窄线宽外腔可调谐激光器的理论与实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
密集波分复用(Dense wavelength division multiplexing,DWDM)光纤通信系统的大规模应用使得业界对可调谐激光器的需求逐渐增加。外腔可调谐激光器由于光谱线宽窄、调谐范围宽、输出功率高等优点受到了广泛的关注。
     本论文对基于微机电系统(Microelectromechanical systems,MEMS)技术的窄线宽外腔可调谐激光器进行了系统的理论和实验研究。着重开展了MEMS型外腔可调谐激光器的结构设计、理论模型建立和实际研制等工作,对设计及研制窄线宽外腔可调谐激光器有一定的参考价值。本论文的主要创新性研究内容包括以下几个方面:
     提出了一种以衍射光栅结合普通单轴MEMS转镜为模式选择滤波器的窄线宽外腔可调谐激光器结构。为实现标准ITU-T波长输出,在激光器的谐振腔内加入了自由光谱范围为50GHz的熔石英标准具,在抑制相邻纵模的同时还起到了波长锁定的作用,从而避免了附加波长锁定装置的使用。该外腔可调谐激光器在完全保留了普通外腔激光器的线宽窄、调节范围宽等特点的同时还兼具结构简单、可靠性高的优点。
     建立了一种新型的分析外腔激光器特性的理论模型:对于外腔无源光路部分,首先不考虑激光器的谐振特性,用ZEMAX光学设计软件和高斯光束耦合方法建立了外腔部分的光路模型,分析了外腔光路的包括外腔损耗,模式选择滤波器以及标准具带宽等特性;在获得了外腔无源光路的特性基础上,首次用改进的时域行波法(Timedomain travelling wave,TDTW)模拟并优化了整体器件的输出特性,着重分析了标准具的特性对该激光器的波长精度以及调节特性的影响;同时分析和讨论了该MEMS型可调谐激光器的线宽特性。该理论模型的建立为设计各类外腔可调谐激光器起到了良好的指导作用。
     研制了国内首台符合OIF-MSA-ITLA-01.2标准的窄线宽集成可调谐激光器模块(Integrated tunable laser assembly,ITLA),该器件的能够实现光通信C波段100个通道的输出,波长精度在±1GHz以内,在整个调节范围内,其输出功率大于20mW,线宽小于50kHz;研制了低噪声、小型化、高稳定性的激光器驱动电路;探索并研究了外腔型可调谐激光器中微光学器件的高稳定固定及封装的工艺方法,建立了一整套的调试、封装及测试的工艺平台。
     搭建了两套相干光通信传输平台来验证该MEMS外腔可调谐激光器模块在实际应用中的性能:首先在112Gb/s偏振复用正交相移键控(Polarization-multiplexedquadrature phase-shift keying,PM-QPSK)平台中,使用该激光器作为本振光源进行了背靠背传输实验。进一步地,在相干光正交频分复用(orthogonal frequency divisionmultiplexing,OFDM)系统中使用该激光器作为发送端的信号光源,在不同的FFT长度下进行了调制码型为正交幅度调制(quadrature amplitude modulation,4-QAM)的背靠背传输实验。实验结果表明,该窄线宽MEMS外腔可调谐激光器模块能够完全满足112Gb/s PM-QPSK系统应用的要求;在OFDM系统中,随着FFT长度的增加,该激光器仍然能够保持优异的性能,使得其有潜力成为更高速相干光通信系统(400Gb/s,1Tb/s)中的理想光源。
Starting with sparing in dense wavelength division multiplexing (DWDM) fiber-opticscommunication systems, tunable lasers is expected to find increased use in systems andnetworks. Among all kinds of tunable lasers, the external cavity tunable laser (ECTL)consisting of gain chip and separated bulky optical filters, due to its narrow linewidth andwide tuning range, has received extensive concerns.
     This dissertation systematically analyzed the theory, design and manufacturing ofECTL based on microelectromechanical systems (MEMS) technology. The research resultsof this dissertation can be helpful to the design and manufacturing of commercial ECTL.The main innovations of the dissertation are summarized as follows:
     A compact and narrow linewidth tunable laser with an external cavity based on adiffraction grating and a simple single-axis-MEMS mirror is presented. A fused silica etalonwith50GHz free spectral range (FSR) helps the laser’s output wavelength match thestandard ITU-T grid, and it also acts as a filter to suppress the neighboring lasing modes.The combination of the diffraction grating, MEMS mirror and the etalon filter, can selectdifferent ITU-T channels and make this ECTL tune over C-band with50GHz grid. TheMEMS-based ECTL features simpler mechanical structure and lower cost as well as highreliability, while keeping all the merits of conventional external cavity lasers.
