特厚复合顶板巷道支护结构与围岩稳定的耦合控制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
特厚复合顶板为大厚度不稳定层状围岩,依据传统的支护理论难以诠释锚索的作用机理与巷道支护结构,要科学合理地确定支护参数较为困难。本论文在总结分析现有巷道支护理论基础上,结合国家自然科学基金项目(51274145)“涵盖峰后大变形过程的巷道围岩与支护平衡规律及控制机理研究”和煤气化专项基金项目“神州煤业4#煤层巷道联合支护技术研究”,采用理论分析、试验模拟、数值模拟及工程实践应用等方法,对特厚复合顶板巷道支护结构与围岩稳定控制技术进行了研究,得出以下结论:
     (1)在总结分析现有支护理论的基础上,提出特厚复合顶板巷道拱梁耦合支护新理论:特厚复合顶板破坏主要包括弯曲断裂离层和层间错动离层;在锚杆作用下浅部岩层形成组合梁,深部复合顶板在锚索高预应力作用下形成压缩承载拱,“拱”与“梁”耦合作用形成特厚复合顶板巷道支护承载结构主体;建立巷道拱-梁结构体系力学模型,提出支护结构稳定性力学计算与支护参数设计方法。
     (2)利用大尺度二维相似模拟试验系统,以神州煤业4#煤层特厚复合顶板为原型,试验模拟不同支护条件巷道分级加载(0~40MPa)过程中巷道围岩应力、围岩位移变化等规律。试验结论为:
     ①无支护巷道:顶板浅部岩层位移呈μ=aln (p)+b对数曲线变化特征,顶板岩层弯曲破坏从中间开始向两侧扩展,呈拱形冒落。顶板围岩垂直应力随该岩层离层破坏逐步使两侧垂直应力升高,增压系数1.12~1.60;围岩水平应力随该岩层破坏逐步使上部岩层水平应力升高,增压系数1.12-1.18;水平应力是复合顶板产生挤压弯曲、剪切错动破坏的主要因素。
     ②顶帮锚杆支护巷道:顶板围岩位移呈μ=kp+b线性变化规律,锚杆锚固层中部位移速率大于两侧,岩层整体性提高,呈组合梁弯曲变形特征;当锚杆组合梁弯曲破断后,上部围岩应力明显下降,岩层破坏向两侧及上部扩展,仍然形成冒落拱。锚杆组合梁中水平应力较高,侧压系数达1.45,表明水平应力是组合梁弯曲变形的主要因素;组合梁两端垂直应力高于水平应力,表明垂直应力是巷道肩部剪切破坏的主要因素;锚杆组合梁形成后,使巷道顶板水平承载力提高49%,垂直承载力提高30%,综合承载能力提高75%。
     ③锚索+顶帮锚杆联合支护巷道:锚索减跨作用下锚杆组合梁抗弯强度增加,组合梁上部围岩应力上升、位移减小;顶板岩层中部与两侧位移速率差值由浅到深递减,顶板深部基本接近,表明顶板较大范围内围岩整体性提高,显现锚索压缩拱特征;拱-梁组合结构形成后与锚杆支护巷道相比顶板下沉量减少43%。
     ④锚索+全断面锚杆支护巷道:在斜跨锚索作用下围岩压缩拱范围有所扩大,锚杆组合梁最大水平承载力比锚索垂直布置提高35%;顶板下沉量比锚索垂直布置减少16%,比顶帮锚杆支护减少52.3%;巷道底板在采用锚杆支护后承载能力增大,底鼓量减小77.4%。
     (3)采用RFPA2D数值模拟试验,以神州煤业4#煤层特厚复合顶板为模拟对象,对不同支条件巷道分级加载时围岩破坏过程进行模拟。计算分析围岩应力场特征与围岩裂隙演化规律。分别研究不同围岩应力对巷道围岩稳定性的影响规律以及支护结构不同对巷道围岩变形破坏的影响规律。数值模拟表明随锚索密度增加特厚复合顶板中形成的“拱-梁组合”结构特征越加明显,支护强度越高。
     (4)基于本文的特厚复合顶板巷道支护理论与围岩稳定控制技术,合理优化设计巷道支护参数,并在神州煤业4303工作面顺槽巷道及切眼中实际应用。经过监测分析与生产应用验证了巷道支护结构的稳定性,取得良好的支护效果。
Extra-thick compound roof is unstable layered strata. It is difficult to interpret anchor mechanism and roadway support structure in traditional support theory, even more difficult to reasonably determine the parameters of the support. On the basis of summing up the theory and technology of the existing roadway support, combined with the project of National Foundation of China (51274145) named "covers peak after large deformation process of surrounding rock and support balance of law and control mechanism" and gasification project with special fund called "SHENZHOU Coal4#coal seam Combined Support Technology", this paper studies the extra-thick roof roadway support structure and rock stability control technology by using theoretical analysis, similar physical simulation, numerical simulation and practical application.The following are conclusions:
     (1) On the basis of summing up the existing support theory, this paper put forward a new theory of extra-thick roof roadway support, including:The damage of extra-thick roof mainly include bending fracture departure layer and ionospheric of layer shear dislocation; In the bolt role, low layered strata form a composite beam, extra-thick roof compression bearing arch formed in the role of anchor high prestressed,"arch" and "beam" coupling to form extra-thick roof roadway support structure; To establish roadway arch beam combination structural mechanics model proposed supporting structure stability mechanics checking analytic method.(2) The use of large-scale two-dimensional similar material simulation test system, taking the extra-thick roof of SHENZHOU Coal4#seam as a prototype, testing and simulating the displacement law of surrounding rock stress, change of surrounding rock under the different support conditions of roadway grading load (0~40MPa).The following are conclusions:
