相场法模拟对流对枝晶生长的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
采用计算机建模和数值模拟建立材料微观组织与材料加工工艺、材料性能间的联系,实现对材料性能的预测和改善具有重要的工程意义和理论价值。对流影响凝固微观组织形貌已是不容质疑的事实。本文利用相场法微观组织数值模拟技术,对强迫对流作用下的过冷纯金属凝固过程单枝晶、多枝晶的生长进行模拟,研究了不同模拟条件下的枝晶生长方式,探讨了过冷纯金属熔体枝晶生长机制。
     本文基于Tong相场模型发展得到的单相场控制多晶粒相场模型,采用相场、流场及温度场三场耦合的方法对纯金属镍凝固过程中的枝晶生长进行了数值模拟。采用Visual C++6.O实现程序的计算,为了提高计算效率和节省计算时间,应用直接差分去求解两场方程,然后以.TXT方式输出计算结果,最后利用Tecplot9.0实现模拟结果的可视化。
     首先,通过分析比较有无强迫对流情况下单枝晶形貌的不同,得出对流作用下上游尖端生长速度最快,水平方向次之,下游尖端生长速度最慢;研究了单枝晶在不同择优生长方向有无对流时的枝晶形貌和尖端速度。
     其次,研究了强迫对流无扰动情况下对流速度、各向异性系数、过冷度及耦合系数对晶粒形貌的影响,计算了不同情况下的尖端生长速度。结果表明:对流作用下枝晶各尖端生长速率表现为对流速度越大,整个枝晶体积也越大,上游枝晶生长速度的优势越明显;各向异性越大,各向主枝越细,当各向异性大于0.07时,枝晶形貌发生变异失真;过冷度在纯金属枝晶生长过程中起着决定性的作用,随着过冷度的增大,枝晶尖端速率是呈线性增大趋势的;随着耦合系数的增大,形貌由肥大枝晶状-瘦长枝晶状,当人为放大时,晶粒形貌失真,因此,耦合系数的选取应由材料的热物性参数决定。
     再次,模拟了纯金属有无对流时多晶粒在不同择优方向上的生长形貌,结果表明,当晶粒彼此相向生长时,生长会彼此影响,不同晶粒的主枝会彼此抑制,使得某个晶粒的某一主枝长度比其他主枝长度小,而且主枝生长弯曲。另外加入噪声的情况下,促进二次枝晶的生长。本文的计算效率大大提高,能较真实的模拟凝固过程枝晶的生长过程。
Computer modeling and numerical simulations of dendritic crystal growth plays an important role in prediction and improving material properties to establish the relationship of material properties and material processing with material microstructure.Convection influence on the organization in solidifying is already the fact which allows of no to query. In this paper aimed at simulating single grain and multiple grains growth under the role of forced convective during solidifieation of undercooled melt of pure metal under different condition by using phase-field method.The mechanism of dendritic growth in undercooled melt is diseussed.
     Based on the coupling of flow and temperature,phase field of phase-field model, proposed by Tong, develops the model which consists of a single-phase control of many grains of dendritic growth, and studies pure nickel metal in solidification process of dendritic growth for the numerical simulation.In the process of simulation, the Visual C++ 6.0 was used to calculate the program and the Tecplot 9.0 was used to achieve the vision of results. In order to save time of calculation and improve the efficiency, an interpolative method is used to achieve the coupling of the macro field and the micro field.
     First of all, through the analysis of whether or not forced convection case compared dendrite morphology,The growth speeds of each tip in a forced flow are different, the upstream tip is highest,the tip in a horizontal direction normal to the flow comes next, and the downstream tip is slowest. studies of a single dendrite at the preferred growth orientation whether or not convection case dendrite morphology and the speeds of tip.
     Secondly, studies the influence of forced convection velocity U, the undercooling△, anisotropic coefficientγand the coupling coefficientλon the grain morphologies, calculated under different circumstances the speeds of tip. The results showed that: with the fast of the convection velocity, the growth speeds of the dendrite become larger ,the more obvious advantagest of the speed upstream dendrites ; the larger the anisotropic coefficient y , the thinner the branching are ,when anisotropy is greater than 0.07, the variation of dendrite morphology distortion happened; undercooling in the pure metal dendrite growth process plays a very decisive role, when the undercooling is great, dendrite tip velocity is increased linearly the general trend; coupling coefficient with the increase of crystal morphology by mast~slender sticks crystal, when the artificial amplification, the grain morphology of distortion, Therefore, the value of coupling coefficient is detemined by physical properties .
