甚长波量子阱红外探测器光耦合性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
量子阱红外探测器(QWIP)在过去的几年中得到了迅速的发展。和传统材料Hg_xCd_(1-x)Te制备的红外探测器相比,量子阱红外探测器可以形成大面积、低功耗、低成本、高均匀性和高灵敏度的焦平面列阵(FPA)成像系统。在线性阵列和焦平面阵列的快速发展,显示了QWIP技术在长波红外大面积焦平面阵列和多色成像应用方面的巨大潜力。
     但是,对于普遍使用的n型(110)GaAs QWIP,由于量子吸收的选择定则,是不可能对垂直入射的红外辐射进行吸收。所以,为了提高器件的响应率和探测率,必须对QWIP器件的表面做一些特殊结构或器件,譬如45度磨角,一维、二维周期光栅,无序光栅,C-QWIP等。
     本论文针对Ⅲ-Ⅴ族化合物半导体GaAs/AlGaAs超晶格材料构成的制造量子阱红外探测器的电学性能、光耦合性能进行研究和分析,主要内容包括:
     (1) 根据量子阱红外探测器探测波长的需要,简要地讨论几种超晶格量子阱能级结构计算模型;对GaAs/AlGaAs量子阱红外探测器的响应率、探测率的影响因素进行初步分析;讨论了量子阱红外探测器暗电流的形成机制,分析器件的暗电流特性。
     (2) 量子阱红外探测器对垂直于阱层面的入射光吸收具有禁戒性。只有电矢量垂直于多量子阱生长面的入射光,才能被子带中的电子吸收而从量子阱的基态跃迁到激发态,导致电导率的变化而被器件所探测。为了加深对量子阱带间跃迁红外光吸收特性的了解,优化光耦合设计,我们分析了量子阱子带跃迁与红外辐射的依赖关系,对各种光耦合模式的设计思想,性能及适用范围进行了介绍,基于模态扩展方法、有限时域差分法等理论工具,我们分别对量子阱红外探测器的几种光耦合模式进行了研究,得到器件的光耦合几何参数随响应波长的变化曲线。把此曲线作为优化光耦合模式的依据。内容主要有:
     (a) 从增加器件的吸收系数角度出发,讨论如何优化磨角光耦合模式的设计。
     (b) 甚长波QWIP的二维周期光栅的结构参数以及无序光栅的设计。
     (c) 对工艺过程可能造成的影响,譬如刻蚀误差造成的“毛刺”现象、“盆型”光栅以及圆柱形光栅也进行了讨论。
     (d) 波纹耦合(C—QWIP)与45度磨角耦合、二维周期光栅的分析比较。本论文的主要创新工作主要有:
     (1) 在甚长波QWIP(响应波长九=14.7μm)的二维周期光栅的最佳结构参数的计算中涵盖了(0,∞)所有可能阶的衍射波;利用有限时域差分法,模拟量子阱层的光场强度分布情况,给出了甚长波光耦合结构参数的较为理想的设计结果。
     (2) 对工艺过程可能造成的影响,如刻蚀底部不平整性、不规则光栅形状等
In the past several years, the technology of Quantum Well Infrared Photodetectors (QWIP) has been developed rapidly. Compared with the conventional Hg_xCd_(1-x)Te infrared photodetectors, the QWIP technology values a great superiority in product rate, since it can fabricate an imaging system with large area, low power, low cost, high uniformity and high sensitivity focal plane array (FPA).
    However, the normal incidence infrared radiation can't be absorbed in the n type GaAs QWIP which is applied proverbially, because of the select rule of quantum absorption. Therefore, in order to enhance the responsivity and detectivity of the device, we have to fabricate some special structure or device such as edge coupler, grating, random reflector and Corrugated QWIP (C-QWIP).
    The paper studied the electrics performance and the optical performance of the QWIP fabricated with GaAs/AlGaAs super lattice material. The content includes:
    (1) We have discussed several computational model of energy level in super lattice quantum well briefly, because of the need of wavelength. We also have made a primary analysis on the responsivity and detectivity of the device. We have discussed the mechanism of dark current in the GaAs QWIP and made some optimization as well.
    (2) We have introduced the design idea, advancement and limitation of all the optical coupling models and made some exactly study on different coupling model based on model expand method (MEM), and finite element model (FEM). Contents include:
    (a) How to optimize the design of edge coupling from the investigation of absorption coefficient.
    (b) The design of the structure parameter of the 2-d grating and random reflector in the QWIP device.
