阵列波导器件的模场耦合与对准方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
阵列波导器件是支撑21世纪光纤通信高速发展的核心光电子器件。阵列波导器件的耦合封装是利用全空间6自由度的运动平台,将波导芯片与输入、输出阵列光纤进行光学对准耦合并固接,获得器件完整功能的制造过程。一方面,阵列波导器件的耦合封装是亚微米级定位精度、全空间、多通道的光学对准,任一通道的对准精度不足都将导致阵列波导器件信号传输或转换功能丧失,使得整个器件成为废品;另一方面,结合面固接强度与应力分布直接决定了耦合界面的附加微位移和器件的可靠性。阵列波导器件的耦合封装融合了导波光学、集成光学、控制科学、微细加工、材料科学的相关理论和前沿技术,是阵列波导器件制造的关键技术之一,成为制约集成光电子器件高速发展的技术瓶颈。
     论文围绕阵列波导器件的模场耦合理论、空间姿态检测与姿态对准技术、阵列波导器件多通道模场耦合技术以及其对准精度展开研究,主要研究内容和相应的结论如下:
     (1)基于电磁学波动方程和弱导条件研究了光纤和矩形波导的基模条件、模场分布近似误差和空间位错的模场耦合规律,分析了波长影响模场耦合损耗的规律,建立了模场耦合的波长相关性模型。模场耦合的波长相关性研究及其有限差分光束传输仿真实验表明,空间位错(轴间偏移、轴向间隙和轴间倾斜)是影响模场耦合损耗的主要原因,且波长影响耦合损耗的大小。
     (2)耦合组件之间的空间位姿运动是实现阵列波导器件耦合封装的前提条件。基于机构运动学D-H方程研究了阵列波导器件六维对准平台各运动机构与末端夹具位姿的对应关系,建立了六维对准平台的空间位姿运动方程;研究了旋转运动导致末端夹具偏移的规律,提出了保持末端夹具位置不动的旋转控制方程和维持平台旋转同心的D-H条件,为阵列波导器件模场耦合的空间位姿调整以及对准平台的优化设计提供理论指导。
     (3)耦合界面的空间姿态对准是减少轴间倾斜和轴向间隙的重要方法。通过分析二维平面矢量与三维立体矢量的空间几何关系,建立了双目正交成像的三维坐标系重构模型,提出了两种极角检测误差小于0.01度的直线检测算法,实现了阵列波导器件三维姿态的自动检测;以姿态检测为反馈,提出了耦合界面姿态对准的闭环控制方法,对准角度误差小于0.1度;基于坐标矩阵变换和空间几何关系,研究了直线检测误差和三维重构误差对三维姿态检测精度的影响,建立了三维姿态检测的误差模型,当三维重构误差足够小时,三维姿态的检测误差与二维直线的检测误差相当。
     (4)阵列波导器件耦合平面内的多通道模场耦合是减少轴间偏移,实现多通道精确对准的关键。基于耦合损耗函数的简化和多通道耦合损耗偏差的几何关系,提出了耦合模型拟合的单通道模场耦合算法和双通道耦合极值同步检测的通道均衡算法,分别实现了单通道耦合损耗小于O.15dB,双通道模场耦合损耗偏差小于O.15dB;研究了阵列光纤的制造误差、单通道对准误差和双通道耦合均衡的角度误差对多通道模场耦合的影响规律,建立了它们之间的理论模型,三种误差以相同的效果同时影响阵列波导器件的多通道模场耦合损耗。
Arrayed waveguide devices (AWD) have become the core of the integrated optoelectronic device, supporting the rapid development of optical fiber communication in the21st century. Packaging of AWDs is an essential manufacuring process to acquire their complete optical functions, in which the devices bonded firmly together with some kind of epoxy after a prcecise mode field coupling of the waveguide chip with the input&output fiber arrays on a flexible movement platform with6degrees of freedom in full space. On one hand, the coupling is an optical alignment with submicron-level positioning accuracy, whole space and multichannel. Insufficiency of the alignment accuracy of any channel will result in the fall of AWD's signal transmission or conversion function, and even make the whole device a waste; on the other hand, the junction intensity and the stress distribution of AWD inevitably cause the micrometric displacement on coupling interface in a complicated enviroment, and then degrate the reliability of the devices. Packaging of AWD, which is the key technology to fabricate AWD and become a technical bottleneck to hinder the developing of integrated optoelectronic devices, is a blend of multiple theories and the21st cutting-edge technologies that involve guided wave optics, integrated optics, control science, microfabrication and materials science.