     ①No support roadway:Displacement of the roof in shallow strata is μ=aln(p)+b logarithmic curve characteristics displacement in deep surrounding rock is μ=kp+b linear characteristic; the roof strata curved destruction from the middle to extend to both sides, with vaulted failure characteristics. Vertical stress with roof rock strata ionospheric destruction gradually leads both sides of the vertical stress increased the boost coefficient of1.12 to1.60; the rock horizontal stress increased gradually with the destruction of the rock formations of the upper strata level, boost coefficient of1.12to1.18; horizontal stress are the composite roof produce extrusion bending, shear dislocation destruction of the main reasons.
     ②Bolting roadway:Displacement of the roof rock is μ=kp+b linear variation, displacement rate of anchor layer is greater than both sides, with characteristics of a combination beam bending deformation; when the bolt combined beam bending breaking up the rear, upper surrounding rock stress decreased strata destruction to both sides and the upper extension, and the last is still formed arch caving. The lateral pressure coefficient of anchor composite beam is1.45, indicating that the level of stress composite beam bending deformation; roof on both sides of the vertical stress is higher than the level of stress, indicating that the vertical stress is the main factors of the roadway shoulder shear failure.
     ③Bolting and Anchor roadway:The bolt combined beam bending strength to be increased by the effect of anchor, stress of the upper surrounding rock of roof is rising, displacement of roof is decreasing. The displacement rate between the middle of the roof strata and both sides is descending from shallow to deep, indicating that the integrity of the surrounding rock of roof to be improved widely, with features of the anchor compression arch; the roof subsidence quantity has43%reduction.
     ④Full-face support roadway:Under the diagonal anchor cable (compared with the vertical arrangement), the range of the surrounding rock compression arch is expanded, sinking declined by16%. The lateral pressure coefficient of roof bolt anchoring layer is increased to3.3, show that the horizontal stress is the main factor of combination of beam bending deformation. The bearing capacity of floor is increased and floor heave is decreased by employing bolts in the roadway floor.
     (3) By using of the RFPA numerical simulation test, taking extra-thick roof of SHENZHOU Coal4#seam as mock object, simulating the process stage loading in surrounding rock under the different support conditions. Computational analysis of the evolution of the characteristics of surrounding rock stress and rock crack. Respectively, studying the impact of different vertical stress and horizontal stress on the roadway stability law, and various supporting structure of the surrounding rock deformation damage were studied. Focus numerical computation on the structure features and supporting functions of anchor support roadway.
     (4) Combination of the above extra-thick roof roadway support theory and surrounding rock stability control technology, it is reasonable to optimize the design of roadway support parameters, and taking the practical application in the SHENZHOU Coal4303working face roadway and open-off cut. After monitoring, analysis and production application to verify the stability of the roadway support structure, and achieving a good supporting effect.