     A novel and hybrid analysis method is applied to design, analyze and optimize theECTL: for the passive external cavity without considering resonating behavior, ZEMAXand Gaussian beam propagation method are implemented to calculate the impact of thespecifications of collimating lens, etalon charicterstic and MEMS mirror on the passiveexternal cavity characteristics such as TOF bandwidth and cavity loss. Then we useimproved time domain traveling wave (TDTW) method to demonstrate the relationshipbetween wavelength accuracy and etalon specifications as well as the tuning characteristicsof the ECTL. The spectral linewidth of the ECTL is also theoretically discussed. Thishybrid method is also suitable for analyzing all kinds of external cavity lasers.
     The fabricating and packaging methods for the MEMS ECTL are discussed, thecompact electrical circuit with low noise is researched and developed successfully, theoptical aligning, packaging and testing platforms for the MEMS ECTL are also constructed. An integrated tunable laser assembly (ITLA) based on the MEMS ECTL is successfullyresearched and developed. This module can fully comply with OIF-MSA-ITLA-01.2. Ahigh output power of more than20mW, a wide wavelength tuning range about40nm inC-band with a narrow linewidth of less than50kHz and a high wavelength accuracy of±1GHz over the entire tuning range can be obtained.
     Several experiments in coherent fiber-optic communication systems under differentconditions are also conducted to test the performance of the MEMS ITLA: First, an112Gbit/s PM-QPSK back-to-back system is constructed to verify the ITLA’s performance.This ITLA is then used as transmitter laser source in a coherent optical OFDM (CO-OFDM)system with4–QAM modulation format, and its performance is further evaluated underdifferent FFT sizes. This device shows a slightly-improved performance in112Gbit/sPM-QPSK system compared with commercial narrow linewidth ITLA, and reveals anexcellent performance in CO-OFDM systems especially when the FFT size is larger than256. This MEMS ITLA can fully meet the requirement of commercial PM-QPSK coherentsystem and has the potential in the application of higher rate (400Gbit/s and1Tbit/s)coherent systems with higher-order modulation formats.
引文
[1] J. Buss, E. J. Murphy. Tunable lasers in optical networks. IEEE Journal of LightwaveTechnology,2006,24(1):5-11
    [2] J.Buus, M.C.Amann, D.J.Blumenthal. Tunable laser diodes and related opticalsources.2nd ed. Piscataway, NJ: Wiley-IEEE Press,2005.12-15
    [3] ITU-T G.692. Optical interfaces for multichannel systems with optical amplifiers.Telecommunication standardization sector,1999.19-21
    [4] Peter J. Winzer, Rene-Jean Essiambre. Advanced optical modulation formats. InProceedings of the IEEE,200694:952-985
    [5] Peter J. Winzer, Rene-Jean Essiambre. Advanced modulation formats forhigh-capacity optical transport networks. IEEE Journal of Lightwave Technology,2006,24(12):4711-4728
    [6] A. H. Ganuck, Peter J. Winzer. Optical phase-shift-keyed transmission. IEEE Journalof Lightwave Technology,2005,23(11):115-130
    [7] P. J. Winzer.10×107-Gb/s NRZ-DQPSK transmission at1.0b/s/Hz over12×100kmincluding6optical routing nodes. In Proceedins of Optical Fiber CommunicationConference,2003. Paper PDP24
    [8] H. Sun, J. Gaudette, Y. Pan, et al. Modulation formats for100Gb/s coherent opticalsystems. In Proceeding of Optical Fiber Communication Conference,2009.1-3
    [9] Y. Miyamoto, S. Suzuki. Advanced optical modulation and multiplexing technologiesfor high-capacity OTN based on100Gb/s channel and beyond. IEEE CommunicationsMagazines,2010,48(3): S65-S72
