用户名: 密码: 验证码:
水平荷载作用下桥墩及桩基的静力与动力响应分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
国民经济的快速增长给桥梁建设和水路交通带来了巨大需求,同时也引发撞桥事故概率的增高,严重危及到桥梁的安全运营。鉴于此,本文对水平荷载作用下桥墩及桩基的静力和冲击动力响应开展了解析和数值计算研究,主要工作和创新成果如下:
     1.对黏性土和砂性土地基水平极限抗力的计算方法进行了归纳总结和计算对比。基于地基反力法和简化的土体弹塑性本构关系,进一步完善了均质地基中水平受荷桩桩顶嵌固(桩顶约束转动)情形的解析解。
     2.基于地基反力法和简化的土体弹塑性本构关系,分别对“(?)Gibson模式”和“广义Gibson模式”地基中水平受荷长桩进行了解析计算研究,给出了不同工况下桩身最大挠度、最大转角、最大弯矩的无量纲解析表达式。计算表明联合荷载(水平力和弯矩)作用下桩身最大挠度、最大转角和最大弯矩与荷载的关系具有非线性、非对称性,故采用常规线性叠加法进行联合荷载作用下的计算将偏于不安全。在常见荷载范围内,对复杂的解析结果进行了简化拟合,提出的拟合公式计算简便精度高,有利于工程的应用。通过与实测数据及p-y曲线法计算结果的比较表明,本文方法可较有效地开展非均质弹塑性地基中水平受荷长桩的计算分析。
     3.基于地基反力法和简化的土体弹塑性本构关系,结合提出的双层地基极限抗力计算表达式,对双层非均质弹塑性地基中桩顶自由和嵌固两种常见情形下的水平受荷长桩进行了解析推导,得到了相应的闭合计算式。并利用所得解分析了双层地基土性参数对桩基性状的影响。算例分析表明,本文解计算结果与单桩和群桩的三维有限元模拟结果及现场试验实测值吻合较好。
     4.基于Euler粱-Winkler模型(E-W模型),给出了均质黏弹性地基中不同边界条件下桩受水平冲击荷载响应的完全解析解。针对E-W模型动力分析存在的不足,对Timoshenko梁-双参数模型(T-D模型)黏弹性地基中桩的动力响应进行了半解析求解,并对E-W模型和T-D模型桩的动力响应进行了计算比较。对相同的撞击能量下三种常见的简化冲击荷载形式(矩形脉冲荷载、半正弦脉冲荷载和三角形脉冲荷载)作用下桩的动力响应进行了计算对比。
     5.基于T-D模型,对成层黏弹性地基中水平冲击荷载作用下单墩-桩基础和双墩-桩基础结构的动力响应进行了理论推导。通过单墩-桩基础动力计算模型,对承台、墩顶结构、荷载作用位置、河床冲刷深度、复杂的冲击荷载形式等进行了参数影响分析。最后利用本文理论模型对两座撞击试验桥墩进行了简化计算,计算结果和实测值较吻合。
     6.对某大桥受撞桥墩-桩基础实测资料进行了分析,并对桥墩的受撞过程进行了推测反演。针对其中受损最严重的桥墩开展了拟静力三维有限元数值模拟分析,较全面地考察了桥墩-桩基础结构的受损和偏位情况,相关结果与实测数据较一致。本文计算结果可为桥墩进一步的检测、修复设计提供依据及为类似工程分析提供参考。
The rapid growth of national economy has brought tremendous demands for bridge constructions and waterway transports, but also leads to increasing the probability of bridge collisions, which seriously endangers the safety of bridge. In light of this, the static and impact dynamic responses of the pier-pile foundation under lateral loading are studied by analytical and numerical methods. The main original works and innovative achievements are as follows:
     1. The existing methods for computing the horizontal ultimate resistance of clay and sand soils are summarized and compared. Based on the subgrade reaction method and the simplified elastoplastic constitutive relations of soils around the pile, the analytical solutions of a laterally loaded fixed-head pile embedded in a homogeneous soil are deduced.
     2. Based on the subgrade reaction method and the simplified elastoplastic constitutive relations of soils, the analytical calculations of laterally loaded long pile embedded in both the "Gibson style" foundation and the "generalized Gibson style" foundation are presented respectively, the dimensionless analytical expressions of maximum deflection, maximum rotation and maximum moment of the pile under various conditions are derived. The calculation results show that the load-maximum deflection, load-maximum rotation and load-maximum moment relationships of the pile under combined lateral loads (horizontal force and moment) are nonlinear and asymmetrical, so using the linear superposition method for combined loads will be on unsafe side. Besides, the complex analytical solutions are simplified for more easily applying to engineering calculation within the common load range, and the results of the fitted formulas show high accuracy. The results compared with the measurements and the p-y curve method indicate that the present method is capable of analyzing laterally loaded long pile embedded in a non-homogeneous, elastoplastic soil.
     3. Based on the subgrade reaction method, the simplified elastoplastic constitutive relations of soils and the proposed ultimate resistance calculation formula of double-layered soils, the closed-form solutions for both free-head and fixed-head laterally loaded long piles embedded in double-layered, non-homogeneous elastoplastic soils are deduced respectively. And the effects of soil parameters of the double-layered foundation on the pile behavior are investigated with the derived solutions. The example analyses show that the results calculated by the proposed analytical solutions are compared well with that of 3D finite element analysis and field measurements of the single pile and pile group.
     4. Based on an Euler beam resting on a Winkler foundation (E-W model), the analytical solutions of the pile embedded in a homogeneous viscoelastic foundation under lateral impact force are derived with various boundary conditions. In light of the imperfect of dynamic analysis based on E-W model, the semi-analytical solutions of dynamic response of pile based on a Timoshenko beam resting on a two-parameter viscoelastic foundation (T-D model) are developed, and the difference of pile dynamic response based on the E-W model and T-D model are researched. Then the dynamic responses to three commonly simplified impact loads (rectangular impulse, half-sine impulse, and triangular impulse) are compared under the constant impact energy.
