高速光探测器的关键技术
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着当前用户对通信系统的速度和容量的要求快速增长,光网络需要不断地升级以满足用户对未来数据传输系统高容量的需求。通过波分复用和时分复用等技术,目前单根光纤的最大传输容量已经达到了102.3Tera-bit/s。高速光探测器能够把调制的光信号转换成高速的电信号,是通信系统接收端的关键器件。另外,光探测器在包括毫米波及太赫兹波信号产生、光混频器等的模拟光链路中也发挥了重要作用。本论文对InP基高速光探测器、相关器件及其重要应用的关键技术进行了深入研究,主要研究内容包括:
     1.多模干涉耦合器
     对受限制干涉和一般干涉两种结构的2x23dB耦合器的性能进行了分析对比,提出了新的比较方法,得到了一般干涉结构耦合器具有更紧凑的结构、相似的性能的结论。所制作的两种结构的2x2多模干涉耦合器在测试波长范围(1540~1560nm)内,损耗为-10~-5dB,不平衡度在1dB以内。还提出了一种新型多段式1.55μm/1.31μm多模干涉光分波器,其长度较以往理论设计的多模干涉结构的光分波器减小80%以上,具有低损耗、高消光比的特点。对1.55μmm光的消光比是22.4dB,插入损耗是-0.62dB;对1.31μm光的消光比是12dB,插入损耗是-1.46dB。
     2.高速InP基光探测器
     利用耦合光波导理论,提出了一种简单有效的倏逝耦合探测器波导结构的设计方法。所制作探测器的光响应度在0.5~0.7A/W,带宽在70-120GHz。在不加温度控制条件下,入射10GHz光信号,器件饱和光电流超过20mA;入射100GHz光信号,饱和光电流约16mA,微波输出功率超过OdBm。利用Atlas软件并结合不同的物理模型,对所制作探测器的暗电流进行了研究,仿真结果与实际测试结果相近,得到了探测器吸收层的掺杂浓度和厚度是影响探测器暗电流大小的重要因素的结论,还分析了在高入射光功率下,探测器出现饱和现象的物理过程。利用HFSS、ADS以及描述探测器载流子行为的漂移扩散模型,建立了描述探测器频率响应(DC-110GHz)的电路模型。所制作探测器在0V偏压下,响应度基本与加2V偏压情况下测得的响应度相等,带宽约40GHz,直流饱和光电流6mA左右。设计了一种可以提高探测器带宽-饱和电流积的串联式探测器,由于两探测器串联连接,其总电容减半,同时串联式探测器的总面积增加,因而提高了探测器的带宽-饱和电流积。
     3.光探测器集成天线器件
     建立描述50G~IT频率范围内探测器集成对数周期天线或“准偶极子”天线器件频率响应的电路模型。自偏置光探测器集成对数周期天线器件在200GHz附近频率上输出功率0.3μW,700GHz输出功率约8nW;光探测器集成对数周期天线器件在200GHz上输出功率3μW,700GHz上输出功率约30nW,适用于毫米波信号产生。对探测器集成“准偶极子”天线器件与WR10波导耦合封装新结构在W band内的频率响应进行了分析,证明了衬底模式的干涉是导致频率响应出现谐振谷的原因。耦合封装结构对WR10波导长度不敏感,天线器件插入WR10波导内的最佳深度约1000~1200μm。根据天线基本原理,提出了一种新型双偶极子端射天线结构,将天线辐射方向改变成水平方向,可以简化探测器集成天线器件封装的难度,同时还可以比较容易地与WR10、WR8波导耦合,提高了耦合封装器件的工作频段。
With the demand for high speed and large capacity of modern communication systems growing rapidly, the optical network will be upgraded continuously to meet the requirements of high capacity for future data transmission systems. By employing wavelength division multiplexing and time division multiplexing techniques, the maximum capacity in single fiber has reached to102.3Tera-bit/s. High speed photodiodes, which can transform the modulated optical signals into high speed electrical signals, are the key devices on the receiver side of communication systems. Besides, high speed photodiodes are also widely used in analog optics links, such as the generation of millimeter or terahertz wave signal and optical oscillators, etc. This dissertation is mainly concerned with key technologies of InP based high speed photodiodes, related devices, and their significant applications. The main results are outlined as below:
     1. Multimode interference couplers
     The comparison between performances of2x2restricted multimode interference (MMI) couplers and2x2general MMI couplers has been demonstrated. A novel comparison method has been proposed, drawing a conclusion that general multimode interference devices have more compact dimensions and similar performances. The fabricated2x2MMI couplers have low loss and high imbalance. Within the wavelength range(1540-1560nm), the insertion loss of the fabricated2x2MMI couplers ranges from-lOdB to-5dB, and the imbalance ranges from-1dB to1dB. A novel1.55μ m/1.31u m multi-section MMI wavelength splitter design has been presented. The MMI wavelength splitter, whose length is shorter than20%of the conventional design, has low loss and high extinction ratio. The insertion loss is22.4dB at1.55μ m, and-1.46dB at1.31um. The extinction ratio is22.4dB at1.55μm, and12dB at1.31μ m.