    [10] J. M. Kahn, Keang-Po Ho. Spectral efficiency limits and modulation/detectiontechniques for DWDM systems. IEEE Journal of Selected Topics in QuantumElectronics,2004,10(2):259-272
    [11] A. H. Gnauck, G. Raybon, S. Chandrasekhar, et al.2.5Tb/s (64×42.7Gb/s) transmissionover40×100km NZDF using RZ-DPSK format and all-Raman-amplified spans. InProceeding of Optical Fiber Communication Conference,2002. Paper PDP FC2
    [12] R. A. Griffin, A. C. Carter. Optical differential quadrature phase-shift key (oDQPSK)for high-capacity optical transmission. In Proceeding of Optical Fiber CommunicationConference,2002. Paper WX6
    [13] J. Cai, D. Foursa, L. Liu, et al. RZ-DPSK field trial over13100km of in stallednon-slope-matched submarine fibers. In Proceeding of Optical Fiber CommunicationConference,2004. Paper PD34
    [14] D. Van den Borne.1.6-b/s/Hz spectrally efficient transmission over1700km ofSSMF using40×85.6Gb/s POLMUX-RZ-DQPSK. IEEE Journal of LightwaveTechnology,2007,25:222-232
    [15] K. Roberts, M. O’Sullivan, Kuang-Tsan Wu, et al. Performance of dual-polarizationQPSK for optical transport systems. IEEE Journal of Lightwave Technology,2009,27(16):3546-3559
    [16] K. Roberts D. Beckett, D. Boertjes, et al.100G and beyond with digital coherentsignal processing. IEEE Communications Magazines,2010,48(7): S62-S69
    [17] J. Renaudier, G. Charlet, O. Bertran-Pardo, et al.. Transmission of100Gb/s coherentPDM-QPSK over16×100km of standard fibers with allerbium amplifiers. OpticsExpress,2009,17(7):5112-5119
    [18] M.Birk, P. Gerard, R. Curto, et al. Field trial of a real-time, single-wavlengthcoherent100Gbit/s PM-QPSK channel upgrade of and installd1800km link. InProceeding of Optical Fiber Communication Conference,2010. Paper PDP D1
    [19] F. Heismann, P. Mamyshev.43-Gb/s NRZ-PDPSK WDM transmission with50-GHzchannel spacing in systems with cascade wavelength-selective switches. In Proceedingof Optical Fiber Communication Conference,2009.1-3
    [20] K. Roberts. Coherent40Gb/s transmission and prospects for100Gb/s. In Proceedingsof European Conference on Optical Fiber Communication,2007. Workshop5
    [21] K. Roberts, A. Borowiec, C. Laperle, et al. Technologies for optical systems beyond100G. Optical Fiber Technology,2011,17(5):387-394
    [22] E. Ip, A. Pak Tao Lau, Daniel J. F. Barros, et al. Coherent detection in optical fibresystems. Optics Express,2008,16(2):753-791
    [23] M. G. Taylor. Coherent detection method using DSP for demodulation of signal andsubsequent equalization of propagation impairments. IEEE Photonics TechnologyLetters,2004,16(2):674-676
    [24] OIF. Implementation agreement for integrated polarization multiplexed quadraturemodulated transmitters,2010.1-20
    [25] Daryl Inniss, Karen Liu, Ian Redpath.40G and100G OC forecast spreadsheet:2012-17. Ovum OC forecast report,2012.2-5
    [26] M. Birk, P. Gerard, R. Curto, et al.. Coherent100Gb/s PM-QPSK field trial. IEEECommunications Magazines,2010,48(7):52-60
    [27] T. J. Xia, G. Wellbrock, B. Basch, et al. End-to-end native IP data100G single carrierreal time DSP coherent detection transport over1520-km field deployed fiber. InProceeding of Optical Fiber Communication Conference,2010. Paper PDP D4
    [28] T. J. Xia, G. A. Wellbrock, Y. K. Huang.21.7Tb/s field trial with22DP-8QAM/QPSKoptical supperchannels over1503-km of installed SSMF. In Proceeding of OpticalFiber Communication Conference,2012. paper PDP5D.6
    [29] P. J. Winzer, A. H. Gnauck, C. R. Doerr, et al. Spectrally efficient long-haul opticalnetwoking using112-Gb/s polarization-multiplexed16-QAM. IEEE Journal ofLightwave Technology,2010,28(4):547-556
    [30] Seiji Okamoto, Kazushi Toyoda, Tatsunori Omiya.512QAM (54Gbit/s) coherentoptical transmission over150km with optical bandwidth of4.1GHz. In Proceedingsof European Conference on Optical Fiber Communication,2010.1-3