     5. Based on the T-D model, the semi-analytical solutions of dynamic response of both single pier-pile foundation and double piers-pile foundation in layered viscoelastic soils under lateral impact loading are deduced. Then, the effects of the pile cap, the superstructure units upon pier cap, the load position, the riverbed scouring depth and the complex impact loading form on the dynamic responses are investigated using the proposed single pier-pile foundation model. Finally, full-scaled experimental impact tests conducted on two piers are calculated using the proposed models, and the results are compared well with the measurements.
     6. The measured data of a collided pier-pile foundation are analyzed, and the collision process is speculated and retrieved. Then the most severely damaged pier is analyzed with the pseudo-static three dimensional finite element numerical simulations, the damage and deflection of the pier-pile foundation are systematically investigated, and some of the results are compared well with the measurements. The numerical simulation results not only can be the basis of the further detection and recover design of the piers, but also can offer some references for the similar projects.
引文
[1]AASHTO. Guide specification and commentary for vessel collision design of highway bridges[S]. Washington DC:American Association of State Highway and Transportation Officials,1991.
    [2]AASHTO. LRFD bridge design specifications(4th edition)[S]. Washington DC:American Association of State Highway and Transportation Officials,2007.
    [3]Allegretti T, Pluta P. Report of the Coast Guard-AWO Bridge Allision Work Group[R]. Washington DC: 2003.
    [4]API RP 2A-WSD. Recommended practice for planning, designing and constructing fixed offshore platforms-working stress design[S]. Washington DC:API,2000.
    [5]Arboleda-Monsalve L G, Zapata-Medina D G, Aristizabal-Ochoa J D. Timoshenko beam-column with generalized end conditions on elastic foundation:dynamic-stiffness matrix and load vector[J]. Journal of Sound and Vibration,2008,310:1057-1079.
    [6]Ashour M, Norris G, Pilling P. Lateral loading of a pile in layered soil using the strain wedge model[J]. Journal of Geotechnical and Geoenvironmental Engineering,1998,124(4):303-314.
    [7]Ashour M, Norris G, Pilling P. Strain wedge model capability of analyzing behavior of laterally loaded isolated piles, drilled shafts and pile groups[J]. Journal of Bridge Engineering,2002,7(4):245-254.
    [8]Ashour M, Norris G. Modeling lateral soil-pile response based on soil-pile interaction[J]. Journal of Geotechnical and Geoenvironmental Engineering,2000,126(5):420-428.
    [9]Ashour M, Pilling P, Norris G. Lateral behavior of pile groups in layered soils[J]. Journal of Bridge Engineering,2004,130(6):580-592.
    [10]Awojobi A O. Estimation of the dynamic surface modulus of a generalized Gibson soil from the rocking frequency of rectangular foundations[J]. Geotechnique,1973,23(1):23-31.
    [11]Banerjee P K, Davies T G. The behavior of axially and laterally loaded single piles embedded in nonhomogeneous soils[J]. Geotechnique,1978,28(3):309-326.
    [12]Boley B A, Chao C C. Some solution of the Timoshenko beam equations[J]. Journal of Applied Mechanics, ASME,1955,22(3):579-586.
    [13]Bowles J E. Foundation analysis and design[M]. New York:McGraw Hill,1977.
    [14]Bowman E R. Investigation of the lateral resistance to movement of a plate in cohesionless soil[D]. Austin:The University of Texas,1958.
    [15]Briaud J L, SMITH T D. Using the pressuremeter curve to design laterally loaded piles[C]//The 15th Annual Offshore Technology Conference. Houston:Texas,1983:495-502.
    [16]Broms B B. Lateral resistance of piles in cohesionless soils[J]. Journal of the Soil Mechanics and Foundation division, ASCE,1964,90(3):123-156.
    [17]Brown D A, Morrison C, Reese L C. Lateral load behavior of pile group in sand[J]. Journal of Geotechnical Engineering,1988,114(11):1261-1276.
    [18]Brown D A, O'Neill M W, Hoit M, et al. Static and dynamic lateral loading of pile groups[R]. NCHRP Report 461, Washington DC:Auburn University,2001.
    [19]Brown D A, Reese L C, O'Neill M W. Cyclic lateral loading of a large-scale pile group[J]. Journal of Geotechnical Engineering,1987,113(11):1326-1343.
    [20]Brown D A, SHIE C. Numerical experiments into group effects on the response of piles to lateral loading[J]. Computers and Geotechnics,1990,10:211-230.
    [21]Brown D A, SHIE C. Some numerical experiments with a three dimensional finite element model of a laterally loaded pile[J]. Computers and Geotechnics,1991,12:149-162.
    [22]Brown D A, SHIE C. Three dimensional finite element model of laterally loaded piles[J]. Computers and Geotechnics,1990,10:59-79.
    [23]Budiman J, Ahn K. Effects of pile cap in single pile and lateral capacity of pile group[C]//Proceedings of Sessions of The Geo-Frontiers 2005 Congress. Austin:ASCE,2005,1-16.
    [24]Cai F, Ugai K. Response of flexible piles under laterally linear movement of the sliding layer in landslides[J]. Can. Geotech. J.,2003,40:46-53.
    [25]CECS 28:90.钢管混凝土结构设计与施工规程[S].北京:中国计划出版社,1992.
    [26]Christensen D S. Full scale static lateral load test of a 9 pile group in sand[D]. Provo:Brigham Young University,2006.