     2. High speed InP based photodiodes
     According to the coupling modes theory, A simple and effective method has been presented for evanescently coupled photodiodes design. The responsivity of fabricated photodiodes ranges from0.5A/W to0.7A/W, and bandwidth ranges from70GHz to120GHz. Without temperature control, the saturation current of photodiodes is higher than20mA at10GHz, about16mA at100GHz. The microwave output power of photodiodes is higher than OdBm at100GHz. The research on dark current of photodiodes has been successfully done by combining Atlas and various physical models. It is found that the doping concentration and thickness of the absorption layer of photodiodes are two main factors determining the dark current. The physical process of the photodiodes saturation behavior under high input optical power has also been analyzed. A novel circuit model for simulating the frequency response (DC-110GHz) of photodiodes has been developed by employing HFSS, ADS and drift-diffusion model. The simulation results agree well with measurement ones. Under zero bias voltage, the3dB bandwidth of photodiodes is about40G, the DC saturation current is about6mA, and the responsivity is similar with that under2V bias voltage. Two series connection photodiodes have been designed. Due to halved capacity induced by two photodiodes in series connection and larger total area, the saturation current-bandwidth product of the proposed photodiodes structure has been improved.
     3. Antenna-integrated photodiodes chips
     The circuit model for simulating the frequency response (50G-1T) of photodiodes chips integrating log period antennas or quasi dipole antennas has been developed successfully. Log period antenna-integrated self-bias photodiodes chips delivered about0.3μ W at200GHz, and about8nW at700GHz, and log period antenna-integrated photodiodes chips delivered about3μ W at200GHz, about30nW at700GHz. The fabricated devices are suitable for the generation of the millimeter wave signal. The investigation and analysis of the novel coupling packaging structure of quasi dipole antenna-integrated photodiodes chips and WR10waveguides have been performed, drawing the conclusion that the notch in the frequency response is caused by the interference of substrate modes. The coupling packaging structure is not sensitive to the length of WR10waveguide, and the optimal depth of the chips inserting the WR10waveguide is about1000-1200μm. According to the antenna theory, a novel dual dipole end fire antenna has been proposed, converting the radiation of the antenna from vertical to horizontal direction, simplifying the difficulty of packaging, improving the coupling efficiency between chips and WR10or WR8waveguide, and expanding the operating frequency range.
引文
[1]K. C. Kao, G. A. Hockham, Dielectric-fibre surface waveguides for optical frequencies, Proc. IEE,113(7),1966, pp.1151-1158.
    [2]Ronald Freund, Multi-level modulation for high-capacity WDM-systems, ECOC, 2012.
    [3]S. Kawanishi, Ultrahigh-speed optical time-division-multiplexed transmission technology based on optical signal processing, IEEE J. Quantum Electron, 34(11),1998, pp.2064-2079.
    [4]黎原平(著),朱勇,项鹏,王永强等(译),数字光通信,电子工业出版社,2011.
    [5]Haisheng Rong, Simon Ayotte, Walid Mathlouthi, Mario Paniccis, Mid-span dispersion compensation via optical phase conjugation in silicon waveguides, OFC/NFOEC,2008, OWP2.
    [6]J.-X. Cai, Y. Cai, C. R. Davidson, D. G. Foursa, A. Lucero, O. Sinkin, W. Patterson, A. Philipetskii, G. Mohs, and N. S. Bergano, Transmission of 96x100 G pre-filtered PDM-RZ-QPSK channels with 400%spectral efficiency, in Proc. OFC 2010, San Diego, CA, Mar.2010, Paper PDPB10.
    [7]X. Zhou, J. Yu, M.-F. Huang, et al,64-Tb/s (640x107-Gb/s) PDM-36 QAM transmission over 320 kmusing both pre-and post-transmission digital equalization, in Proc. OFC/NFOEC 2010, Mar.2010, Paper PDPB9.
    [8]T. Richter, E. Palushani, C. Schmidt-Langhorst, et al., Single wavelength channel 10.2 Tb/s TDM-data capacity using 16-QAM and coherent detection, in Proc. Opt. Fiber Commun. Conf.,2011, paper PDPA9.
    [9]D. Qian, M. Huang, E. Ip, et al, High capacity/spectral efficiency 101.7-Tb/s WDM transmission using PDM-128QAM-OFDM over 165-km SSMF within C-and L-bands, J. Lightw. Technol.,30(10),2012, pp.1540-1548.