    [31] R. Schmogrow, D. Hillerkuss, S. Wolf, et al.512QAM Nyquist sinc-pulsetransmission at54Gbit/s in an optical bandwidth of3GHz. Optics Express,2012,20(6):6439-6447
    [32] W. Shieh, H. Bao, Y. Tang. Coherent optical OFDM: theory and design. OpticsExpress,2008,16(2):841-859
    [33] S. L. Zhang, M. F. Huang, and F. Yaman, et al.40×117.6Gb/s PDM-16-QAM OFDMtransmission over10181km with soft-decision LDPC coding and nonlinearitycompensation. In Proceeding of Optical Fiber Communication Conference,2012.paper PDP5C.4
    [34] Y. Ma, Q. Yang, Y. Tang, et al.1-Tb/s single-channel coherent optical OFDMtransmission over600-km SSMF fiber with subwavelength bandwidth access.Optics Express,2009,17(11):9421-9427
    [35] R. Dischler, F. Buchali. Transmission of1.2Tb/s Continuous Waveband PDM‐OFDM‐FDM Signal with Spectral Efficiency of3.3bit/s/Hz over400km of SSMF.In Proceeding of Optical Fiber Communication Conference,2012. paper PDP C2
    [36] M. Nakazawa. Challenges to FDM-QAM coherent transmission with ultrahighspectral efficiency. In Proceedings of European Conference on Optical FiberCommunication,2008. paper Tu.1. E.1
    [37] T. Pfau, S. Hoffmann, O. Adamczyk, et al. Coherent optical communication:Towards realtime systems at40Gbit/s and beyond. Optics Express,2008,16(2):866-872
    [38] R. Noé, T. Pfau, Y. Achiam. Integrated components for optical QPSK transmission.in Frontiers in Optics, OSA Technical Digest,2006. paper FMD4
    [39] Vijitha Herath, Ralf Peveling, Timo Pfau. Chipset for a coherent polarization-multiplexedQPSK receiver. In Optical Fiber Communication Conference,2009. paper OThE2
    [40] T. Pfau, S. Hoffmann, R. Peveling. Real-time synchronous QPSK transmission withstandard DFB lasers and digital I&Q receiver,. In Optical Amplifiers and TheirApplications/Coherent Optical Technologies and Applications,2006. paper CThC5
    [41] M. Seimetz. High-Order Modulation for Optical Fiber Transmission. Springer Seriesin Optical Sciences,2009. Chap.7
    [42] M. Seimetz. Laser linewidth limitations for optical systems with high-ordermodulation employing feed forward digital carrier phase estimation. In Optical FiberCommunication Conference,2008. paper OTuM2
    [43] Chongjin Xie. Local oscillator phase noise induced penalties in optical coherentDetection systems using electronic chromatics dispersion compensation. InProceeding of Optical Fiber Communication Conference,2012. paper OMT4
    [44] Dany-Sebastien Ly-Gagnon, Satoshi Tsukamoto, Kazuhiro Katoh, et al. Coherentdetection of optical quadrature phase-shift keying signals with carrier pahseestimation. IEEE Journal of Lightwave Technology,2006,21(1):12-21
    [45] Jiangqiang Li, L. Li, Zhenning Tao, et al. Laser-linewidth-tolerant feed-forwardcarrier phase estimation with reduced complexity for QAM. IEEE Journal ofLightwave Technology,2011,29(16):2358-2364
    [46] Nobuhiko Kikuchi, Shinya Sasakiand, Tetsuya Uda. Phase-noise tolerant coherentpolarization-multiplexed16-QAM transmission with digital delay-detection. InProceedings of European Conference on Optical Fiber Communication,2011. paperTu.3. A.5
    [47] Irshaad Fatadin, and Seb J. Savory. Impact of phase to amplitude noise conversion incoherent optical systems with digital dispersion compensation. Optics Express,2012,18(15):16273-16278
    [48] S. Zhang, P. Y. Kam, C. Yu. Laser linewidth tolerance of decision-aided Maximumlikelihood phase estimation in coherent optical M-ary PSK and QAM systems. IEEEPhotonics Technology Letters,2009,21(15):1075-1077
    [49] S. Randel, S. Adhikari, S. L. Jansen. Analysis of RF-pilot-based phase noisecompensation for coherent optical OFDM systems. IEEE Photonics TechnologyLetters,2010,22(17):1288-1290