    [27]Consolazio G R, Cook R A, McVay M C. Barge impact testing of the St. George Island Causeway Bridge, Phase III:Physical testing and data interpretation[R]. BC-345 RPWO-76, Gainesville: University of Florida, Department of Civil and Coastal Engineering,2006.
    [28]Consolazio G R, Cowan D R. Nonlinear analysis of barge crush behavior and its relationship to impact resistant bridge design[J]. Computers and Structures,2003,81:547-557.
    [29]Consolazio G R, Cowan D R. Numerically efficient dynamic analysis of barge collisions with bridge piers[J]. Journal of Structural Engineering, ASCE,2005,131(8):1256-1266.
    [30]Consolazio G R, Lehr G B, McVay M C. Dynamic finite element analysis of vessel-pier-soil interaction during barge impact events[J]. Journal of the Transportation Research Board,2003,1849:81-90.
    [31]Cowan D R. Numerically efficient nonlinear dynamic analysis of barge impacts on bridge piers[D]. Florida:University of Florida,2004.
    [32]Davisson M T, GILL H L. Laterally loaded piles in a layered soil system[J]. Journal of the Soil Mechanics and Foundations Division, ASCE,1963,89(3):63-94.
    [33]Dodds A. A numerical study of pile behavior in large pile groups under lateral loading[D]. California: University of Southern California,2005.
    [34]Duncan J M, Evans L T, Ooi P S K. Lateral load analysis of single piles and drilled shafts[J]. Journal of Geotechnical Engineering,1994,120(5):1018-1033.
    [35]Dunnavant T W, O'Neill M W. Experimental p-y model for submerged stiff clay[J]. Journal of Geotechnical Engineering, ASCE,1989,115(1):95-114.
    [36]Durbin F. Numerical inversion of Laplace transforms:an efficient improvement to Dubner and Abate's method[J]. The Computer Journal,1974,17(4):371-376.
    [37]EI-Tawil S, Severino E, Fonseca P. Vehicle collision with bridge piers[J]. Journal of Bridge Engineering, ASCE,2005,10(3):345-353.
    [38]El-Mously M. Fundamental frequencies of Timoshenko beams mounted on Pasternak foundation[J]. Journal of Sound and Vibration,1999,228(2):452-457.
    [39]Esfahani E S, Marzougui D. Safety performance of concrete median barriers under updated crashworthiness criteria[R]. NCAC 2008-W-002, Ashburn:National Crash Analysis Center,2008.
    [40]Fan C, Long J H. Assement of existing methods for predicting soil response of laterally loaded piles in sand[J]. Computers and Geotechnics,2005,32:274-289.
    [41]FB-PIER. FB-PIER user's manual[M]. Gainesville:Florida Bridge Software Institute, University of Florida,2003.
    [42]Feng Z, Cook R D. Beam elements on two-parameter elastic foundations[J]. Journal of Engineering Mechanics, ASCE,1983,109(6):1390-1402.
    [43]Fleming W G K, Weltman A J, Randolph M F, et al. Piling engineering[M]. New York:Wiley,1992.
    [44]Focht J A, Koch K J. Rational analysis of the lateral performance of offshore pile groups[C]//The Fifth Offshore Technology Conference. Houston:Texas,1973,701-708.
    [45]Franke E. Group action between vertical piles under horizontal loads[C]//Van Impe W F. Rotterdam: Netherlands,1988:83-93.
    [46]Franklin J N, Scott R F. Beam equation with variable foundation coefficient[J]. Journal of the Engineering Mechanics division,1979,105(5):811-827.
    [47]Galletly G D. Circular plates on a generalized elastic foundation[J]. Journal of Applied Mechanics, ASME,1959,26:297.
    [48]Ghazzaly O I, Hwong T H. Approximate analysis of a pile under dynamic lateral loading[J]. Computers & Structure,1976,6:363-368.
    [49]Gibson R E. Some results concerning displacements and stresses in a non-homogeneous elastic half-space[J]. Geotechnique,1967,17:58-67.
    [50]Gill H L, Demars K R. Displacement of laterally loaded structures in nonlinearly responsive soil[R]. R-670, California:U.S. Naval Civil Engineering Laboratory,1970.
    [51]Gleser S M. Generalized behavior of laterally loaded vertical piles[C]//Langer J A, Mosley E T, Thompson C D. Laterally loaded deep foundations:analysis and performance. Kansas:ASTM,1984: 72-96.
    [52]Gluver H, Olsen D. Ship collision analysis[C]//Rotterdam:Balkema,1998.
    [53]Gowda P K. Laterally loaded pile analysis for layered soil based on the strain wedge model[D]. Reno: University of Nevada,1991.
    [54]Guo W D, Lee F H. Load transfer approach for laterally loaded piles[J]. International Journal for Numerical and Analytical Methods in Geomechanics,2001,25:1101-1129.
    [55]Guo W D. On limiting force profile, slip depth and response of lateral piles[J]. Computers and Geotechnics,2006,33:47-67.
    [56]Habibagahi K, Langer J A. Horizontal subgrade modulus of granular soils[C]//Langer J A, Mosley E T, Thompson C D. Laterally loaded deep foundations:analysis and performance. Kansas:ASTM,1984: 21-34.
    [57]Hamilton J M, Phillips R, Dunnavant T W, Murff J D. Centrifuge study of laterally loaded pile behavior in clay[C]//Proceedings of the International Conference on Centrifuge. Netherlands:Rotterdam,1991: 285-292.
    [58]Hassanzadeh H, Pooladi-Darvish M. Comparison of different numerical Laplace inversion methods for engineering applications[J]. Applied Mathematics and Computation,2007,189:1966-1981.
    [59]Hendrix J L. Dynamic analysis techniques for quantifying bridge pier response to barge impact loads[D]. Florida:University of Florida,2004.
    [60]Hetenyi M. Beams on elastic foundations[M]. Ann Arbor, Michigan:University of Michigan Press, 1946.