     This paper developed some research focusing on mode field coupling theory, space gesture detection, pose alignment technology, multi-channel mode field coupling technology and accuracy analysis of the alignment of arrayed waveguide devices. The main research contents as well as the corresponding results are listed as follows:
     (1) Based on electromagnetism wave equation and weak guide conditions, this paper discussed the error distribution of some kinds of mode field distributions and the mode field coupling loss caused by spatial deviation according to fundamental mode conditions of fiber and rectangular waveguide, and then analyzed the discipline of mode field coupling loss under the combined action of wavelength and those spatial deviation, therefore this paper proposed a new wavelength correlation model of mode field coupling. Studies of mode field coupling loss and simulation experiments by the finite difference beam propagation were made effectviely and their results indicated that spatial deviation (such as axial deviation, axial clearance and axial decline) are some of the most important causes to induce mode field coupling loss, and meanwhile wavelength alter the amount of coupling loss as well.
     (2) The spatial pose movements between the coupling components are the precondition for AWD's coupling and packaging. Based on kinematics of mechanism D-H equation, this paper presented the spatial pose transformation equation of6-DOF platform after making search of relationships and regularities between the pose of the terminal fixture and those independent movement mechanisms, and also proposed a rotary control equation as well as a D-H condition which limit the deviation of terminal coordinate and acquire concentric rotation. The novel model of a rotary control and its conclusion will provide theoretical guidance for the spatial pose alignment of mode field coupling and the optimization of the6-DOF platform.
     (3) After analysis of the spatial geometrical relationship between2D vector and3D vector, this paper presented a reconstruction model for3D system with binocular orthogonal image system and two kinds of line detection algorithms with polar angle detection error less than0.01degree; based on the feedback of pose detection, this paper presented a closed-loop control method for the pose alignment with angle alignment error less than0.1degree; and based on the coordinate matrix transformation and the spatial geometry, the paper studied the accuracy of3D pose detection caused by line detection error and three-dimensional reconstruction error, and then built an error model of3D pose detection, which drew a conclusion that the error of3D pose detection is similar to that of2D line when the error of3D reconstruction is small enough.
     (4) The multichannel coupling in the coupling plane is the key to reduce axial deviation and achieve multichannel accurate alignment. Based on the simplification of coupling loss function and geometric deviation of the multichannel coupling, this paper proposed a kind of single-channel mode field coupling algorithm on model fitting methods and a kind of multiple channels equalization algorithm according to the coupling extremum of dual channels, which achieved single-channel coupling loss less than0.15dB and deviation of mode field coupling loss of2channels less than0.15dB respectively, and this paper also discussed the error distribution of the multichannel coupling loss caused by the manufacturing error, single-channel alignment error and the angle error of dual channels equalization and then built a theoretical model to analysize them. Theoretical analysis and numerical calculation showed that three kinds of the errors affect the multichannel mode field coupling losses simultaneously with the same effects.
引文
[1]潘建平,陈德棉,章仪.浅析光电子信息产业的特征与发展规律[J].集团经济研究,2005,(6):59-60.
    [2]杨恩泽,于晋龙,光通信回顾与前瞻[J].物理通报,2006,4:003.
    [3]Y. Yamada.Planar Lightwave Circuit Technology:The Key to Constructing Large-capacity Optical Networks[J].NTT Technical Review,2005,3 (1):6-11.
    [4]李允博.光子集成技术在光传送网(OTN)中的应用[J].通信世界.2009,15:18.
    [5]陈益新.光器件集成化是光网络发展的必由之路[J].网络电信,2003(1):38-40.