    [50] B. J. Soller, D. K. Gifford, M. S. Wolfe, et al. High resolution optical frequencydomain reflecometry for characterization of components and assemblies. OpticsExpress,2005,13(2):666-674
    [51] D. K. Gifford, B. J. Soller, M. S. Wolfe, et al. Optical vector network analyzer forsingle-scan measurement of loss, group delay, and polarization mode dispersion,Applied Optics,2005,44:7282-7286
    [52] APEX Technologies. Optical spectrum analyzer application note,2008.1-3
    [53] J. P. Von der Weid, N. Gisin. Coherent reflectometry of optical fiber amplifiers. IEEEPhotonics Technology Letters,1997,9:1253-1255
    [54] B. J. Soller, M. S. Wolfe, M. E. Froggatt. Polarization resolved measurement ofRayleigh backscattering in fider-optic components. In Proceeding of Optical FiberCommunication Conference,2005. paper NWD3
    [55] E. C. Burrows, K. Y. Liou. High resolution laser lidar utilizing two-sectiondistributed feedback semiconductor laser as a coherent source. Electronics Letters,1990,26:577-579
    [56] L. Coldren. Monolithic tunable diode lasers. IEEE Journal of Selected Topics inQuantum Electronics,2000,6:988
    [57] L. Coldren, G. A. Fish, Y. Akulove, et al. Tunable semiconductor lasers: a tutorial,IEEE Journal of Lightwave Technology,2004,22:193-194
    [58] Y. Kotaki, H. Ishikawa. Wavelength tunable DFB and DBR lasers for coherentoptical fiber communications. IEEE proceedings of Optoelectron,1991,138(2):171-177
    [59] V. Jayaraman, Z. M. Chuang, L. A. Coldren. Theory, design, and performance ofextended tuning range semiconductor lasers with sampled gratings. IEEE Journal ofQuantum Electronics,1993,26(9):1824-1834
    [60] V. Jayaraman, A. Mathur, L. A. Coldren. Extended tuning range in sampled gratingDBR lasers. IEEE Photonics Technology Letters,1993,5(5):489-491
    [61] L. A. Johansson, Y. A. Akulova, G. A. Fish, et al. Wiely tunable EAM-integratedSGDBR laser transmitter for analog applications. IEEE Photonics TechnologyLetters,2003,15(9):1285-1287
    [62] L. Dong S. Zhao, S. Jiang, et al. A theoretical model for sampled grating DBR laserintegrated with SOA and MZ modulator. Optics Epxress,2009,17(9):16756-16765
    [63] J. Barton, E. J. Skogen, M. L. Masanovic, et al. A widely-tunable high-speedtransmitters using an integrated SGDBR laser semiconductor optical amplifier andMach-Zehner modulators. IEEE Journal of Selected Topics in Quantum Electronics,2003,9:1113-1117
    [64] H. Ishii, F. Kano, Y. Tohmori, et al. Broad range (34nm) quasi-continuouswavelength tuning in super-structure-grating DBR lasers. Electronics Letters,1994,30(14):1134-1135
    [65] A. J. Ward, D. J. Robbins, G. Busico, et al. Modeling of phase-grating basedwide-band tunable lasers with simplified quasidigital wavelength selection. IEEEProceedings, Part J,2003,150:199-204
    [66] M. Isaksson, M. Chacinski, O. Kjebon, et al.10Gb/s direct modulation of40nmtunable modulated-grating Y-branch laser. In Proceeding of Optical Fiber CommunicationConference,2005. paper OTuE2
    [67] S. Nakagawa, G. Fish, A. Dahl, et al. Phase noise of widely-tunable SG-DBR laser.In Proceeding of Optical Fiber Communication Conference,2003,2:462
    [68] T. Kaneko, Y. Yamauchi, H. Tanaka, et al. High-power and low phase noise full-bandtunable LD for coherent applications. In Proceeding of Optical Fiber CommunicationConference,2010. paper OWU7
    [69] H. Ishii, K.Kasaya, H. Oohashi, et al. Widely wavlength-tunable DFB arrayintegrated with funnel combiner. IEEE Journal of Selected Topics in QuantumElectronics,2007,13(5):1089-1094
    [70] Koji Horikawa, Atsushi Yamamoto, Takashi Osada, et al. Development of ITLA usngfull-band tunable laser. Furugawa review,2009,35:1-5