    [61]Holmquist T J, Johnson G R, Cook W H.A computational constitutive model for concrete subjected to large strains, high strain rates, and high pressures[C]//The 14th International Symposium on Ballistics. Canada:Quebel,1993:591-600.
    [62]Hsiung Y M, Chen S S, Chou Y C. Analytical solution for piles supporting combined lateral loads[J]. Journal of Geotechnical and Geoenvironmental Engineering,2006,132(10):1315-1324.
    [63]Hsiung Y M, Chen Y L. Simplified method for analyzing laterally loaded single piles in clays [J]. Journal of Geotechnical and Geoenvironmental Engineering,1997,123(11):1018-1029.
    [64]Hsiung Y M. Theoretical elastic-plastic solution for laterally loaded piles[J]. Journal of Geotechnical and Geoenvironmental Engineering,2003,129(6):475-480.
    [65]Huang A, Hsueh C, O'Neill M W, et al. Effects of construction on laterally loaded pile groups[J]. Journal of Geotechnical and Geoenvironmental Engineering,2001,127(5):385-397.
    [66]IABSE. Ship collision with bridges and offshore structures[R]. Copenhagen:International Association of Bridge and Structural Engineers Colloquium,1983.
    [67]JGJ 94—2008建筑桩基技术规范[S].北京:中国建筑工业出版社,2008.
    [68]JTG D60—2004.公路桥涵设计通用规范[S].北京:人民交通出版社,2004.
    [69]Karthigeyan S, Ramakrishna V V G S T, Rajagopal K. Influence of vertical load on the lateral response of piles in sand[J]. Computers and Geotechnics,2006,33:121-131.
    [70]Karthigeyan S, Ramakrishna V V G S T, Rajagopal K. Numerical investigation of the effect of vertical load on the lateral response of piles[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2007,133(5):512-521.
    [71]Kishida H, Nakai S. Large deflection of a single pile under horizontal load[C]//Proceedings of the 9th International Conference on Soil Mechanics and Foundation Engineering:Speciality session 10. Tokyo: Springer,1977,87-92.
    [72]Knott M A. Vessel collision design codes and experience in the United States[C]//Gluver H, Olsen D. Ship Collision Analysis:proceedings of the International Symposium on Advances in Ship Collision Analysis. Rotterdam:Balkema,1998:75-84.
    [73]Kucukarslan S. Time domain dynamic analysis of piles under impact loading[J]. Soil Dynamic and Earthquake Engineering,2002,22:97-104.
    [74]Kulhawy F H, Trautmann C H, Beech J F, et al. Transmission line structure foundations for uplift-compression loading[R]. Report No. EL-2870, Palo Alto:Electric Power Research Institute, 1983.
    [75]Kulhawy F H. Drilled shaft foundations[C]//Fang H Y. Foundation engineering handbook(2nd Ed.). New York:Van Nostrand Reinhold,1991:Chapter 14.
    [76]Kuzmanovic B O, Sanchez M R. Design of bridge pier pile foundations for ship impact[J]. Journal of Structure Engineering,1992,118(8):2151-2167.
    [77]Larkela A. Modeling of a pile group under static lateral loading[D]. Espoo:Helsinki University of Technology,2008.
    [78]Lee P Y, Gilbert L W. Behavior of laterally loaded pile in very soft clay[C]//The 11th Annual Offshore Technology Conference. Houston:Texas,1979:387-395.
    [79]Marzougui D, Kan C. Evaluation of the influences of cable barrier design and placement on vehicle to barrier interface[R]. NCAC 2008-W-001, Ashburn:National Crash Analysis Center,2008.
    [80]Marzougui D, Mohan P, Kan C. Evaluation of rail height effects of the safety performance of W-beam barriers[R]. NCAC 2007-W-002, Ashburn:National Crash Analysis Center,2007.
    [81]Mastaglio L. Bridge bashing[J]. Civil engineering,1997,67(4):38-40.
    [82]Matlock H, Reese L C. Generalized solutions for laterally loaded piles[J]. Journal of the Soil Mechanics and Foundation division, ASCE,1960,86(5):63-91.
    [83]Matlock H. Correlations for design of laterally loaded piles in soft clay[C]//The Second Annual Offshore Technology Conference. Houston:Texas,1970:577-594.
    [84]McClelland B, Focht J A. Soil Modulus for laterally loaded piles[J]. Transactions, ASCE,123: 1049-1086.
    [85]McVay M C, Hays C, Hiot M. User manual for FLORIDA-PILE program(version 5.0)[M]. Florida: University of Florida,1996.
    [86]McVay M C, Wasman S J, Consolazio G R, et al. Dynamic soil-structure interaction of bridge substructure subject to vessel impace[J]. Journal of Bridge Engineering, ASCE,2009,14(1):7-15.
    [87]McVay M, Casper R, Shang T. Lateral response of three-row groups in loose to dense sands at 3D and 5D pile spacing[J]. Journal of Geotechnical Engineering,1995,121(5):436-441.
    [88]McVay M, Zhang L, Molnit T, et al. Centrifuge testing of large laterally loaded pile groups in sands[J]. Journal of Geotechnical and Geoenvironmental Engineering,1998,124(10):1016-1026.
    [89]Meimon Y, Baguelin F, Jezequel J F. Pile group behavior under long time lateral monotonic and cyclic loading[C]//The 3rd International Conference on Numerical Methods in Offshore Piling. Nantes: France,1986,285-302.
    [90]Melville B W. Local scour at bridge abutment[J]. Journal of hydraulic engineering, ASCE,1992,118(4): 615-631.
    [91]Miklowitz J, Calif P. Flexural wave solutions of coupled equations representing the more exact theory of bending[J]. Journal of Applied Mechanics, ASME,1953,20(3):511-514.