    [10]D. Qian, M. Huang, E. Ip, et al.,101.7-Tb/s (370x294-Gb/s) PDM-128QAM-OFDM transmission over 3x55-km SSMF using pilot-based phase noise mitigation, in Proc. OFC 2011, Mar.2011, Paper PDPB5.
    [11]A. Sano, T. Kobayashi, S. Yamanaka, et al.,102.3-Tb/s (224x548-Gb/s) C-and extended L-band all-Raman transmission over 240 km using PDM-64QAM single carrier FDM with digital pilot tone, in Proc. OFC 2012, Mar.2012, Paper PDP5C.
    [12]徐坤,李建强.面向宽带无线接入的光载无线系统.北京:电子工业出版社.2008.
    [13]谢世钟,陈明华,陈宏伟,微波光子学研究的进展,中兴通讯技术,3,2009.
    [14]Tadao Nagatsuma, Hiroshi Ito, and Tadao Ishibashi, High-power RF photodiodes and their applications, Laser&Photon. Rev,1(2),2009, pp. 123-137.
    [15]C. Cox, E. Ackerman, G. Betts, and J. Prince, Limits on the performance of RF-over-fiber links and their impact on device design, IEEE Trans. Microw. Theory Tech.,54(2),2006, pp.906-920.
    [16]C. Mann, Practical challenges for the commercialization of terahertz electronics, in Proceedings of the D5EE/MTTS International Microwave Symposium, Honolulu,2007, pp.1705-1708.
    [17]M. Tonouchi, Cutting-edge terahertz technology, Nature Photonics 1,2007, pp. 97-105.
    [18]A. Hirata, M. Harada, and T. Nagatsuma,120-GHz wireless link using photonic techniques for generation, modulation, and emission of millimeter-wave signals, IEEE J. Lightwave Technol.21,2003, pp.2145-2153.
    [19]H. Ito, T. Furuta, T. Kosugi, et al., Over-10-dBm output uni-traveling-carrier photodiode module integrating a power amplifier for wireless transmissions in the 125-GHz Band, IEICE Electronics Express 2,2005, pp.446-450.
    [20]R. W. Ridgway and D. W. Nippa, Generation and modulation of a 94-GHz signal using electrooptic modulators, IEEE Photon. Technol. Lett.20,2208, pp. 653-655.
    [21]H.-J. Song, N. Shimizu, T. Furuta, K. Suizu, H. Ito, and T. Nagatsuma, Broadband frequency tunable photonic sub-terahertz wave generation for spectroscopic applications, Tech. Digest,20th Annual Meeting of the IEEE Lasers and Electro-Optics Society, ThF2,2007, pp.733-734.
    [22]S. Klinger, M. Berroth, M. Kaschel, M. Oehme, and E. Kasper, Ge-on-Sip-i-n photodiodes with a 3-dB bandwidth of 49 GHz, IEEE Photon. Technol. Lett., 21(13),2009, pp.920-922.
    [23]D. Liang and J. E. Bowers, Photonic integration:Si or InP substrates, Electron. Lett.,45(12),2009, pp.578-581.
    [24]L. Vivien, J. Osmond, J.-M. F'ed'eli, et al.,42 GHz p-i-n germanium photodetector integrated in a silicon-on-insulator waveguide, Optics Express, 17(8),2009, pp.6252-6257.
    [25]Christopher T. DeRose, Douglas C. Trotter, William A. Zortman, et al., Ultra compact 45 GHz CMOS compatible Germanium waveguide photodiode with low dark current, Optics Express,19(25),2011, pp.24897-24909.
    [26]Laurent Vivien, Andreas Polzer, Delphine Marris-Morini, et al., Zero-bias 40Gbit/s germanium waveguide photodetector on silicon, Optics Express,20(2), 2012, pp.1096-1101.
    [27]Guoliang Li, Ying Luo, Xuezhe Zheng, et al, Improving CMOS-compatible Germanium photodetectors, Optics Express,20(24),2012, pp.26345-26350.
    [28]Larry A. Coldren, Scott W. Corzine. Diode lasers and photonic integrated circuits. New York:Wiely,1995.
    [29]L. A. Coldren, Monolithic tunable diode lasers, IEEE Journal of Selected Topics in Quantum Electronics,6,2000, pp.988-999.
    [30]Periodic Loading and selective undercut etching for high-impedance traveling-wave electroabsorption modulators, OFC,2008, OThC6.
    [31]J. Leuthold, L. Moller, J. Jaques, et al,160 Gbit/s SOA all-optical wavelength converter and assessment of its regenerative properties, Electronics Letters,40, 2004, pp.554-555.