     Third, whether or not the convection of pure metal is simulated when many grains in different directions at the preferred growth orientation morphology, The results show that the opposite to each other,when the grains growth will be affected each other, different grains with one another and inhibit the main branch, making a grain length of a main branch length shorter than the other, and its main branch the growth of bending. Also add the case of noise, and promote the growth of secondary dendrites.In this paper, greatly improve the computational efficiency, and the model could present the true solidification process of dendritic growth.
引文
[1]朱鸣芳,戴挺,李成允等.对流作用下枝晶生长行为的数值模拟.中国工程科学,2005,35(7):637-688
    [2]Steinbach I,Beckermann C.Three -dimensional modeling of equiaxed dendritic growth on a mesoscopic scale.Acta Mater,1999,47(3):971-982
    [3]于艳梅.过冷熔体中枝晶生长的相场法数值模拟.西北工业大学博士学位论文.西安:西北工业大学,2002,6
    [4]Rappaz M,Gandin C A.Probabilostic Modelling of Microstructure Formation in Solidification Processes.Acta Metall,1993,41(2):350-361
    [5]Gandin C A,Rappaz M.A coupled Finite Element-Celluar Automation Model for the prediction of dendritic grain structures on solidification processes.Acta Metall,1994,42(7):2233-2246
    [6]Wang C Y,Beckermann C.Prediction of Columnar to Equiaxed Transition during Diffusion-Controlled Dendritic Alloy Solidification.Metall.Mater.Trans.A,1994,25A:1081-1093
    [7]Oldfield W.A qualitative approach to casting solidification.Freezing of Cast Iron,ASM Trans,1996,59:945-960
    [8]Hunt J D.Steady State Columnar and Equiaxed Growth of Dendrites and Eutectic.Mater.Sci.Eng,1984,65:75-83
    [9]Thevoz Ph,Desbiolies J L,Rappaz M.Modeling of Equiaxed Microstructure Formation in Casting.Metall.Trans.A,1989,20A:311-321
    [10]Rappaz M,Thevoz Ph.Solute Diffusion Model for Exquiaxed Dendritic Growth.Acta Metall,1987,35(7):1487-1497
    [11]Rappaz M,Thevoz Ph.Solute Diffusion Model for Exquiaxed Dendritic Growth:Analytical Solution.Acta Metall,1987,35(12):2929-2933
    [12]Wang C Y,Beckermann C.Prediction of Columnar to Equiaxed Transition during Diffusion-Controlled Dendritic Alloy Solidification.Metall.Mater.Trans.A,1994,25A:1081-1093
    [13]Wang C Y,Beckermann C.Equiaxed Dendritic Solidification with Convection Multiscale/Multiphase Modeling.Metall.Mater.Trans,1996,27A(9):2754-2764
    [14]Wang C Y,Beckermann C.Equiaxed Dendritic Solidification with Convection Numerical Simulations for an A1-4wtpctCuAlloy.Metall.Mater.Trans.A,1996, 27A(9): 2765-2783
    [15] D.罗伯.计算材料学.北京.化学工业出版社.2003
    [16] Spittle J A ,Brown S G R. Computer Simulation of the Effects of Alloy Variables on the Grain Structures of Castings. Acta Metall, 1989,37 (7):1803-1810
    [17] Spittle J A,Brown S G R. A Computer Simulation of the Influence of Processing Conditions on As2cast Grain Structures.J.Mater.Sci,1989, 23:1777-1781
    [18] Zhu P ,Smith R W. Dynamic Simulation of Crystal Growth by Monte Carlo Method Ⅱ. Ingot Microstructures. Acta Metall, 1992, 40(12):3369-3379
    [19] Rappaz M, Charbon Ch , Sasikumar R. Acta Metall, 1994,42: 2365-2374
    [20] Gandin Ch A ,Rappaz M ,Trivedi R.Three Dimensional Simulation of the Grain Formation in Investment Casting.Metall.Mater. Trans.A, 1994,25A(2):629-637
    [21] Rappaz M, Gandin Ch A, Thevoz Ph,et al. Predication of Grain Structure in Various Solidification Process.Metall.Mater. Trans.A, 1996, 27A(3):695-705