    [6]Kawachi, M. recent progress on silica-based planar lightwave circuits. Optoelectronics,1996,143(5):257-262.
    [7]Nagarajan R, Kato M, Pleumeekers J, et al. Single-chip 40-channel InP transmitter photonic integrated circuit capable of aggregate data rate of 1.6 Tbit/s[J]. Electronics Letters,2006,42(13):771-773.
    [8]Soref R.The past, present, and future of silicon photonics[J]. Selected Topics in Quantum Electronics, IEEE Journal of,2006,12(6):1678-1687.
    [9]Himeno A, Kato K, Miya T. Silica-based planar lightwave circuits[J]. Selected Topics in Quantum Electronics, IEEE Journal of,1998,4(6):913-924.
    [10]Krabe D, Heise G, Zavrsnik M, et al. Packaging of highly integrated PLC components[C]//Optical Fiber Communication Conference. Optical Society of America,2004.
    [11]梁永灵,陈根祥.阵列波导光栅技术及其研究进展[J].光通信技术.2006.4:4-8.
    [12]原荣.阵列波导光栅(AWG)器件及其应用[J].光通信技术,2010,34(1):1-5.
    [13]Payne F P.An analytical model for the coupling between the array waveguides in AWGs and star couplers.Optical and Quantum Electronics,2006,38: 237-248.
    [14]Papadimitriou G I, Papazoglou C, Pomportsis A S. Optical Switching:Switch Fabrics,Techniques, and Architectures[J]. Journal of Lightwave Technology, 2003,21(2):384-405.
    [15]Dorren H J S, Lucente S Di, Luo J, Raz O.Scaling Photonic Packet Switches to a Large Number of Ports. Journal of Optical Communications and Networking,2012,4(9):A82-A89.
    [16]周治平,郜定山,汪毅,等.硅基集成光电子器件的新进展.激光与光电子学进展,2006,44(2):31-38.
    [17]陈昊.平面光波导器件的发展[J].信息技术,2010(003):175-178.
    [18]Nagarajan R, Lambert D, Kato M, etc.10 Channel, 100Gbit/s per channel, dual polarization, coherent QPSK, monolithic InP receiver photonic integrated circuit[C]. Optical Fiber Communication Conference and Exposition (OFC/NFOEC),2011 and the National Fiber Optic Engineers Conference,2011:1-3.
    [19]Klein, Edwin J. and Urban, Patryk and Sengo, Gabriel and Hilderink, etc. Densely integrated microring resonator based photonic devices for use in access networks[J]. Optics Express,2007,15 (16):10346-10355.
    [20]Sharee J. McNab, Nikolaj Moll, and Yurii A. Vlasov.Ultra-low loss photonic integrated circuit with membrane-type photonic crystal waveguides[J]. OPTICS EXPRESS,2003,11 (22):2927-2939.
    [21]Spott T, Schumacher A B, Dieckroeger J, et al. Macroscopic and microscopic thermal management of a planar integrated optical device [C]//Optical Fiber Communication Conference. Optical Society of America,2003.
    [22]MARCUSE D. Microdeformation losses of single-mode fibers [J]. Applied Optics,1984,23(7):1082-1091.
    [23]沙慧军,陈抱雪.光波导-光纤耦合对接自动化系统的研究[J].光子学报,2005,34(12):1773-1777.
    [24]Jeong S H, Kim G H, Cha K R. A study on optical device alignment system using ultra precision multi-axis stage[J]. Journal of materials processing technology,2007,187:65-68.
    [25]Lierstuen L O, Sudba A S.Coupling losses between standard single-mode fibers and rectangular waveguides for integrated optics[J]. Applied Optics,1995, 34(6):1024-1028.
    [26]隋国荣,陈抱雪,张晓微,陈林.波导阵列与光纤阵列的智能算法自动对接.光学与光电技术[J],2006,4(5):32-34.
    [27]杨笛,余金中,刘忠立.光纤与波导器件的联接技术[J].激光与红外,2003,33(4):306-310.
    [28]Yang, H. Zhu, H. L. Xie, H. Y.etc. Silicon Bench for Passive Coupling and Packaging of High-Frequency Optoelectronic Devices [J]. Advanced Packaging, 2007,30(1):34-37.