    (c) Investigate the influence made by some special figure such as basin-shaped grating, ladder-shaped grating and column grating that may be formed in the dry etch progress.
    (d) Make an analysis and comparison between 45 edge coupler, 2-d grating and C-QWIP.
    The innovation of this paper includes:
    (1) Included all the possible diffractive wave from zero to infinitude order, we have calculated the best structure parameter of 2-d grating in very long-wavelength QWIPs.
引文
[1] 王子孟,红外与毫米波学报,1996,15(5):363.
    [2] Fang Jiaxiong, Xu Guosen, Zhu Sangen, etal. SPIE[C]. 2000, 4130: 35.
    [3] 汤定元,糜正谕,《光电器件概论》,上海:上海科技文献出版社,1989.
    [4] 徐国森,方家熊,朱三根等。红外与激光工程,2000,29(4):50-54.
    [5] S. VBandara, S.D. Gunapala, J.K.Liuandetal. Appl. Phys. Lett.,1998,72:2427.
    [6] CI Sarusi, B. F. Levine, S. J. Pearton etal, Appl. Phys. Lett., 19 94, 64(8):960.
    [7] C.J. Chen, K.K. Choi, W. H. Chang, D. C. Tsui, SPIE vol. 3061, 1997: 728
    [8] 方家熊,红外探测器技术的进展,现代光学与光子学的进展:358372
    [9] B F Levine. J. Appl. P, 1993,74(8): R1.
    [10] S.D. Gunapala, J.K. Liu, J.S. Park, etal. IEEETrans. Electron Devices, 1997, 44(1):51.
    [11] S.D. Gunapala, JS Park, G Sarusi, etal, IEEE Trans, Electron Devices, 1997,44:45.
    [12] K.K. Choi etal.,Broadband and narrow band light coupling for QWIPs. Infrared Physics & Technology, 2003,44,309-324.
    [13] Hironori Nishino, Prafula Masalkar, Toshio Fujii, etal. Application of elliptical random optical coupler to large-format QWIP-FPA, Infrared Physics & Technology, 2004, 45, 1-7.
    [14] 李宁,李娜,陆卫,等,红外与毫米波学报,1999,18(6):127.
    [15] L.C. West and S.J. Eglash, Appl. Phys. Let.,1985,56:1156.
    [16] B F Levine, K K Choi, C GB ethea, etal, Appl. Phys. Lett.,1987,50-1092[17] BF Levine, CGBethea, G Hasnain, etal, Appl. Phys. Lett.,1988,53:296.
    [18] S.D. Gunapala, SPIE, 1997, Vol. 30 61:292
    [19] M.Z. Tidrow, K. KChoi, C.Y. Lee, W.H. Chang, F.J. Towner and H.R. Chen, Appl. Phys. Lett., 1994,64,1268.
    [20] M.Z. Tidrow, K. KChoi, A.J. DeAnni and W.H. Chang, 3rd Int. Sym. Long Wavelength Infrared Detectors and Arrays, Physics and Application Electrochemical Society Proc., 1995, Vol. 95,1995pp. 175-187.
    [21] Sheng S. Li, Recent Progress in Quantum Well Infrared Photodetectors and Focal Plane Array for IR Imaging Applications. Matierials Chemistry and Physics, 1997, Vol. 50, 188-194.
    [22] R. de L. Kronig and W. J. Penney, Proc. R. Soc, London, 1930, Ser. A 130: 499
    [23] GB astard, Super lattice band structure in the envelope-function approximation, Phys. Rev. B, 1981, 24:56 93
    [24] H.S. Cho and P.R. Prucnal, Phys. Rev. B, 1987,36: 3237.
    [25] A dachi S, GaAs, AlAs and Al_xGa(1-x)As: Material parameters for use in research and device application, J. Appl. Phys., 1985, 58: RI.
    [26] D.L. Smith and C. Mailhiot, Phys. Rev. 8, 1986, 33: 8345.