    [71] M. Bouda, M. Matsuda, K.Morito, et al. Compact high-power wavelength selectablelasers for WDM aapplications. In Proceeding of Optical Fiber CommunicationConference,2000,1:178-180
    [72] H. Ishii, K.Kasaya, H. Oohashi. Spectral linewidth reduction in widely wavelengthtunable DFB laser array. IEEE Journal of Selected Topics in Quantum Electronics,2009,15:514-520
    [73] J. Heanue, E. Vail, M. Sherback, et al. Widely tunable laser module using DFB arrayand MEMS selection with internal wavelength locker. In Proceeding of Optical FiberCommunication Conference,2006. paper MF67
    [74] J. W. Crowe, Jr. R. M. Craig. GaAs laser linewidht measurements by heterodynedetection. Applied Physics letters,1964,5(4):72-74
    [75] C. Ye, Tunable external cavity diode lasers, Singapore: World Scientific,2004.110-112
    [76] J.-F. Cliché, M. Têtu, M. Poulin. Narrow linewidth lasers and their use in generationand distribution of microwave signals. In Proceedings of IEEE-LEOS,2007. paperThN1
    [77] F. N. Timofeev, I. A. Kostko, P. Bayvel, et al.10Gbit/s directly modulated, hightemperature-stability external fiber grating laser for dense WDM networks.Electronics letters,1999,35(20):1737-1739
    [78] A. Godard, G. Paulliat, G. Roosen, et al. Side-mode gain in grating-tunedextended-cavity semiconductor lasers: investigation of stable single-mode operationconditions, Journal of Quantum Electronics,2002,38:390-401
    [79] K. Numata, J. Camp, M. A. Krainak, et al. Performance of planar-waveguide externalcavity laser for precision measurements. Optics Express,2010,18(22):22781-22788
    [80] Takuya Tanaka, Yoshinori Hibino, Toshikazu Hashimoto, et al. Hybrid-integratedexternal-cavity laser without temperature-dependent mode hopping. IEEE Journal ofLightwave Technology,2002,20(9):1730-1739
    [81] P. J. S. Heim, Z. F. Fan, S. H. Cho, et al. Single-angled-facet laser diode for widelytunable external cavity semiconductor lasers with high spectral purity, ElectronicsLetters,1997,33:1387-1388
    [82] M. G. Littman, H. J. Metcalf. Spectrally narrowed pulsed dye laser without beamexpander, Applied Optics,1978,17:2224-2227
    [83] X. M. Zhangm A. Q. Liu, C. Lu, et al. Continuous wavelength tuning inmicromachined Littrow external-cavity lasers. IEEE Journal of Quantum Electronics,2005,41:187-197
    [84] A. Q. Liu, X. M. Zhang. A review of MEMS external-cavity tunable lasers. Journalof Micromechanics and Microengineering,2007,17: R1-R13
    [85] D. Anthon, J. D. Brerger, J. Drake, et al. External cavity diode lasers tuned withsilicon MEMS. In Proceeding of Optical Fiber Communication Conference,2003,97-98
    [86] E. Ip, J. M. Kahn, D. Anthon, et al. Linewidth measurements of MEMS-basedtunable lasers for phase-locking applications. IEEE Photonics Technology Letters,2005,17(10):2029-2031
    [87] Intel. Thermally tuned external cavity laser with micromahined silicon etalons:design, process and reliability. In Proceedings of ECTC,2004.818-823
    [88] A. Daiber, C. Schulz, J.–C. Lo, et al. Tunable DWDM XFP with an external cavitylaser transmitter and transmission performance matching300-Pin transponders. InProceeding of Optical Fiber Communication Conference,2008. paper OThC5
    [89] J. De Merlier, K. Mizutani, S. Sudo, et al. Full C-band external cavity wavelengthtunable laser using a liquid-crystal-based tunable mirror. IEEE Photonics TechnologyLetters,2005,17(3):681-683
    [90] K. Sato, K. Mizutani, S. Sudo, et al. Wideband external cavity wavelength-tunablelaser utilizing a liquid-crystal-based mirror and an intracavity etalon. IEEE Journal ofLightwave Technology,2007,25(8):2226-2232
    [91] Jan De Merlier, Kenji Mizutani, Shinya Sudo, et al. Wavelength channel accuracy ofan external cavity wavelength tunable laser with intracavity wavelength referenceetalon. IEEE Journal of Lightwave Technology,2006,24(8):3202-3209