    [29]Armiento CA, Tabasky M, Jagannath CJ, etc. Passive coupling of InGaAsP/InP laser array and singlemode fibres using silicon waferboard[J]. Electronics Letters,1991,27(12):1109-1111.
    [30]Kim J T, Yoon K B, Choi C G. Passive alignment method of polymer PLC devices by using a hot embossing technique [J]. Photonics Technology Letters, IEEE,2004,16(7):1664-1666.
    [31]Park S J, Jeong K T, Park S H, et al. A novel method for fabrication of a PLC platform for hybrid integration of an optical module by passive alignment[J]. Photonics Technology Letters, IEEE,2002,14(4):486-488.
    [32]ziker, W. Low-loss, self-aligned flip-chip technique for interchip and fiber array to waveguide OEIC packaging[C]. In:Lasers and Electro-Optics Society Annual Meeting,1994. LEOS '94 Conference Proceedings IEEE,1994,2:269-270.
    [33]张瑞君.用于光电子器件封装的耦合对准技术[J].光子技术,2003,2:79-83.
    [34]High Precision V-Groove in Silicon and Glass Chip. [EB/OL]. [2012-9-10]. http://www.o-eland.com/FiberOpticProducts/vgroove.htm.
    [35]Zhang R.Study of Novel Algorithms for Fiber-Optic Alignment and Packaging Automation[D].Dissertation for the degree of Doctor of Philosophy in Engineering,University of California Irvine,2003.
    [36]Tang Z, Zhang R, Shi F G. Effects of angular misalignments on fiber-optic alignment automation[J]. Optics Communications,2001,196(1):173-180.
    [37]Yamada Y, Hanawa F, Kitoh T. Maruno T. Low-Loss and Stable Fiber-to-waveguide Connection Utilizing UV Curable Adhesive [J]. Photonics Technology Letters,1992,(8):906-908.
    [38]Sarvar F, Hutt DA, Whalley DC. Application of adhesives in MEMS and MOEMS assembly:a review[C]. Polymers and Adhesives in Microelectronics and Photonics,2002. POLYTRONIC 2002.2nd International IEEE Conference.2002,22-28.
    [39]赵玉宇,吴健伟,于听,王冠.紫外光(UV)固化胶黏剂收缩率与强度的研究[J].化学与粘合,2008,3:24-27.
    [40]Silicon V-groove chips. [EB/OL].[2012-9-10].http://mizur.com/vgroove.html.
    [41]High Precision V-Groove Etching in {100} Silicon. [EB/OL]: [2012-9-10].http://www-mat.ee.tu-berlin.de/research/Groove/groove.htm.
    [42]Fang F Z, Venkatesh V C. Diamond Cutting of Silicon with Nanometric Finish. CIRP Annals-Manufacturing Technology.1998,47(1),45-49.
    [43]Priyadarshi A, Fen L H, Mhaisalkar S G,et al.Fiber misalignment in silicon V-grrove based optical modules[J]. Optical Fiber Technology, 2006,12(2):170-184.
    [44]Uddin M A, Chan H P, Lam K W, et al. Delamination problems of UV-cured adhesive bonded optical fiber in V-groove for photonic packaging[J]. Photonics Technology Letters, IEEE,2004,16(4):1113-1115.
    [45]Bhat,S.K.,Kurzweg,T.P.,Guez,A,Advanced packaging automation for opto-electronic systems[C], Lightwave Technologies in Instrumentation and Measurement Conference, Oct.19,2004,11-16.
    [46]Marr David. Vision[M], San Francisco:Freeman Publishers,1982.20-50.
    [47]King, F G, Puskorius, G V, Yuan, F, etc. Vision guided robots for automated assembly. Intelligent robots and computer vision[C]; Proceedings of the Meeting, Cambridge, MA,1987.11:518-524.
    [48]Tsai, R.Y. A new technique for fully autonomous and efficient 3D robotics hand/eye calibration[J]. Robotics and Automation.1989,5(3):345-358.
