]Zhu Z,Leung H.Adaptive blind equalization for chaotic communication systems using extended-Kalman filter[J].IEEE Trans.Circuits and Systems-part Ⅰ,2001,48:979-989P
    [95]王世元,冯久超.应用粒子滤波器实现混沌通信系统的盲信道均衡.电路与系统学报.2005,10(1):98-102页
    [96]Julier S J,Uhlmann J K,Whyte H D.A new approach for filtering nonlinear systems[A].Proc.Of the American Control Conference[C].1995.1628-1632P
    [97]Arulampalam M S,Maskell S,Gordon N,et al.A tutorial on particle filters for online nonlinear/non-Gaussian Bayesian tracking[J].IEEE Trans on Signal Processing,2002,50(2):174-188P
    [98]朱华,黄辉宁,李永庆等.随机信号分析[M].北京:北京理工大学出版社,2002
    [99]G.Kolumbán,Theoretical noise performance of correlator-based chaotic communication schemes[J].IEEE Trans.Circuits Syst.I,2000,47:1692-1701P
    [100]Punskaya E,Andrieu C,Doucet A,et al.Particle filtering for demodulation in fading channels with non-Gaussian additive noise[J].IEEE Transactions on Communication,2001,49:579-582P
    [101]Julier S J,Uhlmann J K.A New Extension of the Kalman Filter to Nonlinear Systems[A].Proc.of AeroSense:The 11th Int.Symp.On Aerospace/Defence Sensing,Simulation and Controls[C].1997
    [102]Iltis R A,Fuxjaeger A W.A digital DS spread-spectrum receiver with joint channel and dopple shift estimation[J].IEEE Transactions on Communication,1991,39:1255-1267P
    [103]Haykin S.Adaptive Filter Theory(4th Edition)[M].New Jersey:Prentice Hall,2001
    [104]张贤达,保铮.非平稳信号分析与处理[M].北京:国防工业出版社,1999
    [105]J.R.van Zandt,A more robust unscented transform,Technical Report,MITRE Corporation.,July,2001
    [106]Sanjeev M,Maskell S,A tutorial on particle filters for online nonlinear/non-Gaussian Bayesian tracking[J].IEEE Transactions on Signal Processing,2002,50(2):174-188P
    [107]Cuomo K M,Oppenheim A V,Barron R J.Channel Equalization for Self-Synchronizing Chaotic System[J].Proc IEEE ICASSP,1996,3:1605-1608P
    [108]M.BoliC,S.J.Hong,and P.M.Djuric',Finite Precision Effect on Performance and Complexity of Particle Filters for Bearing-Only Tracking [J].Department of Electrical and Computer Engineering Stony Brook University Stony Brook,NY 117942350
    [109]Wan EA,Merwe R.The unscented Kalman filter for nonlinear estimation.In:proceedings of symposium 2000 on adaptive systems for signal processing,communication and control.Lake Louise,Alberta,Canada:IEEE press,2000.1255-1260P
    [110]刘剑波,叶春飞,张树京.混沌扩频通信系统中信道干扰的统计分析.铁道学报.1999,21(3):60-63页
    [111]沈希忠,许海翔,史习智.具有约束学习速率的频域盲均衡算法.电子学报.2005,(4):762-765页
    [112]张贤达.盲信号处理几个关键问题的研究.深圳大学学报:理工版,2004,21(3):196-200页
    [113]王世元,冯久超.一种对噪声混沌信号的滤波方法.电路与系统学报.2004,9(4):58-62页
    [114]李静,陈兆乾,陈世福.EM-GMPF:一种基于EM的混合高斯粒子滤波器算法[J].计算机研究与发展.2005,42(7):1210-1216页
    [115]徐金标,葛建华.一种新的盲均衡算法[J].通信学报.1995,16(3):78-81页
    [116]赵耿,方锦清.混沌通信分类及其保密通信的研究.自然杂志.2003,25(1):21-29页
    [117]赵耿,郑德玲,方锦清.混沌保密通信的最新进展.自然杂志.2001,23(2):97-106页