    [32]Andreas Beling and Joe C. Campbell, InP based high-speed photodetectors, Journal of lightwave technology,27(3),2009, pp.343-355.
    [33]Seok-Hwan Jeong, and Ken Morito, Novel optical 90° hybrid consisting of a paired interference based 2x4 MMI coupler, a phase shifter and a 2x2 MMI coupler, Journal of lightwave technology,28(9),2010, pp.1323-1331.
    [34]R. Nagarajan, M. Kato, J. Pleumeekers, et al., Single-chip 40-channel InP transmitter photonic integrated circuit capable of aggregate data rate of 1.6 Tbit/s, Electron. Lett.,42(13),2006, pp.771-773.
    [35]Yuanbing Cheng, Jiaoqing Pan, Yang Wang, et al.,40-Gbit/s low chirp electroabsorption modulator integrated with DFB laser, IEEE Photon. Technol. Lett.21(6),2009, pp.356-358.
    [36]M. L. Masanovic, V. Lal, J. S. Barton, et al., Monolithically integrated Mach-Zehnder interferometer wavelength converter and widely tunable laser in InP, Photon. Technol. Lett.,15,2003, pp.1117-1119.
    [37]K. Kato, Ultrawide-band/high-frequency photodetectors, IEEE Trans. Microw. Theory Tech.,47(7),1999, pp.1265-1281.
    [38]Y.-G. Wey, K. Giboney, J. Bowers, M. Rodwell, P. Silvestre, P. Thiagarajan, and G. Robinson,110-GHz GaInAs/InP double heterostructure p-i-n photodetectors, J. Lightw. Technol.,13(7),1995, pp.1490-1499.
    [39]I. Kimukin, N. Biyikli, B. Butun,O. Aytur, S. M. Uenlue, and E. Ozbay, InGaAs-Based high-performance p-i-n photodiodes, IEEE Photon. Technol. Lett.,14(3),2002, pp.366-368.
    [40]T. Ishibashi, N. Shimizu, S. Kodama, H. Ito, T. Nagatsuma, and T. Furuta, Uni-traveling-carrier photodiodes, in Tech. Dig. Ultrafast Electron. Optoelectron.,1997, pp.83-87.
    [41]N. Shimizu, N. Watanabe, T. Furuta, and T. Ishibashi, InP-InGaAs uni-traveling-carrier photodiode with improved 3 dB bandwidth of over150 GHz, IEEE Photon. Technol. Lett.,10(3),1998, pp.412-141.
    [42]Y.-S. Wu and J.-W. Shi, Dynamic analysis of high-power and high speed near-ballistic unitraveling carrier photodiodes at w-band, IEEE Photon. Technol. Lett.,20(13),2008, pp.1160-1162.
    [43]X. Wang, N. Duan, H. Chen, and J. C. Campbell, InGaAs/InP photodiodes with high responsivity and high saturation power, IEEE Photon. Technol. Lett., 19(16),2007, pp.1272-1274.
    [44]J. E. Bowers and C. A. Burrus, High-speed zero-bias waveguide photodetectors, Electron. Lett.,22(17),1986, pp.905-906.
    [45]K. Kato, A. Kozen, Y Muramoto, Y. Itaya, T. Nagatsuma, and M. Yaita, 110-GHz,50%-efficiency mushroom-mesa waveguide p-i-n photodiode for a 1.55 μ m wavelength, IEEE Photon. Technol. Lett.,6(6),1994, pp.719-721.
    [46]H. Fukano and Y. Matsuoka, A low-cost edge-illuminated refracting-facet photodiode module with large bandwidth and high responsivity, J. Lightw. Technol.,18(1),2000, pp.79-83.
    [47]Y. Muramoto, K. Yoshino, S. Kodama, Y Hirota, H. Ito, and T. Ishibashi,100 and 160 Gbit/s operation of uni-travelling-carrier photodiode module, Electron. Lett.,40(6),2004, pp.378-379.
    [48]S. Demiguel, N. Li, X. Li, X. Zheng, J. Kim, J. C. Campbell, H. Lu, and A. Anselm, Very high responsivity evanescently coupled photodiodes integrating a short planar multimode waveguide for high-speed applications, IEEE Photon. Technol. Lett.,15(12),2003, pp.1761-1763.
    [49]Kirk S. Giboney, Radhakrishnan L. Nagarajan, et al., Travelling-wave photodetectors with 172-GHz bandwidth and 76-GHz bandwidth-efficiency product, IEEE Photonics Technology Letters,7(4),1995, pp.412-414.
    [50]Y. Hirota, T. Ishibashi, and H. Ito,1.55 u m wavelength periodic traveling-wave photodetector fabricated using unitraveling-carrier photodiodestructures, J. Lightw. Technol.,19(11),2001, pp.1751-1758.