    [49]Cheng F, Chen X. Integration of 3d stereo vision measurements in industrial robot applications. Unpublished manuscript, Department of Engineering and Technology,University of Central Michigan, Mount Pleasant, Michigan. [EB/OL]:[2012-9-10].Retrieved from www.ijme.us/cd_08/PDF/34_ENG%20102.pdf.
    [50]Mure-Dubois J, Hugli H. Embedded 3D vision system for automated micro-assembly [J]. Proceedings of SPIE Two-and Three-Dimensional Methods for Inspection and Metrology IV,2006,6382:63820J.
    [51]Chuang H S, Chiu C H, Cheng M Y, Chuang Y C. Development of a Vision-Based Optical Fiber Alignment Platform Based on the Multirate Technique[C]. Industrial Technology,2008. ICIT 2008.2008:1-5.
    [52]Peterman K. Microbending loss in monomode fibers [J]. Electronic Letters, 1976,12 (4):107-109.
    [53]MARCUSE D. Loss analysis of single-mode fiber splices [J]. Bell System Technical Journal,1976,56(5):703-719.
    [54]Elsey J, Law S, Poladian L. Model based alignment of optical waveguides [C]. New Orleans:53rd Electronic Components and Technology Conference,2003. 1565-1567.
    [55]Mizukami, M. Alignment of multiple optical axes in a multistage optical system by using Hamiltonian algorithm[C]. Electronic Components and Technology Conference,1996. Proceedings.,46th.1996.1284!1288.
    [56]Mizukami M; Hirano M, Shinjo K. Simultaneous alignment of multiple optical axes in a multistage optical system by using Hamiltonian algorithm[J]. Optical Engineering 2001,40(3):448-454.
    [57]Pham, D. T.,Dimov, S. S. A system for automatic extraction of feature-based assembly information[J]. Journal of Engineering Manufacture.1999,213(B1) 97-101.
    [58]Miyazaki K. Method for aligning laser diode and optical fiber[P]:United States Patent. Patent No.:US6690865B2,Date of Patent:Feb.10,2004.
    [59]Zhang R, Guo J, Shi F G. Fast fiber-laser alignment:beam spot-size method[J]. Journal of lightwave technology,2005,23(3):1083..
    [60]Tseng C Y, Wang J P. Automation of multi-degree-of-freedom fiber-optic alignment using a modified simplex method [J]. International Journal of Machine Tools and Manufacture,2005,45(10):1109-1119.
    [61]Ehlers H, Biletzke M, Kuhlow B, et al. Optoelectronic packaging of arrayed-waveguide grating modules and their environmental stability tests[J]. Optical Fiber Technology,2000,6(4):344-356.
    [62]Mescheder U M, Alavi M, Hiltmann K, et al. Local laser bonding for low temperature budget[J]. Sensors and Actuators A:Physical,2002,97:422-427.
    [63]Wild M J, Gillner A, Poprawe R. Locally selective bonding of silicon and glass with laser[J]. Sensors and Actuators A:physical,2001,93(1):63-69.
    [64]林德教,吴健,殷纯永.具有纳米级分辨率的超精密定位工作台[J].光学技术,2001,27(6):2001,27(6):556-559.
    [65]马立,荣伟彬,孙立宁,等.面向光学精密装配的微操作机器人[J].机械工程学报,2009.2:280-287.
    [66]淳静,吴宇列,戴一帆,李圣怡.用于光纤对准的柔性铰链微位移机构[J].机械科学与技术,2004,23(12):1444-1449.
    [67]Geng T, Wang Y Z, Wu H B. Research on vision-based waveguide alignment of optical fiber[C]//Measurement, Information and Control (MIC),2012 International Conference on. IEEE,2012,1:286-289.
    [68]苏领松,毕树生,刘荣,宗光华.用于光电子器件封装的微操作系统[J].机械工程学报,2002,38:48-51.
    [69]陈璐云,李玉和,李庆祥,白立芬;微器件装配系统机器视觉的实现[J];仪器仪表学报;2001,22(3):257-258.