    [92] PGT Photonics. Integrated tunable laser assembly,2008.1-2
    [93] T. Matsumoto, A. Suzuki, M. Takahashi, et al. Narrow spectral linewidth full bandtunable laser based on waveguide ring resonators with low power consumption. InProceeding of Optical Fiber Communication Conference,2010. paper OThQ5
    [94] M. Aljada, R. Zhang, K. Alameh, el. al. Experimental demonstration of a tunablelaser using an SOA and an Opto-VLSI Processor. Optics Express,2007,15:9666-9671
    [95] K. E. Petersen. Micromechanical light modulator array fabricated on silicon. AppliedPhysics Letters,1977,31:521–523
    [96] K. E. Petersen. Silicon torsional scanning mirror. IBM J. Res. Develop.,1980,24:631-637
    [97]泽田廉士,羽根一博,日暮荣治著.微光机电系统.李元燮译.北京:科学出版社,2005.188-189
    [98] K. J. Knopp, D. Vakhshoori, P. D. Wang, et al. High power MEMs-tunablevertical-cavity surface-emitting lasers. In Proceeding of Advanced Semiconductorlasers LEOS,2001.31-32
    [99] S. D. Saliba and R. E. Scholten. Linewidth below100kHz with external cavity diodelasers. Applied Optics,2009,48(36):6961-6966
    [100] A. Romano, M. D. Donno, and A. Pianciola. Phase-control in an external-cavitytunable laser. United State Patent,2009,7505490B2:1-24
    [101] Keiji Isamoto, Kazuya Kato, Atsushi Morosawa, et al. A5-V operated MEMSvariable optical attenuator by SOI bulk micromachining. IEEE Journal of SelectedTopics in Quantum Electronics,2004,10(3):570-578
    [102] Katsuhiko Hirabayashi, Hiroyuki Tsuda, Takashi Kurokawa. Tunable liquid-crystalFabry-Perot interferometer filter for wavelength-division multiplexing ommunicationsystems. IEEE Journal of Lightwave Technology,1993,11(12):2033-2043
    [103] Shifu Yuan, N. A. Riza. General formula for coupling-loss characterization ofsingle-mode fiber collimators by use of gradient-index rod lenses. Applied Optics,1999,38(15):3214-3222
    [104] X. Li. Optoelectronic devices: design, modeling and simulation.1stedition,Cambridge University Press,2009
    [105] S. K. B. Lo, H. Ghafouri-Shiraz. A method to determine the above thresholdcharacteristics of distributed feedback semiconductor laser diodes. IEEE Journal ofLightwave Technology,1995,13(4):563-568
    [106] T. Makino, J. Glinski. Transfer matrix analysis of the amplified spontaneousemission of DFB semiconductor laser amplifiers. IEEE Journal of QuantumElectronics,1988,24(8):1507-1518
    [107] L. J. P. Ketelsen, I. Hoshino, D. A. Ackerman. The role of axially nonuniformcarrier density in altering the TE-TE gain margin in InGaAsP-InP DFB lasers. IEEEJournal of Quantum Electronics,1991,27(4):957-964
    [108] G.–H. Duan, P. Gallion, G. Debarge. Analysis of the phase amplitude coupling factorand spectral linewidth of distributed feedback and composite cavity semiconductorlasers. IEEE Journal of Quantum Electronics,1990,26(1):32-44
    [109] S. E. Miller. The influence of power level on injection laser linewidth and intensityfluctuations including side mode contributeions. IEEE Journal of QuantumElectronics,1988,24(9):1873-1876
    [110] P. Vankwikelberg, G. Morthier, R. Baets. CLADISS-a longitudinal multimode modelfor the analysis of the static,dynamic and stochastic behavior of diode lasers withdistributed feedback, Large signal dynamic model of the DFB laser. IEEE Journal ofQuantum Electronics,1990,26(10):1728-1741
    [111] J. Carroll, J. Whiteaway, D. Plumb. Distributed feedback semiconductor laser.1stedition, the Institution of Electrical Engineers,1998.25-29
    [112] S. F. Yu, N. Q. Ngo. Simple model for a distributed feedback laser integrated with aMach Zehnder modulator. IEEE Journal of Quantum Electronics,2002,38(8):1062-1074