    [92]Mohan P, Marzougui D, Bedewi N. Finite element modeling and validation of a 3-strand cable guardrail system[R]. NCAC 2004-W-002, Ashburn:National Crash Analysis Center,2004.
    [93]Mohan P, Marzougui D, Kan C. Validation of a single unit truck model for roadside hardware impacts[R]. NCAC 2003-W-001, Ashburn:National Crash Analysis Center,2003.
    [94]Mokwa R L, Duncan J M. Investigation of the resistance of pile caps and integral abutments to lateral loading[R]. Report No. FHWA/VTRC 00-CR4, Charlottesville:Virginia Polytechnic and State University,2000.
    [95]Murchison J M, O'Neill M W. Evaluation of p-y relationship in cohesionless soils[C]//Meyer J R. Analysis and design of pile foundations. San Francisco:National Convention,1984:174-191.
    [96]Murff J D, Hamilton J M.P-ultimate for undrained analysis of laterally loaded piles[J]. Journal of Geotechnical Engineering, ASCE,1993,119(1):91-107.
    [97]Narayanan G V, Beskos D E. Numerical operational methods for time-dependent linear problems[J]. International Journal for Numerical Methods in Engineering,1982,18(12):1829-1854.
    [98]Nogami T, Konagai K. Time domain flexural response of dynamically loaded single piles[J]. Journal of Engineering Mechanics, ASCE,114(9):1512-1525.
    [99]Norris G M, Abdollaholiaee P. Laterally loaded pile response:studies with the strain wedge model[R]. CCEER Report No.85-1, Reno:University of Nevada,1985.
    [100]O'Neill M W, Gazioglu S M. An evaluation of p-y relationships in clays[R]. PRAC 82-41-2, Texas: University of Houston,1984.
    [101]O'Neill M W, Ghazzaly O I, Ha H B. Analysis of three-dimensional pile groups with non-linear soil response and pile-soil-pile interaction[C]//The Ninth Annual Offshore Technology Conference. Houston:Texas,1977,245-256.
    [102]O'Neill M W, Murchison J M. An evaluation of p-y relationships in sands[R]. PRAC 82-41-1, Texas: University of Houston,1983.
    [103]Olson L D. Dynamic bridge substructure evaluation and monitoring[R]. FHWA-RD-03-089, McLean: Turner-Fairbank Highway Research Center,2005.
    [104]Pan J L, Goh A T C, Wong K S, et al. Model tests on single piles in soft clay[J]. Canadian Geotechnical Journal,2000,37:890-897.
    [105]Pasternak P L. On a new method of analysis of an elastic foundation by means of two foundation constants[M]. Moscow:National Engineering and Construction Press,1954.
    [106]Pham K D, Otani J, Watanabe Y, et al. Application of X-ray CT on boundary value problems in geotechnical engineering:research on ground failure due to lateral pile loadings[C]//GeoCongress 2006:Geotechnical Engineering in the Information Technology Age. Atlanta:ASCE,2006,1-6.
    [107]PIANC. Ship collisions due to the presence of bridges[R]. Bruxelles:Working Group 19 of the Inland Navigation Commission,2001.
    [108]Pise P J. Laterally loaded piles in a two-layer soil system[J]. Journal of the Geotechnical Engineering Division, ASCE,1983,108(9):1177-1181.
    [109]Poulos H G, Davis E H. Pile foundation analysis and design[M]. New York:Wiley,1980.
    [110]Poulos H G, Hull T S. The role of analytical geomechanics in foundation engineering[C]//Proceeding of the 1989 Foundation Engineering Conference. Illinois:Evanston,1989:1578-1606.
    [111]Poulos H G, Randolph M F. Pile group analysis:a study of two methods[J]. Journal of Geotechnical Engineering, ASCE,1983,109(3):355-372.
    [112]Poulos H G. Behavior of laterally loaded piles:Ⅲ-socketed piles[J]. Journal of the Soil Mechanics and Foundation Division, ASCE,1972,98(4):341-360.
    [113]Poulos H G. Behavior of laterally loaded piles:Ⅱ-pile groups[J]. Journal of the Soil Mechanics and Foundation Division, ASCE,1971,97(5):733-751.
    [114]Poulos H G. Behavior of laterally loaded piles:Ⅰ-single piles[J]. Journal of the Soil Mechanics and Foundation Division, ASCE,1971,97(5):711-731.
    [115]Poulos H G. Group factors for pile-deflection estimation[J]. Journal of Geotechnical Engineering Division, ASCE,1979,105(12):1489-1509.
    [116]Poulos H G. Lateral load-deflection prediction for pile groups[J]. Journal of Geotechnical Engineering Division, ASCE,1975,101(1):19-34.
    [117]Randolph M F, Houlsby G T. The limiting pressure on a circular pile loaded laterally in cohesive soil[J]. Geotechnique,1984,34(4):613-623.
    [118]Randolph M F. The response of flexible piles to lateral loading[J]. Geotechnique,1981,31 (2):247-259.
    [119]Reese L C, Cox W R, Grubbs B R. Lateral load tests of instrumented piles in sand at Mustang Island[R]. A report to shell development company, Houston:1967.
    [120]Reese L C, Cox W R, Koop F D. Analysis of laterally loaded piles in sand[C]//The Sixth Annual Offshore Technology Conference. Houston:Texas,1974:473-483.
    [121]Reese L C, Cox W R, Koop F D. Field testing and analysis of laterally loaded piles in stiff clay[C]// The Seventh Annual Offshore Technology Conference. Houston:Texas,1975:671-690.
    [122]Reese L C, van Impe W. Single piles and pile groups under lateral loading[M]. Netherlands:Balkema, 2001.
    [123]Reese L C, Welch R C. Lateral loading of deep foundations in stiff clay[J]. Journal of Geotechnical Engineering Division, ASCE,1975,101(7):633-649.