    [70]淳静,吴宇列,李圣怡,张爱成.基于抛物线拟合的光纤自动对准算法[J].光电子·激光,2005,16(11):1287-1296.
    [71]龙彩华,陈抱雪,沙慧军.光纤一波导自动调芯系统的研究[J].光学学报,2004,24(4):442-447.
    [72]孙蓉霞;陈抱雪;隋国荣;等.波导阵列与光纤阵列的遗传算法自动对接[J].光学技术,2006,32(4):533-536.
    [73]隋国荣,陈抱雪,张晓微,陈林.波导阵列与光纤阵列的智能算法自动对接[J].光学与光电技术,2006,4(5):32-34.
    [74]鲁平.新型阵列波导器件的理论与实验研究[C],华中科技大学,2000:89-92.
    [75]欧攀.高等光学仿真[M].北京航空航天大学出版社,2011.7,95-318.
    [76]佘守宪.导波光学物理基础[M].北京交通大学出版社,2002.8.
    [77]Okamoto K. Fundamentals of optical waveguides[M]. Academic press, 2010.78-124.
    [78]Chen C L. Foundations for guided-wave optics[M]. Wiley-interscience, 2006.123-154.
    [79]李玉权,崔敏.光波导理论与技术[M].人民邮电出版社,2002.12.
    [80]Scarmozzino R, Gopinath A, Pregla R, et al. Numerical techniques for modeling guided-wave photonic devices[J]. Selected Topics in Quantum Electronics, IEEE Journal of,2000,6(1):150-162.
    [81]SARUWATARI M and NAWATA K. Semiconductor laser to single-mode fiber coupler [J]. Applied Optics,1979,18(1):1847-1856.
    [82]Nemoto S, Makimoto T. Analysis of splice loss in single-mode fibres using a Gaussian field approximation J]. Optical and Quantum Electronics,1979, 11(5):447-457.
    [83]Lagonigro L, Healy N V, Sparks J R, et al. Wavelength-dependent loss measurements in polysilicon modified optical fibres[C]//Lasers and Electro-Optics 2009 and the European Quantum Electronics Conference. CLEO Europe-EQEC 2009. European Conference on. IEEE,2009:1-1.
    [84]Feit M D, Fleck J A. Light propagation in graded-index optical fibers[J]. Applied optics,1978,17(24):3990-3998.
    [85]MARCUSE D. Gaussian approximation of the fundamental modes of graded-index fibers [J]. JOSA,1978,68(1):103-109.
    [86]Van Roey J, Van der Donk J, Lagasse P E. Beam-propagation method:analysis and assessment[J]. JOSA,1981,71(7):803-810.
    [87]Pollock C, Lipson M. Integrated photonics[M]. Springer,2003:230.
    [88]Huang J Z, Hu M H, Fujita J, et al. High-performance metal-clad multimode interference devices for low-index-contrast material systems[J]. Photonics Technology Letters, IEEE,1998,10(4):561-563.
    [89]Yevick D, Hermansson B. Split-step finite difference analysis of rib waveguides[J]. Electronic Letters,1989,25:461-462.
    [90]Hadley G R. Multistep method for wide-angle beam propagation[J]. Optics letters,1992,17(24):1743-1745.
    [91]Hadley G R. Wide-angle beam propagation using Pade approximant operators[J]. Optics Letters,1992, vol.17:142-1428.
    [92]Recommendation ITU-T G.652[S], Characteristics of a single-mode optical fibre cable,2003.
    [93]CCITT G.652[S], Characteristics of a single-mode optical fiber cable,1992.
    [94]蒋培军,齐国生,徐端颐,等,高精密运动工作台控制系统的设计与研究[J].光学技术,2003,29(6):723-726.
    [95]Bernussi A A, Grave de Peralta L, Temkin H. High-Precision Characterization of Single-Mode Optical Fiber Arrays [J]. Journal of Lightwave Technology, 200321(6):1557-1563.
    [96]Clark H R. Optoelectronic device package method and apparatus:U.S. Patent 5,073,003[P].1991-12-17.