引文
[1]杜雪明,陈其慎等.全球煤炭供需格局[J].中国矿业,2011,4(20):5-7.
    [2]张抗.我国能源消费现状影响能源安全[J].中国党政干部论坛,2012,7:18-20.
    [3]齐天宇,周丽等.中美煤炭消费现状对比与分析[J].现代化工,2012,3:1-4.
    [4]申宝宏,雷毅,郭玉辉.中国煤炭科学技术新进展[J].煤炭学报,2011,36(11):1779-1783
    [5]柳晓莉等.2005.1-2009.6煤矿死亡事故统计分析[J].河南理工大学学报,2010,32(2):1-3
    [6]钱鸣高.煤炭的科学开采[J].煤炭学报,2010,35(4):529-534.
    [7]专栏作者.煤的形成过程[J].科普园地,2009,25(2):60.
    [8]侯朝炯,郭励生.煤巷锚杆支护[M].徐州:中国矿业大学出版社,1999
    [9]陈炎光,陆士良.中国煤矿巷道围岩控制[M].徐州:中国矿业大学出版社,1994
    [10]薛亚东,康天合.回采巷道围岩结构与及裂隙分布特征及锚杆支护机理研究[J].煤炭学报,2000,25(12):97-101.
    [11]柏建彪,侯朝炯.复合顶板极软煤层巷道锚杆支护技术研究[J].岩石力学与工程学报,2001,20(1):53-56
    [12]杨光玉,朱衍利.复合顶煤巷锚带网加锚索联合支护技术[J].煤矿安全,2001,NO.8
    [13]张彬,任永杰.复杂条件综掘巷道支护技术[J].矿山压力与顶板管理2002,NO.2
    [14]张亮,方新秋,郭辉.复合顶板松软煤层巷道变形破坏机理及合理支护设计[J].煤矿安全,2012,43(2):63-66.
    [15]李桂臣.软弱夹层顶板巷道围岩稳定与安全控制研究[D].中国矿业大学,2008.
    [16]Su Xuegui, Li Yanbin, Yang Yongkang. A research into extra-thick compound mudstone roof roadway failure mechanism and security control. Procedia Engineering, v 26,2011, p 516-523.
    [17]苏学贵,李彦斌,李浩春.高位复合顶板综采面矿压规律研究[J].太原理工大学学报,2011,42(6):628-629.
    [18]东兆星,吴士良.井巷工程[M].徐州:中国矿业大学出版社,2009:14
    [19]吴基文,潘红萍,林枫等.淮北杨庄煤矿六煤层抗张强度原位测试研究[C].中国煤炭学会矿井地质专业委员会2001年学术年会论文集,煤炭工业技术委员会地质分会,2001年5月:174-177.
    [20]王明洋,严冬晋,周早生等.岩石单轴试验全程应力应变曲线讨论[J].岩石力学与工程学报,1998,17(1):101-106.
    [21]张乐文,李术才.岩土锚固的现状与发展[J].岩石力学与工程学报,2003,22(supl):2214-2221.
    [22]陈玉祥等.锚杆支护理论现状及发展趋势探讨[J].西部探矿工程,2004(10):155-157.
    [23]程良奎.岩土锚固的现状与发展[J].土木工程学报,2001,34(3):7-12.
    [24]陆士良.锚杆锚固力与锚固技术[M].北京:煤炭工业出版社,1998.
    [25]马念杰,吴联君等.煤巷锚杆支护关键技术及发展趋势探讨[J],广煤炭科技术,2006.5
    [26]程计多.锚索与锚杆作用机理相同性的探讨[J].煤炭工程,2007年(1):70-71.
    [27]马念杰等.高产高效技术-实现我国煤矿现代化的重要途径[J],中国图书评论,2002.7.
    [28]赵庆彪等.煤巷锚杆-锚索支护互补原理及其设计方法[J],中国矿业大学学报,2005.4.
    [29]黄福昌等,兖州矿区煤巷锚网支护技术[J],煤炭工业出版社,2000.
    [30]马念杰,贾安立,马利,杨向军.深井煤巷煤帮支护技术研究[J],建井技术,2006.