    [124]Reese L C, Wright S G, Aurora R P. Analysis of a pile group under lateral loading[C]//Langer J A, Mosley E T, Thompson C D. Laterally loaded deep foundation:analysis and performance. Kansas: ASTM,1984:56-71.
    [125]Reese L C. Laterally loaded piles:program documentation[J]. Journal of Geotechnical Engineering Division, ASCE,1977,103(4):287-305.
    [126]Rollins K M, Olsen R J, Egbert J J, et al. Pile spacing effects on lateral pile group behavior:load tests[J]. Journal of Geotechnical and Geoenvironmental Engineering,2006,132(10):1262-1271.
    [127]Rollins K M, Olsen R J, Egbert J J, et al. Pile spacing effects on lateral pile group behavior:analysis[J]. Journal of Geotechnical and Geoenvironmental Engineering,2006,132(10):1272-1283.
    [128]Rollins K M, Peterson K T, Weaver T J. Lateral load behavior of full-scale pile group in clay[J]. Journal of Geotechnical and Geoenvironmental Engineering,1998,124(6):468-478.
    [129]Ruesta P F, Townsend F C. Evaluation of laterally loaded pile group at Roosevelt Bridge[J]. Journal of Geotechnical and Geoenvironmental Engineering,1997,123(12):1153-1161.
    [130]Shen W Y, Teh C I. Analysis of laterally loaded piles in soil with stiffness increasing with depth[J]. Journal of Geotechnical and Geoenvironmental Engineering, ASCE,2004,30(8):878-882.
    [131]Shirima L M, Giger M W. Timoshenko beam element resting on two-parameter elastic foundation[J]. Journal of Engineering Mechanics,1992,118(2):280-295.
    [132]Simo J C, Ju J, Pister K S, et al. Assessment of cap model:consistent return algorithms and rate-dependent extension[J]. Journal of Engineering Mechanics,1988,114(2):191-218.
    [133]Snyder J L. Full-scale lateral-load tests of a 3×5 pile group in soft clays and silts[D]. Provo:Brigham Young University,2004.
    [134]Stevens J B, Audibert J M E. Re-examination ofp-y curves formulations[C]//The 11th Annual Offshore Technology Conference. Houston:Texas,1979:397-403.
    [135]Sullivan W R, Reese L C, Fenske C W. Unified methods for analysis of laterally loaded piles in clay[C]//Numerical Methods in Offshore Piling. London:Institute of Civil Engineering,1980: 135-146.
    [136]Sun K. Laterally loaded piles in elastic media[J]. Journal of Geotechnical Engineering,1994,120(8): 1324-1340.
    [137]TB 10002.1—2005.铁路桥涵设计基本规范[S].北京:中国铁道出版社,2005.
    [138]Terzaghi K, Peck R B, Mesri G. Soil mechanics in engineering practice[M]. New York:John Wiley & Sons, Inc.,1996.
    [139]Timoshenko S, Gere J M. Mechanics of materials(2nd ed.)[M]. United States:Thomson Brooks/Cole, 1984.
    [140]Trochanis A M, Bielak J, Christiano P. Three-dimensional nonlinear study of piles[J]. Journal of Geotechnical Engineering,1991,117(3):429-447.
    [141]Verruijt A, Kooijman A P. Laterally loaded piles in a layered elastic medium[J]. Geotechnique,1989, 39(1):39-46.
    [142]Vlasov V Z, Leont'ev N N. Beams, plates and shells on an elastic foundation[M]. Jerusalem:Israel Program for Scientific Translations,1966.
    [143]Wang Lili, Yang Liming, Huang Dejin, et al. An impact dynamics analysis on a new crashworthy device against ship-bridge collision[J]. International Journal of Impact Engineering,2008,35:895-904.
    [144]Wang N. Numerical analysis of interaction between pile-supported pier and bank slope[J]. China Ocean Engineering,2001,15(1):117-128.
    [145]Wang S T, Reese L C. Study of design method for vertical drilled shaft retaining walls[R]. Research Report 415-2F, Austin:University of Texas,1986.
    [146]Wang T M, Gagnon L W. Vibrations of continuous Timoshenko beams on Winkler-Pasternak foundations[J]. Journal of Sound and Vibration,1978,59(2):211-220.
    [147]Wang T M, Stephens J E. Natural frequencies of Timoshenko beams on Pasternak foundations[J]. Journal of Sound and Vibration,1977,51(2):149-155.
    [148]Wardhana K, Hadipriono F C. Analysis of recent bridge failures in the United States[J]. Journal of Performance of Constructed Facilities, ASCE,2003,17(3):144-150.
    [149]Wu D, Broms B B, Choa V. Design of laterally loaded piles in cohesive soils using p-y curves[J]. Soils and Foundations,1998,38(2):17-26.
    [150]Yang C C, Lin S, Juang C H, Lee W F. Analysis of laterally loaded piles in a two-layered elastic medium[C]//Proceeding of the International Deep Foundation Congress 2002. Florida:Orlando,2002, 80-94.
    [151]Yang K, Liang R. Numerical solution for laterally loaded piles in a two-layer soil profile[J]. Journal of Geotechnical and Geoenvironmental Engineering,2006,132(11):1436-1443.
    [152]Yang Z, Jeremic B. Numerical analysis of pile behaviour under lateral loads in layered elastic-plastic soils[J]. Int. J. Numer. Anal. Meth. Geomech.,2002,26:1385-1406.
    [153]Yang Z, Jeremic B. Study of soil layering effects on lateral loading behavior of piles[J]. Journal of Geotechnical and Geoenvironmental Engineering,2005,131(6):762-770.
    [154]Zhang B. Influence of pier nonlinearity, impact angle, and column shape on pier response to barge impact loading[D]. Florida:University of Florida,2004.