    [97]Yang, H. Zhu, H. L. Xie, H. Y.etc. Silicon Bench for Passive Coupling and Packaging of High-Frequency Optoelectronic Devices[J]. Advanced Packaging, 2007,30(1):34-37.
    [98]Hibino Y, Hanawa F, Nakagome H, etc.. High reliability optical splitters composed of silica-based planar lightwave circuits [J]. Journal of Lightwave Technology,1995,13(8):1728-1735.
    [99]熊有伦,丁汉,刘恩沧.机器人学[M].机械工业出版社,1993.10.
    [100]裘祖荣.精密机械设计基础[M].机械工业出版社,2007.8.
    [101]Legnani G, Casolo F, Righettini P, Zappa B. A homogeneous matrix approach to 3D kinematics and dynamics-Ⅰ [J]. Theory Mechanism and Machine Theory, 199631(5):573-587.
    [102]Tang Z, Zhang R, Mondal SK, Shi FG. Optimization of fiber-optic coupling and alignment tolerance for coupling between a laser diode and a wedged single-mode fiber[J]. Optics communications.2001,199(1-4):95-101.
    [103]朱星.近场光学与近场光学显微镜[J].北京大学学报:自然科学版.1997,3:394-407.
    [104]陆锦洪,谢向生,张培晴,等.基于数字微镜器件亚微米制备技术研究[J].光子学报,2010,39(4):600-604.
    [105]宋庆和,李俊昌,桂进斌,等.全息图像缩放对数字微镜重建显示的影响研究[J].光子学报,2009,38(5):1187-1191.
    [106]王伊萍.数码照片的噪点与降噪方法[J].上海师范大学学报(自然科学版),2005,34(2):37-41.
    [107]马冬梅,陈土泉,刘志祥,聂真威.位相复原技术在光学成像质量测评中的应用[J];光学精密工程;2009,17(12):2912-2918.
    [108]Mcllrath, L.D. A CCD/CMOS focal-plane array edge detection processor implementing the multiscale veto algorithm[J]. Solid-State Circuits,1996,31(9): 1239-1247.
    [109]Precise Eye Fixed. [EB/OL]. [2012-9-10]. http://navitar.com/categories/ precise-eye-fixed, aspx.
    [110]梁世伟,胡友旺,段吉安.阵列波导器件封装中机器视觉系统的光源分析与设计[J].光电子技术.2009,29(1):55-59.
    [111]周宗锡.刚体姿态控制及其在机器人控制中的应用研究(D).西北工业大学,2002.
    [112]Shi D, Zheng L, Liu J. Advanced Hough transform using a multilayer fractional Fourier method[J]. Image Processing, IEEE Transactions on,2010, 19(6):1558-1566.
    [113]张晶,张权,王欣.一种新的基于统计向量和神经网络的边缘检测方法[J].计算机研究与发展,2006,43(5):920-926.
    [114]周云燕,杨坤涛.基于RHT-LSM直线检测方法的研究[J].光电工程,2007,34(1):55-58.
    [115]Chutatape O, Guo L. A modified Hough transform for line detection and its performance [J].Pattern Recognition,1999,32(2):181-191.
    [116]于新瑞,王石刚,王高中,等.数字图像直线特征的亚像素位置检测[J].光学技术,2004,30:138-141.
    [117]Bresenham J E. Algorithm for computer control of a digital plotter[J]. IBM Systems journal,1965,4(1):25-30.
    [118]王晶杰,胡平平.一种计算机平滑曲线的画法和快速算法[J].微处理机,1998,3:31-34.
    [119]张晶,张权,王欣.一种新的基于统计向量和神经网络的边缘检测方法[J].计算机研究与发展,2006,43(5):920-926.
    [120]周云燕,杨坤涛.基于RHT-LSM直线检测方法的研究[J].光电工程,2007,34(1):55-58.
    [121]王惠文.偏最小二乘回归方法及其应用[M].北京:国防工业出版社,1999:13-43.
    [122]张建涛,印新达.PON系统测试用光功率计[J].光通信研究,2007,1:44-45.
    [123]陈立国,荣伟彬,孙立宁,贾延奎.显微视觉结合光功率检测的光纤耦合方法[J].光电工程.2005,4:42-44.
