钻柱结构与井壁岩石互作用下系统耦合非线性动力学研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
有效地预测和控制井下钻头和钻柱动力学性能和运动规律,合理提高钻头和钻柱的强度,实现对井眼轨迹的精确控制是目前钻井工程中的关键技术问题。而解决这些问题的基础工作之一就是要建立合理可靠的钻头、钻柱系统动力学模型,找到钻柱在钻井过程中井下运动规律和力学性能。但由于钻柱结构庞大且复杂,无法通过物理实验来研究,且钻柱在钻进过程中不仅存在纵向振动、横向振动、和扭转振动,还存在三个方向耦合振动,一般受力分析方法很难求解。因此研究钻柱结构与井壁岩石互作用下系统的动力学特性,对实现钻柱系统运动规律和井眼轨迹的预测与控制,具有重要的理论意义和工程实用价值。
     论文把随机振动理论、有限元法、动力间隙元理论和非线性耦合问题的数值方法以及现代钻井技术结合起来,根据钻柱的运动和受力状态,通过综合考虑钻柱结构、边界条件和各种载荷的作用,把钻柱与井壁边界处理成多向摩擦接触,引入动力间隙单元,建立了实态工作状态下钻柱与井壁互作用下耦合系统的纵向、横向、扭转耦合振动非线性动力学模型,该模型不仅是一个几何和阻尼非线性问题,还是一个碰撞接触边界非线性问题,能够较为全面的反映钻柱系统在井下的实际动力学状态。
     利用有限元程序ABAQUS/EXPLICIT中心差分法对实际石油工程用井钻柱系统进行了动态仿真分析,研究钻柱在钻井过程中运动规律、力学性能、失效机理等。从仿真的结果中可以看出,钻柱系统的运动状态、动态响应分布都呈现出极其复杂的无规律性;在钻压、钻柱自重等外载荷的作用下底部钻具组合弯曲失稳后与井壁碰撞接触,这种接触力的位置和大小都呈现出极大的随机性,在自重、钻压等外载荷的作用下钻柱下部紧贴井壁运动,并产生了较大横向、纵向及扭转的耦合振动;在钻柱轴线方向上各井深处节点横截面方向的运动轨迹曲线呈无规则状。研究为实现钻头系统寿命的提高和井眼轨迹精度的动态优化,进而实现对钻柱系统运动规律和井眼轨迹的预测与控制提供了理论依据。
It is the key technical issue in the drilling engineering that effectively predicting and controlling of dynamic performance and kinetics law, reasonably increasing the strength of drill bit and drill string, realizing the control of trajectory precession. And the solution to these problems is one of basic work to establish rational and reliable dynamic model for drill bit and drill string, which find the kinetic law and mechanical properties of drill string under well. However, the large and complex structure of drill string, the study is very hard by physical experiment, the drill string, in the drilling process, exist not only vertical vibration, lateral vibration and torsional vibration, but also the coupling of three direction vibration, the general stress analysis method is difficult to solve. Therefore, the studying of dynamic properties of drill string system under drill string structure and wall rock interaction is an theoretical and practical value to realize of predicting of kinetic law and controlling of trajectory precession.
     Paper combine the random vibration theory、finite element method、dynamic gap element theory、coupling nonlinear numerical theory and modern drilling technologies. According to the drill string kinetic and force state, comprehensive consideration of drill string structure、boundary conditions and role of various loads, introduction of dynamic gap element, the nonlinear dynamic model of drill string system is established, which couple vertical vibration、lateral vibration and torsional vibration, and which is not only a nonlinear geometry and damping problem but also nonlinear boundary condition problem. The dynamic properties of drill string system is more fully reflected under actual state.