    [22] Gandin Ch A, Rappaz M, Trivedi R. Three Dimensional Probabilistic Simulation of Solidification Grain structures Metall Mate Trans.A, 1993, 24A(2):467-479
    [23] Gandin Ch A ,Desbiolies J L ,Rappaz M ,et al. Grain Texture Evaluation during Columnar Growth of Dendritic Alloys. Metall. Mater. Trans. A, 1999, 30A (12) : 3153-3162
    [24] Lee K Y,Hong C P. Stochastic Modeling of Solidification Grain Structure of A12Cu Crystal Line Ribbons in Planar Casting. ISIJ Int ,1997,37(1):38-46
    [25] Cho I S,Hong C P. Modeling of Microstructural Evolution in Squeeze Casting of an A124. 5mass %Cu Alloy.ISIJ Int, 1997 ,37(11): 1098-1106
    [26] Lee S Y, Lee S M ,Hong C P. Numerical Modeling of Deflected Columnar Dendritic Grains Solidified in a Flowing Melt and Its Experimental Verification.ISIJInt,2000,40(1):48-57
    [27] Zhu M F, Hong C P. A Modified Cellular Automaton Model for the Simulation of Dendritic Growth in Solidification of Alloys.ISIJ Int, 2001,41(5): 436-445
    [28] Zhu M F ,Kirn J M ,Hong C P. Modeling of Globular and Dendritic Structure Evolution in Solidification of an Al-7mass %Si Alloy. ISIJ Int, 2001, 41 (9):992-998
    [29] Collins J B, Levin H. Diffuse Interface Model of Diffusion Limited Crystal Growth. Physical Review B, 1985, 31(9):6119-6122
    [30] Caginalp G, Fife P C. Dynamics of Layered Interfaces Arising From Phase Boundaries. SIAM Journal of Apply Mathematics, 1988, 48(3): 506-510
    [31] Caginalp G. Stefan and Hele2Shaw Type Model as Asymptotic Limits of the Phase2field Equations.Physical Review A, 1989, 39(11):5887-5890
    [32] Fife P C, Gill G S. Phase Transition Mechanism Ms for the Phase2field Model under Internal Heating. Physical Review A, 1991, 43(2):843-851
    [33] Kobayashi R. Modeling and Numerical Simulations of Dendritic Crystal Growth.Hysical Review D, 1993, 63(10):410-423
    [34] Karma A, Rappel W J. Phase-field Method for Computationally Efficient Modeling of Solidification with Arbitrary Interface Kinetics. Physical Review E,1996,53(4):3017-3020
    [35] Karma A, RaPPel W J.Qunatitative Phase-field Modeling of Dendritie Growth in Two and Three Dimensions.PhysiealReviewE. 1998, 57(4):4323-4349
    [36] Kim S G, Kim W T, Suzuki T. Interfacial Compositions of Solid and Liquid in a Phase-field Model with Finite interface Thickness for Isothermal Solidification in Binary Alloys. Physical Review E, 1998, 58(3):3316-3323
    [37] Lee J S, Suzuki T. Numerical Simulation of Isothermal Dendritic Growth by Phase-field Model. ISIJ Int, 1999, 39(3):246-252
    [38] Kim S G, Kim W T, Lee J S, et al. Large Scale Simulation of Dendritic Growth in Pure Undercooled Melt by Phase-field Model. ISIJ Int, 1999, 39 (4):335-340
    [39] D. Rodney, Y. LeBouar, F. A., Phase field methods and dislocations, Acta Mater. 2003 (51): 17-30
    [40] H. Henry, H. Levine, Dynamic instabilities of fracture under biaxial strain using a phase field model, Phys. Rev. Lett. 2004 (93) 105504
    [41] R S Qin,E R Wallach, R C Thomson. A phase-field model for the solidification of multicomponent and multiphase alloys[J]. Journal of Crystal Growth, 2005, 279(1): 163-169
    [42] Steinbach I. Pezzolla F. Nestler B. at el. A phase field concept for multiphase systems. Physica D, 1996, 94: 135-147
    [43] Tiaden J. Phase field simulation of the peritectic solidification of Fe-C. J. Crystal Growth, 1999, 198/199: 1275-1280