    [27] A Chomette,B Deveaud, M Baudet, etal. Band discontinuities and calculations of GaAs/AIGaAs superlattice structures., J. Appl. Phys.,1986,59 3835-3840.
    [28] 连洁,王青圃,程兴奎等,量子阱红外探测器能带结构的计算,《光电子·激光》,2003,Vol.14,No.7,672-674.
    [29] Cheng X K, Zhou J M, Huang Q, etal. The reflection and interference of electrons at the interface of superlattice, Science in China (A), 2002, 45: 115-121.
    [30] 曾谨言, 《Introduction to OuantumMechanics》,北京大学出版社, 1998.
    [31] Yuan jian Xu, All Shakouri, and Ampcon Yariv, Appl. Phys. Let. 1995, 66:3307.
    [32] Ning Li, Fangmin Guo, Honglou Zhen etal. Detection wavelengths and photocurrents of very long wavelength quantum well infrared photodetectors. Infrared Physics & Technology, 2005,47,29-36.
    [33] 沈学础,《半导体光谱和光学性质》第四章,半导体的吸收光谱和反射光谱
    [34] 上海市技术物理研究所红外国家重点实验室,《量子阱红外探测器焦平面列??阵测试标准》,2005。
    [35] 杨福家,《原子与原子核物理学》,复旦大学出版社,1999。
    [36] M. Ershova and H.C. Liu, Low-frequency noise gain and photocurrent gain in quantum well infrared photodetectors., J. Appl. Phys.,1999, Vol. 86, No. 11.,6580-6585
    [37] J. Micallef and A. Brincat, Dark Current responsivity of GaInP/GaAs quantum well infrared photodetectors. J. Appl. Phys.,1999,74,1-81
    [38] K.K. Choi, The Physics of Quantum Well Infrared Photodetecters, World Scientific Publishing Co. Pte. Ltd.,1997
    [39] A.G.U. Perera, S.G. Matrik, H.C. Liu, etal. 35μm cutoff bound to quasibound and bound to continuum InGaAs QWIPs. Infrared Physics & Technology, 2001, 42,157-162.
    [40] S. D. Gunapala, S. V. Bandara, John K. Liu etal., 640×486 Long-wavelength Two-color GaAs/AIGaAs Quantum Well Infrared Photodetectors Focal Plane Array Camera, Infrared Physics & Technology, 1998.[1] Y. Fu and M. Willander, Optical coupling in quantum well infrared photodetectorby diffraction grating, J. Appl. Phys.,1998,84, 10,5750-5755.
    [2] 连洁,王青圃等,量子阱红外探测器光耦合模式的发展状况,半导体光电,2001,Vol23,150-153.
    [3] Dong Pan etal., Long period two-dimensional gratings for 8-12mm quantum well infrared photodetectors, J. Appt. Phys.,1996, 80, 12, 7169-7171.
    [4] 杨宇等,量子阱红外探测器的光耦合,物理学进展,1997,17,4,449-465。
    [5] Alfredo De Rossi etal., Effect of finite pixel size on optical coupling in QWIPs, Infrared Physics & Technology, 2003, 44, 325-330.
    [6] G. Sarusi, B.F. Levine, S.J. Pearton, etal., Improved performance of quantum well infrared photodetectors using random scattering optical coupling, Appl. Phys. Lett., 1994,64,8,960-962.
    [7] K.K. Choi etal.,Broadband and narrow band light coupling for QWIPs. Infrared Physics & Technology, 2003,44,309-324.[8] K.K. Choi, C.J. Chen, A.C. Goldberg, W.H. Chang, D.C. Tsui, Performance of corrugated quantum well infrared photodetectors, SPIE 3379 (1998) 441-452.
    [9] J. Y. Anderson and L. Lundqvist, Grating-coupled quantum-well infrared detectors: Theory and performance, J. Appt. Phys., 1992, 71, 7, 3600-3610.
    [10] Yee K S. Numerical solution of initial boundary value prob21ems involving Maxwell' s equations in isotropic medial。IEEE Trans. Antennas Propagat., 1966, 14 (3): 302—307.