     Through FEM program, ABAQUS/EXPLICIT central difference, the dynamic simulation analysis is ran about drill string system in the actual drilling engineering, which research kinetic law of drill string in the drilling process、mechanical properties、failure mechanism. From the simulation result, it can be see that the movement state and dynamic respond distribution of drill string system present complex and irregulation laws. BHA bend and buckle under outer load of WOB and self gravity, which contact the well wall, the size of contact force and contact position present great random, the BHA move close to well wall and great vibrate in vertical、lateral and torsional direction, even couple vibration. The transverse direction trajectory curve of various node on drill string axial direction exhibit random. The study conclusion provide theory foundation for enhance of drill bit system life and dynamic optimization of trajectory accuracy, then predicting kinetic laws of drill string and controlling the trajectory of well.
引文
[1] 赵国珍,龚伟安.钻井力学基础[M].北京.石油工业出版社,1988
    [2] 黎孔昭,严世才译.钻井工程进展[M].北京.石油工业出版社,1994.5
    [3] 于勇南. 钻柱力学分析的有限元法[M].北京.石油大学出版社,1998,9(1), 53~76
    [4] 章扬烈著.钻柱运动学与动力学[M].北京.石油工业出版社,2000
    [5] 孙 超 , 刘 巨 保 , 张 雄 等 . 钻 柱 瞬 态 动 力 学 分 析 及 其 应 用 [J]. 大 庆 石 油 学 院 学报,1998,22(3):55~58
    [6] 帅健,于勇南等.整体钻柱的受力与变形分析[J].石油大学学报,1994,18(1):56~59
    [7] 刘巨保. 间隙元在钻柱接触非线性力学分析中的应用[J].力学与实践.2003,25(6):45~47
    [8] 刘巨保,张学鸿.小井眼瞬态动力学研究及运用[J].石油学报. 2000.21(6):23~26
    [9] Christoforou, A., and Yigit, A. Dynamic Modelling of Rotating Drillstrings with Borehole Interactions, J. Sound Vib., 1997, 206(6), 243~260
    [10] Graham, III, R., Frost, III, M., and Wilhoit, Jr., J. Analysis of the Motion of Deep-Water Drill Strings—Part 1: Forced Lateral Motion, ASME J. Eng. Ind., 8 1965,7(2), 137~144
    [11] Vaz, M., and Patel, M. Analysis of Drill Strings in Vertical and Deviated Holes Using the Galerkin Method, Eng. Struct., 1995, 17(6), 437~442
    [12] Yigit, A., and Christoforou, A., Coupled Torsional and Bending Vibrations of Drillstrings Subject to Impact with Friction, J. Sound Vib., 1998, 215(1), 167~181
    [13] Dykstra, M., Nonlinear Drill String Dynamics, Ph.D. thesis, University of Tulsa, The Graduate School. 1996
    [14] Dale, B..Inspection Interval Guidelines To Reduce Drill string Failures, SPE Drilling Engineering, 1989, 4(3), 215~222
    [15] Payne, M., Abbassian, F., Eng, C., and Hatch, A.,.Drilling Dynamic Problems and Solutions for Extended-Reach Operations, Drilling Technology, 1995,65(3), 191~203