    [124]Witham C R, Beranek M W, Carlisle B R, et al. Fiber-optic pigtail assembly and attachment alignment shift using a low-cost robotic platform[C]//Electronic Components & Technology Conference,2000.2000 Proceedings.50th. IEEE,2000:21-25.
    [125]81651A Single Fabry-Perot Laser Source.[EB/OL].[2012-9-10].http:// www.home.agilent.com/agilent/product.jspx?nid=-536900355.740705.00&lc= eng&cc=US.
    [126]Newport 2832-C Manual. [EB/OL].[2012-9-10]. http://www.artisan-scient ific.com/info/newport_2832c_manual.pdf.
    [127]郭占山,王增浩.GPIB仪器标准及测试系统组成[J].仪器仪表用户,2002,9(1):39-41.
    [128]蔡山,张浩,陈洪辉,等.基于最小二乘法的分段三次曲线拟合方法研究[J].科学技术与工程,2007,3:352-355.
    [129]李雅娟,郑煜,段吉安.基于遗传算法的集成光子器件对准[J].光子学报,2009,38(10):2520-2524.
    [130]Kawachi, M. Recent progress in silica-based planar lightwave circuits on silicon[J]. Optoelectronics,1996,143(5):257-262.
    [131]Dumon P, Bogaerts W, Van Thourhout, D,etc. Compact wavelength router based on a silicon-on-insulator arrayed waveguide grating pigtailed to a fiber array[J]. Optics express,2006,14(2):664-669.
    [132]Armiento CA, Tabasky M, Jagannath CJ, etc. Passive coupling of InGaAsP/InP laser array and singlemode fibres using silicon waferboard[J]. Electronics Letters,1991,27(12):1109-1111.
    [133]焦向杰,王栋民,胡治刚.自动光纤对准系统的研制[J].光学仪器,2003,3:27-31.
    [134]孙小燕,胡友旺,曾雪飞,段吉安.阵列波导器件封装用UV胶粘接力学性能分析[J].粘接,2009,5:44-46.
    [135]徐洲龙,郑煜.基于有限元的平面光波导粘接热应力分析[J].光子学报,2010,39(4):643-647.
    [136]孔凡荣,游敏,郑小玲,等.间隙连接对胶接接头应力分布和强度的影响[J],宇航材料工艺,2004,4:39-43.
    [137]王沛熹.辐射固化技术及特殊丙烯酸酯[J].江苏化工,2000,9:15-17.
    [138]赵玉宇,吴健伟,于听,等.紫外光(Uv)固化胶黏剂收缩率与强度的研究[J].化学与粘合,2008,3:24-27.
    [139]Murata N, Nishi S, Hosono S. UV-curable transparent adhesives for fabricating precision optical components[J]. The Journal of Adhesion,1996,59(1-4): 39-50.
    [140]崔凤林.光集成器件[M].北京:科学出版社,2002.
    [141]Sarvar F, Hutt DA, Whalley DC. Application of adhesives in MEMS and MOEMS assembly:a review. Polymers and Adhesives in Microelectronics and Photonics[C]. POLYTRONIC 2002.2nd International IEEE Conference.2002, 22-28.
    [142]Maruno T, Murata N. Properties of a UV-curable, durable precision adhesive [J]. Journal of adhesion science and technology.1995,9(10),1343-1355.
    [143]Nagata H, Shiroishi M, Miyama Y, Mitsugi N. Evaluation of New UV-Curable Adhesive Material for Stable Bonding between Optical Fibers and Waveguide Devices:Problems in Device Packaging[J]. Optical Fiber Technology, 1995,1(3):283-288.
    [144]中国电信无源光分路器技术规范Q/CT2295-2010[S].
    [145]Automated optical alignment/focal:[EB/OL]. [2012-9-10]. http:// www.moritex.co.jp/home/english/e_products/pdf/opt_focal_l.pdf.
    [146]Apico AP系列全自动耦合系统,AP-25XL. [EB/OL].[2012-9-10]. http:// www.anpico.com/ProductDetails_500.html.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700