    [31]任青文,罗军.锚杆应用及加固机理研究综述[J].水利水电科技进展, 1997,17(1):29-33.
    [32]马春德.深部复合型破坏高应力软岩巷道支护技术研究[D].中南大学,2010.
    [33]肖同强.深部构造应力作用下厚煤层巷道围岩稳定与控制研究[D].中国矿业大学,2011.
    [34]Lin H. Study of Soft Rock Roadway Support Technique[J]. Procedia Engineering,2011(26):321-326.
    [35]何成滔,王小林.锚杆锚索联合支护机理及应用[J].煤炭技术,2011,30(1):64-65.
    [36]宋海涛,锚杆支护现状及其发展[J],矿山压力与顶板管理,1999(1),2-4
    [37]马其华,樊克恭,郭忠平,秦忠诚,锚杆支护技术的发展前景与制约因素[J],中国煤炭,1998,24(5),21-24
    [38]侯朝炯,郭宏亮,我国煤巷锚杆支护技术的发展方向[J],煤炭学报,1996,21(2),113-118
    [39]杨新安,陆士良,中国煤矿的锚杆支护[J],中国煤炭,1995,5-8.
    [40]赵森林,黄献平.邢台矿务局巷道支护改革[J],中国煤炭,1997,23(5):19-22.
    [41]王金华,赵森林.邢台矿综放面全煤巷道组合锚杆支护技术[J].煤炭科学技术,1999,27(1):14-17.
    [42]胡学军,范世民.煤巷锚杆支护成套技术在潞安矿区的应用[J],煤炭科学技术,2003,31(6):33-35.
    [43]郝海金,晋城矿区煤巷锚杆支护技术试验研究的现状及发展方向[J],煤矿开采,2003,8(4):46-48.
    [44]秦斌青.西山矿区煤巷锚杆支护技术的应用[J],煤炭科学技术,2000,28(6):4-5.
    [45]董方庭等,井巷设计与施工[M],中国矿业大学出版社,1994
    [46]Peng. S.1984, CoalMineGroundControl, John Wiley&Sons, Ine. pp 131-173.
    [47]Snyder V.,1982 Analysis of Beam Building Using Fully Grouted Roof Bolts, Proeeedings of the International SylnPosium on Rock Bolting, Abisko, Sweden, pp.187-194.
    [48]Krohn R.1978, ExPerimental Verification of the Beam Building Mechanism Using Fully Grouted Resin Roof Bolts as Applied to Reinforeement of BeddedMineRoof, M. S. Thesis,MiehiganTeeh. University, Houghton, M1, pp.89.
    [49]JefferyR. andDaemenJ.1982, Analysis of Rockbolt Reinforcemen tof Layered Rock Using BeamEquations. Proeeedings of the Intemational Sym Posiumon Roek Bolting, Abisko, Sweden, pp.173-185.
    [50]韩瑞庚.地下工程新奥法[M].北京:科学出版社,1987.
    [51]E. T. Brown. Puting the NATM into Perspective[J]. Tunnels and Tunneling,1990.
    [52]宋广太.煤矿围岩锚固技术与工程实践[M].北京:煤炭工业出版社,2007:114-125.
    [53]何满潮,谢和平,彭苏萍等.深部开采岩体力学研究[J].岩石力学与工程学报,2005,24(16):2803-2813.
    [54]杨建辉,尚岳全,祝江鸿.层状结构顶板锚杆组合拱梁支护机制理论模型分析[J].岩石力学与工程学报,2007年12月,26(S2):4215-4220.
    [55]中国矿业学院等,井巷工程(修订本)[M],1984,12
    [56]董方庭等.巷道围岩松动圈支护理论及技术[M].北京:煤炭工业出版社,2001
    [57]侯朝炯,巷道围岩松动圈支护理论[J],煤炭学报,1994(1):21-32
    [58]侯朝炯,勾攀峰.巷道锚杆支护围岩强度强化机理研究[J].岩石力学与工程学报,2000,19(3):342-345
    [59]何满潮.中国煤矿锚杆支护理论与实践[M].北京:科学出版社2004:397-428.
    [60]何满潮.软岩巷道工程概论[M].徐州:中国矿业大学出版社,1993.[1]
    [61]周宏伟,谢和平,左建平.深部高地应力下岩石力学行为研究进展[J].力学进展,2005,35(1):91-99.