    [51]S. Murthy, S.-J. Kim, T. Jung, et al., Backward-wave cancellation in distributed traveling-wave photodetectors, J. Lightw. Technol.,21(12),2003, pp. 3071-3077.
    [52]A. Beling, J. C. Campbell, H.-G. Bach, G. G. Mekonnen, and D. Schmidt, Parallel-fed traveling wave photodetector for>100-GHz applications, J. Lightw. Technol.,26(1),2008, pp.16-20.
    [53]Mourad Chtioui, Daniele Carpentier, Benjamin Rousseau, et al., Experimental and theoretical linearity investigation of high-power uni-traveling-carrier photodiodes, IEEE Photonics Technology Letters,21(17),2009, pp.1247-1249.
    [54]J.-W. Shi, Y.-S. Wu, C.-Y Wu, et al., High-speed, high-responsivity, and high-power performance of near-ballistic uni-traveling-carrier photodiode at 1.55-μm wavelength, IEEE Photonics Technology Letters,17(9),2005, pp. 1929-1931.
    [55]E. Rouvalis, M. Chtioui, F. van Dijk, F. Lelarge, M. J. Fice, C. C. Renaud, G.Carpintero, and A. J. Seeds,170 GHz uni-traveling carrier photodiodes for InP-based photonic integrated circuits, Optics Express,20(18),2012, pp. 20090-20095.
    [56]Efthymios Rouvalis, Cyril C. Renaud, David G. Moodie, Michael J. Robertson, and Alwyn J. Seeds, Continuous wave terahertz generation from ultra-fast InP-based photodiodes, IEEE Transactions on Microwave Theory and Techniques,60(3),2012, pp.509-517.
    [57]E. Rouvalis, M. Chtioui, M. Tran, F. Lelarge, F. van Dijk, M. J. Fice, C. C. Renaud, G. Carpintero, and A. J. Seeds, High-speed photodiodes for InP-based photonic integrated circuits, Optics Express,20(8),2012, pp.9172-9177.
    [58]Andreas Beling, Hao Chen, Huapu Pan, and Joe C. Campbell, High-power monolithically integrated traveling wave photodiode array, IEEE Photonics Technology Letters,21(24),2009, pp.1813-1815.
    [59]M. S. Islam, S. Murthy, T. Itoh, M. C. Wu, D. Novak, R. B.Waterhouse, D. L. Sivco, A. Y. Cho, Velocity-matched distributed photodetectors and balanced photodetectors with p-i-n photodiodes, IEEE Trans. Microwave Theory and Techniques,49(10),2001, pp.1314-1920.
    [60]Andreas Stohr, Robert Heinzelmann, Andrei Malcoci, and Dieter Jager, Optical heterodyne millimeter-wave generation using 1.55-μ m traveling-wave photodetectors, IEEE Transactions on Microwave Theory and Techniques, 49(10),2001, pp.1929-1933.
    [61]P. J. Winzer, and R.J. Essiambre, Advanced modulation formats forhigh-capacity optical transport networks, J. Lightw. Technol.,24(12),2006, pp.4711-4728.
    [62]A. Beling, PIN photodiode modules for 80 Gbit/s and beyond, in Tech. Dig. Optical Fiber Commun. (OFC 2006), Anaheim, CA, Mar.05-10,2006, paper OFI1.
    [63]S. Demiguel, X. Li, N. Li, H. Chen, J. C. Campbell, J. Wei, and A. Anslem, Analysis of partially depleted absorber waveguide photodiodes, J. Lightw. Technol.,23(8),2005, pp.2505-2512.
    [64]H.-G. Bach, A. Matiss, C. C. Leonhardt, R.Kunkel, D. Schmidt, M. Schell, and A. Umbach, Monolithic 90° hybrid with balanced PIN photodiodesfor 100 Gb/s PM-QPSK receiver applications, IEEE Conf. Opt. Fiber Commun., San Diego, CA,2009.
    [65]Martin Schell, Heinz Gunter Bach, Klemens Janiak, et al., Coherent receiver photonic integrated circuits, IEEE Conf. Opt. Fiber Commun., San Francisco, CA,2013.
    [1]L. B. Soldano and E. C. M. Pennings, Optical multi-mode interference devices based on self-imaging:Principals and applications, IEEE J. Lightw. Technol., 13(4),1995, pp.615-627.
    [2]Ultracompact, low-loss directional couplers on InP based on self-imaging by multimode interference, Appl. Phys. Lett.,59(16),1991, pp.1926-1928.