    [11] Shu Xiaozhou, Cheng xiaoshuang, Shen xuechu etal., Finte difference time domain modeling of grating coupled quantum well infrared photodetectors, J. Infrared Millim-Waves, 2004,23(6):401-404.
    [12] Fu Ying and Lu Wei, Physical Models of Semiconductor Quantum Devices, Kluwer Academic Publishers, 1999,220-241.
    [13] 姚启钧,《光学原理》,华东师范大学出版社,1990.
    [14] Yeong-Cheng Wang and Sheng S. Li, Design of a two-dimensional square mesh metal grating coupler for a miniband transport GaAs quantum-well infrared photodetector, J. Appl. Phys. 1994,76, 1,582-587.
    [15] K. Hennessy, C. Reese etal., Square-lattice photonic crystal microcavities for coupling to single InAs quantum dots Appl. Phys. Lett.,2003, Vo183, No. 18, 3650-3652.
    [16] S.R. Kurtz, L.R. Dawson, R.M. Biefeld, etal, IEEE ElectronDevice Let., 1989, EDL-10:150.
    [17] L.C. West and S. I. Eglash, Appl. Phys. Let.,1985,56:1156.
    [18] B. F. Levine, Appl. Phys. Let., 1993, 74 (8):R1.
    [19] 潘栋,曾一平,孔梅影等,光栅耦合量子阱红外探测器一维光栅的光谱响应,半导体学报,1997,Vol.18,No.6,431—435.
    [20] R. Petit, Electromagnetic Theory of Gratings (Springer, Berlin, 1980),p. 227.
    [21] K.K. Choi, C. J. Chen, D.C. Tsui, Corrugated quantum well infrared photodetectors for material characterization, J. Appl. Phys. 88 (2000) 1612-1623.
    [22] Chen C J, Choi. K. K, Chang W H, et al. Corrugated quantumwell infrared photodetectors [J]. SPIE, 1997, 3061: 728.[23] C. J. Chen, K. K. Choi, M. Z. Tidrow, D. C. Tsui, Corrugated quantum well infrared photodetectors for normal incident light coupling, Appl. Phys. Lett. 69 (1996) 1446 - 1448.[1] S.R. Kurtz, L.R. Dawson, R.M. Biefeld, etal., IEEE ElectronDeviceLet., 1989, EDL-10:150.
    [2] 杨宇,夏冠群,量子阱红外探测器的光耦合,物理学进展,1997,17,4,449—465。
    [3] J. Y. Anderson and L. Lundqvist, Grating-coupled quantum-well infrared detectors: Theory and performance, J. Appt. Phys., 1992, 71,7, 3600-3610.
    [4] R. Petit, Electromagnetic Theory of Gratings (Springer, Berlin, 1980),p. 227.
    [5] Yeong-Cheng Wang and Sheng S. Li, Design of a two-dimensional square mesh metal grating coupler for a miniband transport GaAs quantum-well infrared photodetector, J. Appl. Phys. 1994,76,1,582-587.
    [6] Dong Pan etal, Jinmin Li, Meiying Kong etal., Long period two-dimensional gratings for 8-12 mm quantum well infrared photodetectors, J. Appt. Phys., 1996,80, 12, 7169-7171.
    [7] S. D. Gunapala, S. V. Bandara, John K. Liu etal., 640×486 Long-wavelength Two-color GaAs/A1GaAs Quantum Well Infrared Photodetector (QWIP) Focal Plane Array Camera, Infrared Physics & Technology, 1998.
    [8] K.K. Choi, The Physics of Quantum Well Infrared Photodetecters, World Scientific Publishing Co. Pte. Ltd.,1997.
    [9] K. Hennessy, C. Reese, Square-lattice photonic crystal microcavities for coupling to single InAs quantum dots Appl. Phys. Lett.,2003, Vol83,??No.18, 3650-3652
    