    [62]A·π·希罗科夫,等.锚杆支护手册[M],北京:煤炭工业出版社,1992.
    [63]康红普.高强度锚杆支护技术的发展与应用[J],煤炭科学技术,2000,28(2).
    [64]康红普,王泽进.煤巷锚杆支护机理探讨[J],地下开采现代技术理论与实践,煤炭工业出版社,2002,358-362.
    [65]康红普,姜铁明,高富强.预应力锚杆支护参数的设计[J].煤炭学报,2008,33(7):721-726.
    [66]康红普,司林坡.深部矿区煤岩体强度测试与分析[J].岩土力学与工程学报,2009,28(7):1312-1320.
    [67]康红普.煤巷锚杆支护成套技术研究与实践[J],岩石力学与工程学报,2005,24(21):3959-3964.
    [68]康红普等.预应力在锚杆支护中的应用[J].煤炭学报,2007,32(7):680--685.
    [69]康红普,林健等.全断面高预应力强力锚索支护技术及其在动压巷道中的应用[J].煤炭学报,2009,34(9):1153-1 159.
    [70]何满潮,景海河,孙晓明.软岩工程力学[M1.北京:科学出版社,2002.
    [71]杨峰,王连国,贺安民,高峰,许东来.复合顶板的破坏机理与锚杆支护技术[J].采矿与安全工程学报,2008,25(3):286-289.
    [72]牛双建,靖红文等.深部软岩巷道围岩稳定控制技术研究及应用[J].煤炭学报,2011,36(6)914-919.
    [73]康天合,郜进海,潘永前.薄层状碎裂顶板综采切眼锚固参数与锚固效果[J].岩石力学与工学报,2004,23(增2):4930-4935.
    [74]柴肇云,康天合等.特厚煤层大断面切眼锚索支护的作用[J].煤炭学报,2008,33(7)732-736.
    [75]杨双锁.煤矿回采巷道围岩控制理论探讨[J].煤炭学报,2010,35(11):1842-1853.
    [76]杨双锁,康立勋.锚杆作用机理及不同锚固方式的力学特征[J].太原理工大学学报,2003,34(5):540-543.
    [77]余伟健,高谦等.深部软弱围岩叠加拱承载体强度理论及应用研究[J].岩 石力学与工程学报,2010,29(10):2134-2142.
    [78]伍永平,杨永刚,来兴平,等.巷道锚杆支护参数的数值模拟分析与确定[J].采矿与安全工程学报,2007,23(4):398-401.
    [79]杨永刚等.复杂围岩环境下大断面巷道支护系统研究与实践[J].采矿与安全工程学报,2009,26(3):354-358.
    [80]岳中文,杨仁树等.复合顶板大断面煤巷围岩稳定性试验研究[J].煤炭学报,2011,36(suppl) 47-52.
    [81]苏学贵,李浩春,李彦斌等.高位复合顶板巷道锚杆锚索耦合支护研究[J].太原理工大学学报,2012,43(5):620-622.
    [82]郜进海.薄层状巨厚复合顶板回采巷道锚杆锚索支护理论及应用研究[D].太原理工大学,2005.
    [83]徐宏武,陈永新,邓春为等.凤凰山矿9#煤层工作面地质构造测试的初步试验[J].矿业安全与环保,2005,32(S1):77-79.
    [84]樊克恭.巷道围岩弱结构损伤破坏效应与非匀称控制机理研究[D].山东科技大学,2003.
    [85]林联情,傅爱民.山西省石炭系至侏罗系地层划分问题探讨[J].华中师范大学学报(自然科学版),1992,26(2):244-251.
    [86]凌建明.节理裂隙岩体损伤力学研究中的若干问题[J].力学进展,1994,25(2):257-264.
    [87]Keslov, KB. Tunnel maintaining and support under complicated geologic condition[M]. Technology publishing conpany,1986.
    [88]He, Y. N. Actuality of deep mines construction in Soviet Russia[J]. World coal technique,1989(6):8-12.
    [89]康红普,司林坡,苏波.煤岩体钻孔结构的观测方法及应用[J].煤炭学报,2010,35(12):1949-1956.