    [3]Yuta Ueda, Shinya Nakamura, Shinji Fujimoto, Hiroto Yamada, Katsuyuki Utaka, Takashi Shiota, and Takeshi Kitatani, Polarization-independent low-crosstalk operation of InAlGaAs-InAlAs Mach-Zehnder interferometer-type photonic switch with hybrid waveguide structure, IEEE Photon. Technol. Lett.21(16),2009, pp.1118-1120.
    [4]T. Fujisawa and M. Koshiba, Theoretical investigation of ultrasmall polarization insensitive 1x2 multimode interference waveguides based on sandwiched structures, IEEE Photon. Technol. Lett.,18(11),2006, pp.1246-1248.
    [5]Y. Shi, S. Anand, and S. He, A polarization-insensitive 1310/1550-nm demultiplexer based on sandwiched multimode interference waveguides, IEEE Photon. Technol. Lett.,19(22),2207, pp.1789-1791.
    [6]Kqji Kudo, Kenichiro Yashiki, Tatsuya Sasaki, Yoshitaka Yokoyama, Kiichi Hamamoto, Tokao Morimoto, and Masayuki Yamaguchi,1.55-μm wavelength-selectable microarray DFB-LD's with monolithically integrated MMI combiner, SOA, and EA-modulator, IEEE Photon. Technol. Lett.,12(3), 2000, pp.242-245.
    [7]S. S. Agashe, S. Datta, F. Xia, and S. R. Forrest, A monolithically integrated long-wavelength balanced photodiode using asymmetric twin-waveguide technology, IEEE Photon. Technol. Lett.16(22),2004, pp.236-238.
    [8]O. Bryngdahl, Image formation using self-imaging techniques, J. Opt. Soc. Amer,63(4),1973, pp.41-19.
    [9]R. Ulrich, Image formation by phase coincidences in optical waveguides, Optics Commun.,13(3),1975, pp.259-264.
    [10]斯奈德(Allan W. Snyder), Snyder,洛夫(John D. Love),光波导理论,人民邮电出版社,1991,译者:周幼威.
    [11]E. C. M. Pennings, R. vanRoijen, M. J. N. van Stralen, P. J. de Waard, R G. M. P. Koumans, and B. H. Verbeek, Reflection properties of multimode interference devices, IEEE Photon. Technol. Lett.,6(6),1994, pp.715-718.
    [12]Stecanus Darmawan, Shuh-Ying Lee, Chee-Wei Lee, Mee-Koy Koy Chin, A rigorous comparative analysis of directional couplers and multimode interferometers based on ridge waveguides, Journal of selected topics in quantum electronics,11(2),2005, pp.466-475.
    [13]C. Themistos and B. M. A. Rahman, Design issues of a multimode interference-base 3-dB splitter, Appl. Opt.,41,2002, pp.7037-7044.
    [14]P. A. Besse, M. Bachmann, H. Melchior, L. B. Soldano, and M. K. Smit, Optical bandwidth and fabrication tolerances of multimode interference couplers, IEEE J. Lightwave Technol.,12,1994, pp.1004-1009.
    [15]R. Scarmozzino, A. Gopinath, R. Pregla, and S. Helfert, Numerical techniques for modeling guided-wave photonic devices, IEEE J. Select. Top. Quantum Electron.,6,2000, pp.150-162.
    [16]Michael Quirk, and Julian Serda.译者:韩郑生.半导体制造技术.电子工业出版社,2004,
    [17]J. Xiao, X. Liu, and X. Sun, Design of an ultracompact MMI wavelength demultiplexer in slot waveguide structures, Opt. Express 15(13),2007, pp. 8300-8308.
    [18]H. G. Bach, R. Kunkel, G. G. Mekonnen, D. Pech, T. Rosin, D. Schmidt, T. Gaertner, and R. Zhang, Integration potential of waveguide-integrated photodiodes:self-powered photodetectors and sub-THz pin-Antennas, in Optical Fiber Communication Conference (OFC,2008),OMK1.
    [19]R. Y. Zhang, K. Janiak, H. G. Bach, R. Kunkel, A. Seeger, S. Schubert, and M. Schell, Performance of InP based 90°-hybrids QPSK receivers within C-Band, in International Conference on Indium Phosphide and Related Materials (IPRM, 2011).
    [20]Y. Shi, S. Anand, and S. He, A polarization-insensitive 1310/1550-nm demultiplexer based on sandwiched multimode interference waveguides, IEEE Photon. Technol. Lett.,19(22),2007, pp.1789-1791.
    [21]H.-G. Bach, High-speed photodetectors:self-biasing and high-power behavior, Electrochemical Society Transactions,16 (41),2009, pp.9-15.
    [1]K. Schuh, B. Junginger, E. Lach, et al.,8x85.4 Gbit/s WDM field transmission over 421 km SSMF link applying an 85.4 Gbit/s ETDM receiver, in Proc.31st Eur. Conf. Optical Commun., Glasgow, U.K., Sep.25-29,2005, vol.3, pp. 379-380, We2.2.2.