    [113] L. M. Zhang, J. Carroll. Semiconductor1.55μm laser source with gigabit/secondintegrated electro absorptive modulator. IEEE Journal of Quantum Electronics,1994,30(11):2573-2577
    [114] L. Dong, R. Zhang, D. Wang. Modeling widely tunable sample grating DBR laserusing traveling wave mode with digital filter approach. IEEE Journal of LightwaveTechnology,2009,27(15):3181-3188
    [115] J. Park, Y. Kawakami. Time domain models for the performance simulation ofsemiconductor optical amplifiers. Optics Express,2006,14(7):2956-2968
    [116] C. Z. Ning, R. A. Indik, J.V. Moloney. Effective Bloch equation for semiconductorlasers and amplifiers. IEEE Journal of Quantum Electronics,1997,33(9):1543-1550
    [117] D. J. Jones, L. M. Zhang, J. Carroll. Dynamics of monolithic passively mode lockedsemiconductor lasers. IEEE Journal of Quantum Electronics,1995,31(6):1051-1058
    [118] R. Scarmozzino, A. Gopinath, R. Pregla. Numerical techniques for modeling guidedwave photonic devices. IEEE Journal of Selected Topics in Quantum Electronics,2000,6(1):150-162
    [119] W. Li, W. P. Huang, X. Li. Digital filter approach for simulation of a complexintegrated laser diode based on the traveling wave model. IEEE Journal of QuantumElectronics,2004,40(5):473-480
    [120] S. L. Sochava and W. B. Chapman. Intra-cavity etalon with asymmetric powertransfer function. United State Patent,2006,7061946B2:1-18
    [121] H. Stao, J. Ohya. Theory of spectral linewidth of external cavity semiconductorlasers. IEEE Journal of Quantum Electronics,1986,22(7):1060-1063
    [122] T. Fujita, J. Ohya, S. Ishizuka, et al. Oscillation frequency shift suppression ofsemiconductor lasers coupled to external cavity. Electronics Letters,1984,20(10):415-417
    [123] O. Nilsson, S. Sato, Y. Yamamoto. Oscillation frequency, linewidth reduction andfrequency modulation characteristics for a diode laser with external grating feedback.Electronics Letters,1981,17:589-591
    [124] Eagleyard photonics. Relative intensity noise of distributed feedback lasers.Application note,2007.1-6
    [125] H. Shi, D. Cohen, J. Barton, et al. Relative intensity noise measurements of a widelytunable sampled grating DBR lasers. IEEE Photonics Technology Letters,2002,14:759-761
    [126] H. Ishii, K. Kasaya, H. Oohashi. Wavelength-tunable lasers for next-generationoptical networks. NTT Technical Review,2011,9(3):1-6
    [127] K. Kikuchi, Effect of1/f-type FM noise on semoiconductor laser linewidth residualin high-power limit. IEEE Journal of Quantum Electronics,1989,25(4):684-688
    [128] T. Okoshi, K. Kikuchi, A. Nakayama. Novel method for high resolution measurement oflaser output spectrum. Electronics Letters,1985,21:1011-1012
    [129] Hidemi Tsuchida. Characterization of white and flicker frequency modulation noisein narrow-linewidth laser diodes. IEEE Photonics Technology Letters,2011,23(11):727-729
    [130] S. Camatel, V. Ferrero. Narrow linewidth CW laser phase noise characterizationmethods for coherent transmission system application. IEEE Journal of LightwaveTechnologies,2008,26(17):3048-3055
    [131] N. H. Zhu, J. W. Man, H. G. Zhang. Lineshape analysis of the beat signal betweenoptical carrier and delayed sidebands. IEEE Journal of Quantum Electronics,2010,46(3):347-353
    [132] Y. Shibata, E. Yamada, T. Yasui, et al. Demonstration of112-Gbit/s DP-QPSKmodulation using InP n-p-i-n Mach-Zehnder modulators. In Proceedings of EuropeanConference on Optical Fiber Communication,2011.1-3
    [133] Xingwen Yi, William Shieh, Yiran Ma. Phase noise effects on high spectralefficiency coherent optical OFDM transmission. IEEE Journal of LightwaveTechnology,2008,26(10):1309-1316

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700