    [90]康红普,林健.我国巷道围岩地质力学测试技术新进展[J].煤炭科学,2001(7).
    [91]刘勇.电子窥视仪在煤矿中的应用[J].煤矿开采,2006(2).
    [92]王少磊,张文龙.顶板窥视及分类在煤巷支护设计中的应用[C].陕西省 煤炭学会学术年会论文集(2001),中国会议,2001.
    [93]胥东海,蒋东晖,邹磊等.基于光学窥视的破碎顶板岩层动态破裂特征[J].西安科技大学学报,2009,29(3):257-260.
    [94]张江成.近距离煤层巷道煤岩结构窥视与支护方案选择[J].科技信息,2012(1):363.
    [95]鲁岩,邹喜正,刘长友等.构造应力场中的巷道布置[J].采矿与安全工程学报,2008,25(2):144-149.
    [96]刘崇伟.构造控制性裂隙分布对巷道稳定性影响的初步分析[J].太原理工大学学报,2001,32(1):33-39.
    [97]周维恒.高等岩石力学[M].北京:水利水电出版社,1993年.
    [98]张在金,王林,王卫军.高水平应力对复合顶板巷道稳定性影响的分析[J].采矿技术,2011,11(5):29-31.
    [99]康红普,林健,张晓等.潞安矿区井下地应力测量及分布规律研究[J].岩土力学,2010,31(3):827-831.
    [100]汪成兵,朱合华.埋深对软弱隧道围岩破坏影响机制试验研究[J].岩石力学与工程学报,2010,29(12):2442-2448.
    [101]李仲春.略谈地应力与地下硐室围岩稳定性评价[J].水利水电技术,1983(1):23-29.
    [102]郜进海,镐振,吕兆恒.构造应力区巷道变形破坏特征及控制技术研究[J].河南理工大学学报(自然科学版),2012,31(4):409-414.
    [103]姜耀东,刘文岗,赵毅鑫等.开滦矿区深部开采中巷道围岩稳定性研究[J].岩石力学与工程学报,2005,24(11):1857-1862.
    [104]钱鸣高,缪协兴,许佳林.岩层控制中的关键层理论研究[J].煤炭学报,1996,21(3):225-230.
    [105]苏生瑞,朱合华,王士天.岩石物理力学性质对断裂附近地应力场的影响[J].岩石力学与工程学报,2003(3):370-377.
    [106]沈海超,程远方,赵益忠.基于实测数据及数值模拟断层对地应力的影响[J].岩石力学与工程学报,2008年(2):3985-3990.
    [107]苏生瑞.断裂构造对地应力场的影响及其工程意义[D].成都理工学院, 2009.
    [108]高灵志,鲁展.深部高应力软岩巷道支护在新安煤矿的实践[J].煤炭科技,2012(4):58-59.
    [109]Brady B H G, J W Bray. The boundary lement method for determining stresses and displacements aroud long openings in a triaxial stress field[J]. Int. J. Rock Mech. Min. Sic Geomech,1978.
    [110]KAISER PK;MALONEY S;MORGENSTERN N R. Time-dependent behavior of tunnels in highly stressed rock[J]. Rock Mech,1983(5).
    [111]Moebs N N. Roof rock structures and related roof support problems in the Pittsburgh Coal-bed of Southwestern Pennsylvania [J]. USBM RI, 1997.
    [112]B. Amadei. Measurement of stress change in rock[J]. International Journal of Rock Mechanics and Mining Science & Geomechanics, 1985,22(3):177-182.
    [113]Lu Y, Wang L. An experimental study of a yielding support for roadways constructed in deep brocken soft rock under high stress [J]. Mining Science and Technology(China),2011(6):839-844.
    [114]Stephansson O, Ljunggren C. Stress measurements and tectonic implications in Fennoscandinavia[J]. International Journal of Rock Mechanics and Mining Science & Geomechanics,1991,28(6):317-322.
    [115]赵国栋.巨厚复合顶煤大断面煤巷围岩控制技术研究[D].北京:中国矿业大学,2011.
    [116]刘鸿文.材料力学(I)[M].第四版.北京:高等教育出版社,2004.
    [117]蔡美峰.岩石力学与工程[M].第一版.北京:科学出版社,2002.