    [118]罗伟民,丘水生.混沌COOK调制系统误码性能分析.电路与系统学报.2003,8(4):30-33页
    [119]裴留庆,顾勇.混沌与噪声.电子学报.1991,19(6):80-90页
    [120]黄智法,徐成,高剑波.关于动力系统混沌与噪声的区分.非线性动力 学学报.1996,3(4):303-306页
    [121]Alexandros Leontitsis,Tassors Bountis,Jenny Pagge.An adaptive way for improving noise reduction using local geometric projection[J].Chaos (0094-243X).2004,14(1):106-110P
    [122]Alexandros Leontitsis,Tassors Bountis,Jenny Pagge.Noses:a short simplified review on local estimation and reduction[C].15~(th)SummerSchool/Panhellenic Conference,2002
    [123]Kern.A.,Steeb W.H.,Stoop R.Projective Noise Cleaning with Dynamic Neighborhood Selection[J].International Journal of Modern Physics C (0217-751x).2000,11:125-146P
    [124]王来雄,黄士坦.一种新的粒子滤波算法.武汉大学学报(工学版).2006,39(1):118-120页
    [125]王世元,冯久超.基于混沌通信系统的盲信道均衡[J].西南师范大学学报.2004,29(3):373-378页
    [126]Hegger R,Kantz H,Matassini L.Noise Reduction for Human Speech Signals by Local Projections in Embedding Spaces[J].IEEE Trans on Circuits and Systems-Ⅰ:Fundamental Theory and Applications (S1057-7122),2001,48(12):1454-1461
    [127]Leontitsis A,Bountis T,Pagge J.An Adaptive Way for Improving Noise Reduction using Local Geometric Projection[J].Chaos(S1054-1500),2004,14(1):106-110
    [128]黄显高,徐健学,何岱海等.利用小波多尺度分解算法实现混沌 系统的噪声减缩[J].物理学报,1999,48(10):1810-1817
    [129]吴永宏,潘泉,张洪才等.基于离散小波变换的滤波方法研究[J].系统仿真学报,2004,16(12):2706-2709
    [130]Farmer,J.D.,J.J.Sidorowich.Exploiting chaos to predict the future and reduce noise.In Y.C.Lee(Ed.),Evolution,Learning and Cognition,World Scientific.1998,277-330P
    [131]E.J.Kostelich,J.A.Yorke,Noise Reduction in Dynamical Systems.Phys.Rev.A,38.1988.1649-1652P
    [132]Fujisaka H,Yamada T.Stability theory of synchronized motion in coupled oscillator systems[J].Prog.Theor.Phys.,1983,69(1):32-45P
    [133]方锦清.非线性系统中混沌控制方法、同步原理及其应用前景(二).物理学进展.1996,16(2):137-196页
    [134]凌复华.混沌,随机,信息流和其它.力学与实践.1985,7(5):17-20页
    [135]U Parlitz,S Ergzinger.Robust communication based chaotic spreading sequence.Phys.Letter A.1994,188(1):146-150P
    [136]吴祥兴,陈忠等编著.混沌学导论.上海:上海科技文献出版社,1996:120-143页
    [137]T.Kapitaniak et al.Experimental synchronization of chaos using continous control.Int.J.Bifurcation and Chaos.1999,4(2):483-488P
    [138]R.Roy et al.Experimental synchronization of chaos.Phys.Ker.Lett.News.1994.72(13):2009-2012P
    [139]T.Sugawara,Ttachikawa.Observation of synchronization in laser chaos.Phys.Rev.Lett.,1994,72(22):3502-3505P
    [140]K.John et al.Dvnamics of Adaptive Systems.IEEE Trans,CAS,1990,37(9)547-550P
    [141]B Andrievsky.Adaptive synchronization mcthods for signal transmission on chaotic carriers[J〕.Mathematics and Computers in Simulation,2002,58:285-293P
    [142]A.J.Jones,et al.Synchronization of chaotic neural networks[J].Int.,JBC,1998,8(11):2225-2237P
    [143]汪芙平,王赞基,郭静波.混沌通信系统的若干问题及研究现状.通信学报.2002,23(10):71-80页

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700