    [2]Tadao Nagatsuma, Hiroshi Ito, and Tadao Ishibashi, High-power RF photodiodes and their applications, Laser&Photon. Rev,1(2),2009, pp. 123-137.
    [3]S. Adachi, Physical Properties of Ⅲ-Ⅴ Semiconductor Compounds. New York: Wiley,1992.
    [4]S. M. Sze, Physics of semiconductor devices, John Wiley and Sons,1981.
    [5]K. Kato, S. Hata, K. Kawano, and A. Kozen, Design of ultrawide-band, high-sensitivity p-i-n photodetectors, IEICE Trans. Electron., E76-C(2),1993, pp.214-221.
    [6]Atlas user's manual,2012.
    [7]Hall, R.N., Electron Hole Recombination in Germanium, Phys. Rev.87 (2), 1952, pp.387-387.
    [8]汪志诚.热力学与统计物理.高等教育出版社.2008.
    [9]Andreas Beling and Joe C. Campbell, InP-based high-speed photodetectors, IEEE J. Lighw. Technol.27(2),2009, pp.343-354.
    [10]S. Demiguel, N. Li, X. Li, et al., Very high responsivity evanescently coupled photodiodes integrating a short planar multimode waveguide for high-speed applications, IEEE Photon. Technol. Lett.,15(12),2003, pp.1761-1763.
    [11]H.-G. Bach, A. Beling, G. G. Mekonnen, et al., InP-based waveguide-integrated photodetector with 100-GHz bandwidth, IEEE J. Select. Top. Quantum Electron., 10(4),2004, pp.668-672.
    [12]J.-W. Shi, Y-S. Wu, C.-Y. Wu, et al., High-speed, high-responsivity, and high-power performance of near-ballistic uni-traveling-carrier photodiode at 1.55μm wavelength, IEEE Photon. Technol. Lett.,17(9),2005, pp.1929-1931.
    [13]M. Achouche, V. Magnin, J. Harari, et al., High performance evanescent edge coupled waveguide unitraveling-carrier photodiodes for>40 Gb/s optical receivers, IEEE Photon. Technol. Lett.,16(2),2004, pp.584-586.
    [14]Zhang Yun, Zuo Yuhua, Guo Jianchuan, Ding Wuchang, Cheng Buwen, Yu Jinzhong, and Wang Qiming, A high-efficiency fiber-to-waveguide coupler with low polarization dependence using a diluted waveguide in InP substrate with a 1.55 μ m wavelength, Journal of Semiconductors,29(1),2008, pp.55-62.
    [15]Larry A. Coldren, Scott W. Corzine. Diode lasers and photonic integrated circuits. New York:Wiely,1995.
    [16]Jeong-Woo Park, High-responsivity and high-speed waveguide photodiode with a thin absorption region, IEEE Photon. Technol. Lett.,22(13),2010, pp. 975-977.
    [17]A. Umbach, D. Trommer, R. Steingrueber, et al., Ultrafast, high-power 1.55 μm side-illuminated photodetector with integrated spot size converter, in Techn. Digest Optical Fiber Communication Conf., pp.117-119.
    [18]P Susthitha Menon, Abang Annuar Ehsan and Sahbudin Shaari, Modeling and optimization of three-dimensional interdigitated lateral p-i-n photodiodes based on Ino.53Ga0.47As absorbers for optical communications, Advanced in photodiodes, In Tech,2011.
    [19]祝宁华.光电子器件微波封装和测试.科学出版社.2007.
    [20]Gang Wang, Tsuneo Tokumitsu, Ikuo Hanawa, et al., A time-delay equivalent-circuit model of ultrafast p-i-n photodiodes, IEEE Trans. Microw. Theory Tech.,51(4),2003, pp.1227-1233.
    [21]Jin-Wei Shi, F.-M. Kuo, C.-J. Wu, et al., Extremely high saturation current-bandwidth product performance of a near-ballistic uni-traveling-carrier photodiode with a flip-chip bonding structure, IEEE Journal of Quantum Electronics,46(1),2010, pp.80-86.
    [22]www.microwaves 101. com.
    [23]A. E. Ruehli, Inductance calculations in a complex integrated circuit environment, IBM Journal of Research and Development,16(5),1972, pp. 470-481.
    [24]C. Jiang, V Krozer, H-G. Bach, G. G. Mekonnen, and T. K. Johansen, Packaging of photodetector modules for 100 Gbit/s applications using electromagnetic simulations, EuMC 2009 Rome, Sept.2009.