    [44] Y. Wang, Y. Jin, A. Khachaturyan, The effect of free surfaces on martensite microstructures: 3D phase field microelasticity simulation study, Acta Mater. 2004 (52:) 1039-1050
    [45] K. Nakajima, I. Apel, I. Steinbach, The role of carbon diffusion in ferrite on the kinetics of cooperative growth of pearlite: A multi-phase field study, Acta Mater. 2006(54):3665-3672
    [46] R. Spatschek, C. Muller-Gugenberger, E. Brener, B. Nestler, Phase field modeling of fracture and stress-induced phase transitions,Phys.Rev.E 2007:(75) 066111
    [47]L.Gr'an'asy,T.Pusztai,D.Saylor,J.Warren,Phase field theory of heterogeneous crystal nucleation,Phys.Rev.Lett.2007(98) 035703
    [48]Diepers H J,et al.Solidification Processing.Sheffield:Ranmoon House,1997:426-430
    [49]T(?)nhardt R,Amberg G.Dendritic Growth of Randomly Oriented Nuclei in a Shear Flow.J Cryst Growth.2000,213:161-187
    [50]Tong X,et al.in Modeling of Casting,Welding and Advanced Solidification Process ⅧTMS Publishers,New york,1998:613
    [51]Tong X,Beckermann C,Karma A,and Li Q.Phase-filed Simulations of Dendritic Crystal Growth in Forced Flow.Phys Rev E,2001,63:061601
    [52]Beckermann C,Diepers H J,Steinbach I,et al.Modeling Melt Convection in Phase-Field Simulations of Solidification.J.Comput Phys,1999,154(1):468-496
    [53]Diepers H J,Beckermann C,Steinbach I.Simulation of convection and ripening in a binary alloy mush using the phase-field method.Acta.Mater,1999,47(13):3663-3678
    [54]Anderson D M,Mcfadden G B,Wheeler A A.A phase-field model of solidification with convection.Physica D,2000,135:175-194
    [55]Tong X,Beckermann C.Velocity and shape selection of dendritic crystals in a forced flow.Phys.Rev.E,2000,61(1):49-52
    [56]Jeong J H;Goldenfeld N,Dantzig J A.Phase Field Model for Three Dimensional Dendritic Growth with Fluid Flow.Phys Rev E,2001,64:041602
    [57]Lan C W,Hsu C M,Liu C C.Efficient Adaptive Phase Field Simulation of Dendritic Growth in a Forced Flow.J Crystal Growth,2002,241:379-386
    [58]Lan C W,Hsu C M,Liu C C,et al.Adaptive Phase Field Simulation of Dendritic Growth in a Forced Flow at Various Supercoolings.Phys Rev E,2002,65:061601
    [59]Jeong J H,Goldenfeld N,Dantzig J A.Phase Field Model for Three-dimension Dendritic Growth with Fluid Flow.Metall Material Transic A 2003,34:459-470
    [60]Lu Y,Ramirez J C.Three-Dimensional Phase-Field Simulations of the Effect of Convection on Free Dendritic Growth.J Crystal Growth,2005,280:320-334
    [61]许庆彦,柳百成.采用 Cellular Automaton 法模拟铝合金的微观组织.中国机械工程,2001,12(3):328-331
    [62]张玉妥,王君卿,庞维诚等.用相场方法模拟纯物质的枝晶生长.铸造,2003,52(11):1091-1096
    [62]赵海东,柳百成,刘蔚羽等.球墨铸铁件微观组织的数值模拟.机械工程学报,2000,36(2):76-80
    [63]金俊泽,王宗廷,郑贤淑等.金属凝固组织形成的仿真研究.金属学报,1998,34(9):928-932
    [64]龙文元,蔡启舟,陈立亮等.二元合金等温凝固过程的相场法模拟.物理学报,2005,54(1):256-262
    [65]刘小刚.Al-Cu合金等温凝固的相场法模拟.[沈阳工业学院硕士学位论文].沈阳:沈阳工业学院材料学院,2003,31-34
    [66]于艳梅,杨根仓,赵达文等.过冷熔体中枝晶生长的相场法数值模拟.物理学报,2001,50(12):2423-2427
    [67]赵代平,荆涛,柳百成.相场方法模拟铝合金三维枝晶生长.物理学报,2003,52(7):1737-1742
    [68]田卫星.纯金属凝固过程枝晶生长的相场法研究.博士学位论文.济南:山东大学,2007
    [69]朱耀产,杨根仓,王锦程等.多相场法数值模拟共晶凝固研究进展.特种铸造及有色合金,2004(3):45-46
    [70]冯力,朱昌盛,王智平等.多元合金多晶粒枝晶生长等温相场法模型.材料科学与工艺,2008,16(1):22-27
    [71]冯力,王智平,路阳等.二元合金多晶粒的枝晶生长的等温相场模型.物理学报,2008,57(2):1084-1086
    [72]陈玉娟,陈长乐.相场法模拟对流速度对上流枝晶生长的影响.物理学报,2008,57:4585-4589
    [73]段萌萌,陈长乐,李展耀等.对流作用下胞晶侧向生长实时观察.中国科学,2007,37(3):1015-1018

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700