    [155]Zhang L, McVay M C, Lai P. Numerical analysis of laterally loaded 3×3 to 7×3 pile groups in sands[J]. Journal of Geotechnical and Geoenvironmental Engineering,1999,125(11):936-946.
    [156]Zhang L, Silva F, Grismala R. Ultimate lateral resistance to piles in cohesionless soils[J]. Journal of Geotechnical and Geoenvironmental Engineering, ASCE,2005,131(1):78-83.
    [157]陈镕,郑海涛,薛松涛等.无约束Timoshenko梁横向冲击响应分析[J].应用数学和力学,2004,25(11):1]95-1202.
    [158]陈向东,金先龙,杜新光.基于并行算法的船桥碰撞数值模拟分析[J].振动与冲击,2008,27(9):82-86.
    [159]陈云敏,王宏志.回传射线矩阵法分析桩的横向动力响应[J].岩土工程学报,2002,24(3):271-275.
    [160]戴彤宇.船撞桥及其风险分析[D].黑龙江:哈尔滨工程大学,2002.
    [161]戴自航,陈林靖.多层地基中水平荷载桩计算m法的两种数值解[J].岩土工程学报,2007,29(5):690-696.
    [162]房世龙,陈红,王岗.桥墩局部冲刷防护工程特性研究综述[J].水利水电科技进展,2007,27(4):84-89.
    [163]高明,陈锦珍.桩在侧向静动、循环荷载下的性能研究及p-y曲线建议公式[J].海洋工程,1998,6(3):30-34.
    [164]耿波.桥梁船撞安全评估[D].上海:同济大学,2007.
    [165]龚健,陈仁朋,陈云敏等.微型桩原型水平荷载试验研究[J].岩石力学与工程学报,2004,23(20):3541-3546.
    [166]龚晓南.土力学[M].北京:中国建筑工业出版社,2002.
    [167]郭大智,马松林.路面力学中的工程数学[M].黑龙江:哈尔滨工业大学出版社,2001.
    [168]韩海骞,牛有象,熊绍隆等.金塘大桥桥墩附近的海床冲刷[J].海洋学研究,2009,27(1):101-106.
    [169]韩理安.群桩水平承载力的的实用计算[J].岩土工程学报,1986,8(3):27-36.
    [170]韩理安.水平承载力的群桩效率[J].岩土工程学报,1984,6(3):66-74.
    [171]韩理安.水平承载桩的计算[M].长沙:中南大学出版社,2004.
    [172]何勇,金伟良,张爱晖等.船桥碰撞动力学过程的非线性数值模拟[J].浙江大学学报(工学版),2008,42(6):1065-1070.
    [173]胡安峰.桩基水平振动理论与性状研究[D].杭州:浙江大学,2002.
    [174]劳伟康,周国治,周立运.水平推力桩在大位移情况下m值的确定[J].岩土力学,2008,29(1):192-196.
    [175]劳伟康,周立运,王钊.大直径柔性钢管嵌岩桩水平承载力试验与理论分析[J].岩石力学与工程学报,2004,23(10):1770-1777.
    [176]李奇,王义刚,谢锐才.桥墩局部冲刷公式研究进展[J].水利水电科技进展,2009,29(2):85-88.
    [177]李升玉,王曙光,刘伟庆等.船舶与桥墩防撞系统碰撞的数值仿真分析[J].自然灾害学报,2006,15(5):100-106.
    [178]林建筑,郑振飞,卓卫东.泉州后渚大桥船撞力试验研究[J].中国公路学报,2003,16(2):57-60.
    [179]刘东甲,王建国.均匀土中有限长桩瞬态横向动力响应[J].工程力学,2003,20(6):160-165.
    [180]刘建成,顾永宁.基于整船整桥模型的船桥碰撞数值仿真[J].工程力学,2003,20(5):155-162.
    [181]刘金砺.K法计算受侧向荷载桩存在的问题[J].建筑科学,1987(3):51-56.
    [182]刘金砺.桩基础设计与计算[M].北京:中国建筑工业出版社,1990.
    [183]陆建飞,王建华,沈为平.考虑固结和流变的层状地基中的水平单桩的理论分析[J].岩石力学与工程学报,2001,20(3):386-390.
    [184]吕凡任,陈云敏,陈仁朋等.任意倾角斜桩承受任意平面荷载的弹性分析[J].浙江大学学报(工学版),2004,38(2):191-194.
    [185]南京水利科学研究院.苏通大桥桥墩基础施工图设计阶段局部冲刷试验研究[R].南京:南京水利科学研究院,2003.
    [186]阮欣,陈艾荣,石雪飞.桥梁工程风险评估[M].北京:人民交通出版社,2008.
    [187]史文清,王建华,陈锦剑.考虑桩土接触面特性的水平受荷单桩数值分析[J].上海交通大学学报,2006,40(8):1457-1460.
    [188]宋东辉,徐晶.半无限弹性体地基上水平荷载桩的静力分析[J].土木工程学报,2004,37(11):89-91.
    [189]苏静波,邵国建,刘宁.基于p-y曲线法的水平受荷桩非线性有限元分析[J].岩土力学,2006,27(10):1781-1785.
    [190]田平,王惠初.粘土中横向荷载桩的p-y曲线法评述[J].河海大学学报,1994,22(2):72-76.
    [191]田平,王惠初.粘土中横向周期性荷载桩的p-y曲线统一法[J].河海大学学报,1993,21(1):9-14.
    [192]王成,邓安福.水平荷载桩桩土共同作用全过程分析[J].岩土工程学报,2001,23(4):476-480.
    [193]王宏志.冲击荷载作用下桩的纵向和横向动力响应[D].杭州:浙江大学,2001.