    [25]Hua Yang, Chris L. L. M. Daunt, Farzan Gity, et al., Zero-bias high-speed edge-coupled unitraveling-carrier InGaAs photodiode, IEEE Photon. Technol. Lett.,22(23),2010, pp.1747-1749.
    [26]Amir Hosseini, David Kwong, Che-Yun Lin, et al., Output formulation for symmetrically excited one-to-N multimode interference coupler, IEEE J. Sel. Topics Quantum Electron.,16(1),2010, pp.61-69.
    [27]Andreas Beling, Hao Chen, Huapu Pan, and Joe C. Campbell, High-power monolithically integrated traveling wave photodiode array, IEEE Photon. Technol. Lett.,21(24),2009, pp.1813-1815.
    [28]M. C. A. M. Koolen, J. A. M. Geelen, and M. P. J. G. Versleijen, An improved de-embedding technique for on-wafer high-frequency characterization, in Proc. IEEE Bipolar Circuits Techn. Meeting,1991, pp.188-191.
    [29]In Man Kang, Seung-Jae Jung, Tae-Hoon Choi, et al., Five step De-embedding method and its verification, IEEE Electron Device Letters,30 (4),2009, pp. 398-400.
    [30]David M. Pozar, Microwave Engineering, New York:Wiley,1998.
    [1]J. Chen, Y. Chen, H. Zhao, et al., Absorption coefficients of selected explosives and relatedcompounds in the range of 0.1-2.8 THz, Opt. Express 15,2007, pp.12060-12067.
    [2]Andreas Stoehr, Andrei Malcoci, Andres Sauerwald, et al., Ultra-wide-band traveling-wave photodetectors for photonic local oscillators, Journal of Lightwave Technology,21(12),2003, pp.3062-3070.
    [3]A. Hirata, T. Kosugi, H. Takahashi, R. Yamaguchi, F. Nakajima, T. Furuta, H. Ito, H. Sugahara, Y. Sato, and T. Nagatsuma,120-GHz-band millimeter-wave photonic wireless link for 10-Gb/s data transmission, IEEE Trans. Microwave Theory Tech.54,2006, pp.1937-1944.
    [4]Tadao Nagatsuma, Hiroshi Ito, and Tadao Ishibashi, High-power RF photodiodes and their applications, Laser&Photon. Rev,1(2),2009, pp. 123-137.
    [5]阮成礼.超宽带天线理论与技术.哈尔滨工业大学出版社,2006.
    [6]C.A Balanis. Antenna Theory Analysis and Design. New York:Wiley.2005.
    [7]Mark M. Gitin, Frank W. Wise, Broad-band characterization of millimeter-wave log-periodic antennas by photoconductive sampling, IEEE Transactions on antennas and propagation,42(3),1994.
    [8]H.-G. Bach, High-speed photodetectors:self-biasing and high-power behaviour, Electrochemical Society Transactions,16 (41),2009, pp.9-15.
    [9]J. Rudd and D. Mittleman, Influence of substrate-lens design in terahertz time-domain spectroscopy, J. Opt. Soc. Am. B,19(2),2002, pp.319-329.
    [10]H. Roehle, R. J. B. Dietz, H. J. Hensel, et al., Next generation 1.5 μn terahertz antennas:mesa-structuring of InGaAs/InAlAs photoconductive layers, Opt. Express,18(3),2010, pp.2296-2301.
    [11]Yihong Yang, Alisha Shutler, and D. Grischkowsky, Measurement of the transmission of the atmosphere from 0.2 to 2 THz, Optics Express,19(9),2011, pp.8830-8838.
    [12]Efthymios Rouvalis, Cyril C. Renaud, David G. Moodie, et al., Continuous wave terahertz generation from ultra-fast InP-based photodiodes, IEEE Transactions and Microwave Theory,60(3),2012, pp.509-517.
    [13]G. E. Ponchak and R. N. Simons, A new rectangular waveguide to coplanar waveguide transition,1990 IEEE MTT-S Int. Microwave Symp. Dig., Dallas, TX, vol.1, pp.491-492, May 8-10,1990.
    [14]V. S. Moettoenen, Wideband coplanar waveguide-to-rectangular waveguide transition using fin-line taper, IEEE Microwave and Wireless Components Letters,15(2),2005, pp.119-121.
    [15]David M. Pozar, Microwave Engineering, New York:Wiley,1998.
    [16]Nan-Wei Chen, Hsuan-Ju Tsai, Fon-Ming Kuo, and Jin-Wei Shi, High-speed W-band integrated photonic transmitter for Radio-over-Fiber applications, IEEE Transactions on Microwave Theory and Techniques,59(4),2011, pp.978-986.
    [17]John D. Kraus, Ronald J. Marhefka. Antennas:for all applications. New York: McGraw-Hill,2002.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700