    [118]何思明,李新坡.预应力锚杆作用机制研究[J].岩石力学与工程学报,2006,25(9):1876-1880.
    [119]魏锦平,郜进海,陈商强.基于梁-拱式组合结构的薄层状复合顶板锚固设计[J].采矿与安全工程学报,2009,26(4):499-502.
    [120]郭建伟.深井节理化围岩巷道破坏机理及控制技术[J].煤炭学报,2012, 37(9).
    [123]Kun Q, Xiaodong X, Yulong C. The Design and Application of Rock Bolting in Coal Mine [J]. Energy Procedia,2012(14):280-284.
    [124]Song Hongwei, Lu Shoumin. Study on Repairing Permanent Transportation Roadway in Deep Mining by Bolt-Shotcrete and Mesh Supporting[J]. Journal of China University of Mining & Technology, Dee.1999,9(2):167-171.
    [125]Ghose A, Gupta K. Strata control by roof bolting in the western Canadian mountain coal mines [J]. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, February 1974, 11(2).
    [126]Yan H, Hu B, Xu T. Study on the Supporting and Repairing Technologies for Difficult Roadways with Large Deformation in Coal Mines[J]. Energy Proce,2012,14:1653-1658.
    [127]何思明,王全才.预应力锚索作用机理研究中的几个问题[J].地下空间与工程学报,2006,2(1):161-165.
    [128]程计多,彭担任,肖栋.锚索支护作用机理探讨[J].矿山机械,2006,34(11).
    [129]郑筱彦,夏元友,张亮亮.预应力锚索(杆)群锚作用机理研究[J].武汉理工大学学报,2010,32(11):62-67.
    [130]范宇洁,郑七振,魏林.预应力锚索锚固体的破坏机理和极限承载能力研究[J].岩石力学与工程学报,2005,24(15).
    [131]尤春安.锚固系统应力传递机理理论及应用研究[J].岩石力学与工程学报,2005,24(7).
    [132]Hongpu K, Jian L, Yongzheng W. Development of high pretensioned and intensive supporting system and its application in coal mine roadways [J]. Procedia Earth and Planetary Science, September 2009, 1(1):479-485.
    [133]Singh R, Mandal P, Singh A, etal. Cable-bolting-based semi-mechanised depillaring of a thick coal seam[J]. International Journal of Rock Mechanics and Mining Sciences, February 2001, 38(2):387-397.
    [134]Bole S, Shuangsuo Y, Bo Y. Research on the Catapulted Dynamic Mechanism of Broken Cable-bolt and the Defense Measures [J]. Procedia Engineering,2011,26:832-838.
    [135]Hong Y, Fulian H. A new cable truss support system for coal roadways affected by dynamic pressure [J]. International Journal of Mining Science and Technology, September 2012,22(5):613-617.
    [136]苏义脑,唐雪平,陈祖锡.初弯曲纵横弯曲梁的等效载荷法及其应用[J].力学与实践,2004,26(1):42-44.
    [137]鄢尊智,马运祥.纵横弯曲梁的应力计算与分析[J].散装水泥,2004(5).
    [138]袁祥忠,梁政.纵横弯曲下连续梁的一般解[J].西南石油学院学报,1984(1):37-49.
    [139]同济大学数学系.高等数学[M].第六版.同济大学出版社,2007.
    [140]杨松林,朱焕春,刘祖德.加锚层状岩体的本构模型[J].岩土工程学报,2001(4).
    [141]张静波,练伟.谈谈岩体等效内摩擦角的计算公式[J].岩土工程界,2009(12):16-17.
    [142]宋宏伟,牟彬善.破裂岩石锚固组合拱承载能力及其合理厚度探讨[J].中国矿业大学学报,1997,26(2):33-36.
    [143]徐金海,石炳华,王云海.锚固体强度与组合拱承载能力的研究与应用[J].中国矿业大学学报,1999(5):482-485.
    [144]王明恕.全长锚固锚杆机理的探讨[J].煤炭学报,1983年3月(1):40-47.
    [145]付强,明世祥.锚杆(索)减跨机理及在深埋大跨度巷道中的应用[J].中国矿业,2007(5):64-68.
    [146]朱永建,罗一新,张道兵.综采大跨度回采巷道锚杆一锚索减跨支护技 术研究[J].中国工程科学,2010,12(3):51-55.