    [194]王建华,陈锦剑,柯学.水平荷载下大直径嵌岩桩的承载力特性研究[J].岩土工程学报,2007,29(8):1194-1198.
    [195]王建华,戚春香,余正春等.弱化饱和砂土中桩的p-y曲线与极限抗力研究[J].岩土工程学报,2008,30(3):309-315.
    [196]王君杰,陈诚.桥墩在船舶撞击作用下的损伤仿真研究[J].工程力学,2007,24(7):156-160.
    [197]王君杰,颜海泉,钱铧.基于碰撞仿真的桥梁船撞力规范公式的比较研究[J].公路交通科技,2006,23(2):68-73.
    [198]王梅,楼志刚,李建乡等.水平荷载作用下单桩非线性m法试验研究[J].岩土力学,2002,23(1):23-26.
    [199]王腾,董胜,冯秀丽.土参数对桩基水平响应影响的研究[J].岩土力学,2004,25(增):71-74.
    [200]王腾,孙宝江.软粘土中水平荷载模型桩的试验研究[J].中国石油大学学报(自然科学版),2007,31(1):76-79.
    [201]王腾,王天霖.粉土p-y少曲线的试验研究[J].岩土力学,2009,30(5):1343-1346.
    [202]王钰,林军,陈锦剑等.软土地基中PHC管桩水平受荷性状的试验研究[J].岩土力学,2005,26(增):39-42.
    [203]吴锋,时蓓玲,卓杨.水平受荷桩非线性m法研究[J].岩土工程学报,2009,31(9):1398-1401.
    [204]吴恒立.计算推力桩的综合刚度原理和双参数法(第2版)[M].北京:人民交通出版社,2000.
    [205]吴恒立.推力桩计算方法研究[J].土木工程学报,1995,28(2):20-28.
    [206]吴鸣,赵明华.大变形条件下桩土共同工作及试验研究[J].岩土工程学报,2001,23(4):436-440.
    [207]谢雄耀,黄宏伟,张冬梅.深水港码头高承台桩土共同作用数值模拟分析[J].岩土工程学报,2006,28(6):715-722.
    [208]谢耀峰.横向承载群桩性状及承载力研究[J].岩土工程学报,1996,18(6):39-45.
    [209]刑誉峰.有限长Timoshenko梁弹性碰撞接触瞬间的动态特性[J].力学学报,1999,31(1):67-74.
    [210]杨克已,李启新,王福元.水平力作用下群桩性状的研究[J].岩土工程学报,1990,12(3):42-52.
    [211]叶爱君,张喜刚,刘伟岸.河床冲刷深度变化对大型桩基桥梁地震反应的影响[J].土木工程学报, 2007,40(3):58-62.
    [212]叶贵如,张治成,黄翔等.桥墩防船撞消能器动力性能的数值仿真分析[J].中国公路学报,2004,17(3):68-73.
    [213]叶万灵,时蓓玲.桩的水平承载力实用非线性计算方法——NL法[J].岩土力学,2000,21(2):97-101.
    [214]余云燕,陈云敏.不均匀土中有限长桩的横向瞬态波动[J].固体力学学报,2005,26(4):429-433.
    [215]余云燕.成层地基中变模量埋置框架的波动响应研究[J].固体力学学报,2007,28(2):164-171.
    [216]曾友金,章为民,王年香等.运营期船桥碰撞时大型哑铃型承台群桩基础承载变形特性[J].岩土工程学报,2006,28(5):575-581.
    [217]张慧.基于单桩p-y曲线的侧向受荷群桩性状预测和研究[D].上海:同济大学,2007.
    [218]章连洋,陈竹昌.黏性土中侧向受载桩顶模型试验研究[J].岩土工程学报,1990,12(5):40-50.
    [219]赵利平,韩时琳,韩理安.基于非线性弹性水平地基系数的群桩实用计算分析方法[J].海洋工程,2004,22(1):93-97.
    [220]赵明华,刘敦平,邹新军.横向荷载下桩-土相互作用的无网格分析[J].岩土力学,2008,29(9):2476-2480.
    [221]赵明华,刘峻龙,刘建华.双层地基横向受荷桩简化计算方法研究[J].公路交通科技,2006,23(12):58-61.
    [222]赵明华,汪优,黄靓.水平受荷桩的非线性无网格法分析[J].岩土工程学报,2007,29(6):907-912.
    [223]赵明华,王贻荪,肖鹤松.多层地基横向受荷桩的分析[J].建筑结构,1994,2:6-10.
    [224]赵明华,吴鸣,郭玉荣.轴、横向荷载下桥梁基桩的受力分析及试验研究[J].中国公路学报,2002,15(1):50-54.
    [225]赵明华,邹新军,罗松南等.横向受荷桩桩侧土体位移应力分布弹性解[J].岩土工程学报,2004,26(6):767-771.
    [226]赵明华.桥梁桩基计算与检测[M].北京:人民交通出版社,2000.
    [227]周洪波,杨敏,茜平一.水平荷载作用下群桩相互作用的弹塑性数值分析[J].水文地质工程地质,2003,3:29-35.
    [228]周洪波,杨敏,杨桦.水平受荷桩的耦合算法[J].岩土工程学报,2005,27(4):432-436.
    [229]周健,张刚,曾庆有.主动侧向受荷桩模型试验与颗粒流数值模拟研究[J].岩土工程学报,2007,29(5):650-656.
    [230]朱碧堂.土体的极限抗力与侧向受荷桩性状[D].上海:同济大学,2005.
    [231]朱斌,陈仁朋,陈云敏等.埋置框架的横向动力特性研究[J].振动工程学报,2002,15(4):425-429.
    [232]朱斌,陈仁朋,罗军等.低速运动船只撞击埋置框架结构动力分析模型[J].海洋工程,2008,26(2):17-25.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700