    [10] Y. Y. Fu and M. Willander, Near-field coupling effect in normal-incidence absorption of quantum-well infrared photodetectors, J. Appl. Phys., Vol. 85, 1999, No. 2,15, 1237-1239.
    
    [11] Y. Fu and M. Willander , Optical coupling in quantum well infrared photodetectorby diffraction grating , J . Appl. Phys., 1998,84, 10, 5750-5755.
    
    [12] S. J. Pearton, Dry etching processes for fabrication of QWIPs and other detector structures, Proc. SPIE 2999, 118 (1997).
    
    [13]G. Hasnain, B. F. Levine, C. G. Bethea, R. A. Logan, J. Walker, and R. J. Malik, GaAs/AlGaAs multi-quantum well infrared detector arrays using etched gratings, Appl. Phys. Lett. 1989, 54, 2515.
    
    [14]G. Sarusi, B. F. Levine, S. J. Pearton, etal. , Improved performance of quantum well infrared photodetectors using random scattering optical coupling, Appl. Phys. Lett., 1994,64,8,960-962.
    
    [15] Alfredo De Rossi, Eric Costard, Nicolas Guerineau etal., Effect of finite pixel size on optical coupling in QWIPs, Infrared Physics & Technology, 2003, 44, 325-330.
    
    [16]I. Ribet-Mohamed, N. Guerineau, S. Suffis-Carretero, etal., Effect of oblique incidence on the spectral response of quantum of quantum well, J. Appl. Phys., 1997, 023106 (2005).
    
    [17] K. K. Choi, C. J. Chen, A. C. Goldberg, W.H. Chang, D.C.Tsui, Performance of corrugated quantum well infrared photodetectors, SPIE 3379 (1998) 441 - 452.
    
    [18] C. J. Chen, K. K. Choi, M. Z. Tidrow, D. C. Tsui, etal. Corrugated quantum well infrared photodetectors for normal incident light coupling , Appl. Phys. Lett., 69 (1996) 1446 - 1448.
    
    [19] M. Ershova and H. C. Liu, Low-frequency noise gain and photocurrent gain in quantum well infrared photodetectors., J. Appl. Phys., 1999, Vol.86, No. 11., 6580-6585.[1] 李宁,李娜,陆卫,沈学础等,64×64元GaAs/AlGaAs多量子阱长波红外焦平面研制,红外与毫米波学报,第18卷,第6期,1999年12月。
    [2] S. V. Bandara, S. D. Gunapala, J. K. Liu, etal., Four-band quantum well infrared photodetector array, Infrared Physics & Technology 44(2003)369-375
    [3] S. D. Gunapala, S. V. Bandara, A. Singh, etal., Recent development and applications of quantum well infrared photodetector focal plane arrays, Physica E (2000)108-111.
    [4] E. Dupont, M. Byloos, T. Oogarah, etal., Optimization of quantum-well infrared detectors integrated with light-emitting diodes, Infrared Physics & Technology 47(2005132-143).
    [5] 于绍欣,郭方敏,李宁等,长波GaAs QWIP二维周期光栅的耦合效率研究,量子电子学报,2006,Vol.3.
    [6] 朱秉升,刘恩科,罗晋生等,《半导体物理》,高等教育出版社,1997。
    [7] 沈学础,《半导体光谱和光学性质》,科学出版社,2002,第四章,半导体的吸收光谱和反射光谱。

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700