    [147]王松周,傅鹤林,曹琦等.基于卸荷减跨机理的大跨度隧道开挖优化[J].铁道科学与工程学报,2012,9(1):79-83.
    [148]李鸿昌.矿山压力的相似模拟试验[M].第一版.徐州:中国矿业大学出版社,1988.
    [149]冯国瑞,任亚峰,王鲜霞等.白家庄煤矿垮落法残采区上行开采相似模拟实验研究[J].煤炭学报,2011,36(4):543-550.
    [150]王宏图,鲜学福,贺建民等.层状复合岩体力学的相似模拟[J].矿山压力与顶板管理,1999(2):81-83.
    [151]Feifei L, Baiquan L, Cheng Z. Research of real-time effects of horizontal protecting stratum mining based on similar simulation experiment [J]. Procedia Engineering,2011,26:431-440.
    [152]WANG B, JIANG B, LIU L. Physical simulation of hydrodynamic conditions in high rank coalbed methane reservoir formation[J]. Mining Science and Technology (China), July 20,19(4):435-440.
    [153]康希并,张建义.相似材料模拟中的材料配比[J].淮南矿业学院学报,1988(2).
    [154]左保成,陈从新,刘才华.相似材料试验研究[J].岩土力学,2004,25(11).
    [155]李长冬,唐辉明,胡新丽.岩石相似材料变形与强度特性及数值模拟研究[J].地质科技情报,2008,27(6):98-101.
    [156]董昌周,曲晨.隧道围岩体相似材料试验研究[J].浙江科技学院学报,2011,23(6).
    [157]方新秋,何富连,钱鸣高.直接顶稳定性的相似模拟试验[J].矿山压力与顶板管理,1999(Z1):41-44.
    [158]陈义东,李英明.特厚煤层大采高综放工作面覆岩上层活动规律的相似模拟研究[J].矿业研究与开发,2011,31(2).
    [159]马刚,陈海波,孟宪锐.结构复杂厚煤层综放开采相似模拟研究[J].河南理工大学学报(自然科学版),2005,24(1):30-32.
    [160]罗声运.采场顶板的相似模拟试验[J].矿业研究与开发,1996,16(3):27-30.
    [161]王勇.煤巷锚杆支护巷道稳定性相似模拟实验研究[J].煤炭工程,2011(11):85-87.
    [162]勾攀峰,韦四江,张盛.不同水平应力对巷道稳定性的模拟研究[J].采矿与安全工程学报,2010,27(2):143-148.
    [163]Sutherland, H J; Heckes, A A; Taylor. Physical and numerical simulations of subsidence above high extraction coal mines [J]. Proc ISRM Symposium on Design and Performance of Underground Excavations, Sept 1984,22(1):65-72.
    [164]LU Y, LIU C. Similarity simulation of bolt support in a coal roadway in a tectonic stress field [J]. Mining Science and Technology (China), September 2010,20(5):718-722.
    [165]何杰,方新秋,许伟,等.深井高应力破碎区巷道破坏机理及控制研究[J].采矿与安全工程学报,2008,25(4):494-498.
    [166]朱维申,何满潮.复杂条件下围岩稳定性与岩体动态施工力学上M].北京:科学出版社,1996.
    [167]何满潮,郭志飚,任爱武,等.柳海矿运输大巷返修工程深部软岩支护设计研究[J].岩土工程学报,2005,27(9):977-980.
    [168]郜进海,康天合,靳钟铭,等.巨厚薄层状顶板回采巷道围岩裂隙演化规律的相似模拟实验研究[J].岩石力学与工程学报,2004,23(19).
    [169]康天合,郜进海,潘永前.薄层状碎裂顶板综采切眼锚固参数与锚固效果[J].岩石力学与工程学报,2004,23(增2):4930-4935.
    [170]Tang C A, LiuH, Lee P K K, et a,l Numerical studies of the influence of microstructure of rock failure in uniaxial compression, part Ⅱ: effect of heterogeneity [J]. Int. J. RockMech. Min. Sci,2000,37: 555-569.
    [171]唐春安,王述红傅宇芳岩石破裂过程数值试验[M].北京:科学出版社,2003.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700