    [16] Mitchell, R., and Allen, M..Lateral Vibration: The Key to BHA Failure Analysis.World Oil, 1985,200(5), 101~104
    [17] Spanos, P., Payne, M., and Secora, C..Bottom-Hole Assembly Modeling and Dynamic Response Determination, ASME J. Energy Resource. Technology. 1997, 119(3), 153~158
    [18] 梁 政 , 邓 雄 , 余 孝 林 . 高 温 高 压 深 井 测 试 管 柱 横 向 振 动 分 析 [J]. 油 气 井 测试,1999.8(4):5~10
    [19] 林元华,梁政.石油钻井机械钻速预测研究进展[J]. 石油钻探技术,2004.32(1):17~21
    [20] 王珍应,马德坤.三牙轮钻头井底横向力的计算机仿真[J].石油机械,1994.22(1):23~28
    [21] 王珍应,马德坤.牙轮钻头侧切机理及井壁模式[J].石油机械. 1994.22(2):19~24
    [22] 王珍应,马德坤.牙轮钻头工作扭矩的计算机仿真[J]. 石油学报. 1996.17(3):97~102
    [23] 陈浩等. 套管柱与钻柱间侧向力的分析[J].天然气工业, 2001.04(2):63~66
    [24] 吕英民,蔡强康等. 钻柱隔振理论及钻井效率分析[J]. 石油大学学报, 1997.04(4):86~91
    [25] 刘延强, 吕英民,蔡强康. 钻柱结构的动态分析及动态因素的影响[J].石油大学学报,1991.02(3):45~50
    [26] 刘延强, 吕英民等. 井壁变形和摩擦阻力对底部钻具组合的影响[J].石油大学学报,1991.01(5):58~61
    [27] 高宝奎,高德利. 深井钻柱的横向振动浅论[J] 石油钻采工艺,1996.04(2):82~86
    [28] 高宝奎,高德利等. 耦合振动钻柱疲劳的影响[J].石油大学学报,1996.05(1):7~9
    [29] 苏义脑等.水平井钻具组合大变形有限元分析[J].石油钻探技术,1995.01
    [30] 朱才朝,谢永春,秦大同. 牙轮钻头纵向横向扭转振动动力学仿真研究[J]. 机械工程学报,2002.38(2): 69~74
    [31] 曲展等. 井下温度对钻柱横向振动固有频率的影响[J].石油机械,1997.25(8):41~42
    [32] 刘清友,马德坤. 牙轮钻头动力学模型的建立与仿真分析[J].石油机械,1998.22(11):1~4
    [33] 朱才朝,谢永春. 钻头钻柱系统非线性耦合动力学仿真[J]. 兵工学报. 2003.24(1):85~88
    [34] 况雨春. 牙轮钻头与井壁碰撞的室内实验研究[J].2004.26(2):65~68
    [35] 况雨春,马德坤等. 钻柱-钻头-岩石系统动态行为仿真[J]. 2005.28(4):71~74
    [36] 马德坤. 牙轮钻头工作力学[M]. 北京:石油工业出版社,1994
    [37] 刘巨保. 钻柱力学中的有限单元法[D]. 浙江大学.2000
    [38] 王勖成,邵敏. 有限单元法基本原理和数值方法[M].北京.清华大学出版社.1997 年 3 月
    [39] 朱位秋.随机振动[M].第 1 版.北京.科学出版社.1994
    [40] 徐业宜.机械系统动力学[M].机械工业出版社.1990.2
    [41] 李润方.接触问题数值方法及其在机械设计中的运用[M]. 重庆大学出版社,1991
    [42] 丁浩江.弹性和塑性力学中的有限单元法[M].机械工业出版社 1989
    [43] Baird J A, Apostsal M C, Wormley D N. Analyzing the dynamic behavior of some typical rotary bottom hole assemblies during start up. Geothermal Resources Council Transactions,1985, 19~57
    [44] T. M. Warren. Drilling model for soft formation bits[J] . Journal of Petroleum Technology, 1984, (6)
    [45] T. M. Warren. Penetration rate performance of roller cone bits[J] .Society of Petroleum Engineers Journal ,1987 , (3)
    [46] 石亦平,周玉蓉.ABAQUS 有限元分析实例详解.北京:机械工业出版社,2006.6
    [47] 庄茁,张帆等.ABAQUS 非线性有限元分析实例.北京:科学出版社.2005
    [48] 林元华, 梁政, 施太和.液动冲击回转钻井机械钻速的仿真[J].探矿工程. 2000.16(2):19~22
    [49] 张学鸿,孙超,杨海波.侧钻井钻柱的纵向振动与疲劳强度预测[J]. 大庆石油学院学报, 1998.22(3):52~54
    [50] 曲展.石油钻柱纵向问题的混浊问题讨论[J].西安石油学院学报. 1996.11(5):23~26
    [51] 张全明译.钻杆的疲劳失效.(美)Rollinsn H M, the fatigue of drill pipe[M],石油管专用,1992(5). 94~112
    [52] 殷朝阳.钻柱动力学有限元分析及室内轴向试验结果对比[J],哈尔滨建筑大学学报,2000,33(3). 6~10

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700