磷化铟基集成光子器件及其关键工艺技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
上世纪70年代,磷化铟材料外延技术的进步使得长寿命,高可靠性的半导体有源器件走向成熟,为光通信的飞跃式发展奠定了基础。磷化铟及其四元衍生物的能带结构可以随组分变化,为各种光子器件的实现提供了极大的灵活性,因此磷化铟集成光子器件的一直是国际上研究的热点之一
     本课题的研究目的就是利用磷化铟及其四元衍生物这一平台,针对密集波分复用,可调谐激光器,光纤到户等应用方向开展一系列的研究,开发出低成本、高可靠性的集成化光子器件,同时在磷化铟集成光子器件的理论和工艺制作方面进行探索,为今后发展更多功能的集成光电子器件奠定坚实的基础。
     目前世界上报道的性能最为优异的密集波分复用集成光通道监测器件是加拿大Metro-Photonic公司于2004年推出的集成了波导探测器和阶梯光栅解复用器的44通道光通道监测器。该器件集成度较高,但是也存在尺寸和插损较大等缺点,针对其不足,本文提出了平板波导探测器和阶梯光栅解复用器的集成方案,该方案克服了基于传统波导探测器器件的缺点,可以获得大带宽的平坦通带而不引起额外损耗,并有利于器件小型化,降低成本。数值模拟证明了该方案的可行性。
     本文的一个研究重点是集成化可调谐激光器,提出了一种基于传统双耦合器环形腔耦合激光器结构实现单电极无跳模激光器的设想,并针对传统环形腔耦合激光器的不足,结合V型耦合腔激光器的原理,提出了半波单耦合器环形腔耦合激光器。对上述两类单环耦合激光器的特点进行了比较,相比于传统的双耦合器环形腔耦合激光器,半波单耦合器环形腔耦合激光器的最大优点是可以利用环与激光腔的游标效应进行模式选择,这样可以大大放宽对环形腔半径的限制,从而使单环耦合的可调谐激光器成为可能。
     此外,针对光纤到户的应用,本文提出了一种利用新颖的利用环形激光器腔内耦合实现上下行信号解复用的单纤双向/三向收发器,设计并仿真了该方案的关键器件-2X2凹形耦合器,设计获得的耦合器结构紧凑,并且无需使用高精度光刻技术即可制作,为了将双向收发器扩展到三向收发器,本文也提出了利用阶梯光栅作为下行光解复用器的方案。
     最后,本文以V型腔激光器制作工艺为出发点,系统的研究了光子集成器件的各项工艺,包括光刻,刻蚀,平坦化,金属溅射,剥离,机械化学抛光等,成功地获得了垂直度高、侧壁光滑的刻蚀工艺配方,并提出了利用薄胶平坦化的工艺,大大增强了平坦化过程的鲁棒性,并利用这些工艺制作出了V型耦合腔激光器样片。
Since 1970s, the progress of epitaxial technology for Indium Phosphide (InP) based material system has enabled the long-life, high reliability semiconductor active devices to mature, which has laid the foundation for a leap-forward development of optical communication. The energy band structure of indium phosphide and its quaternary compounds can be tailored by varying its composition, which provides a great deal of flexibility for the realization of a variety of photonic devices. Hence, InP based integrated photonic devices has been investigated very widely.
     The subject of this thesis is to use InP and its quaternary compounds to fabricate low-cost, high reliability integrated photonic devices for dense wavelength division multiplexing (DWDM), tunable lasers and fiber-to-the-home (FTTH) applications. The theory and fabrication processes of InP based integrated photonics devices are developed in order to lay a foundation for the future development of other related photonic devices.
     With the growing demand of the optical network bandwidth, DWDM systems have been deployed very widely. DWDM can simultaneously multiplex and demultiplexe dozens of wavelengths, hence, the planar waveguide demultiplexer has been widely used in DWDM systems. While arrayed waveguide grating is preferable for silica based devices, echelle grating demultiplexer is more suitable for InP based devices, because of its small size and better scalability to higher-channel count. The state-of-art InP based demultiplexing device reported in the literature is a 44-channel optical channel monitor based on the integration of an echelle grating demultiplexer and a waveguide detector array. While the device achieves a high degree of integration, it has drawbacks, particularly the large insertion loss due to the passband-flatening method it uses. This thesis presents a novel passband-flattened Optical Channel Monitor (OCM) device based on integration of an echelle grating demultiplexer and slab waveguide detectors. It provides a wide channel passband without suffering from any loss penalty, and the device is more compact compared to the channel waveguide based detector approach. Numerical simulation demonstrated the high-performance of the proposed device.
     Another type of photonic integrated devices that the thesis focuses on is the design and development of novel monolithicly integrated tunable lasers. The thesis presents a single-electrode tuned mode-hop-free laser based on ring coupled laser structure. We also proposed a novel ring coupled laser which use a half-wave coupler. Compared to dual-coupler ring coupled lasers, the merit of single-coupler ring coupled lasers is free spectrum range of the device can be enlarged due to the incorporation of a strong Vernier effect in this structute, which could greatly relax the restrictions on the ring radius. We believe the proposed laser will take the single ring filted tunable lasers into practice.
     The thesis also proposed a novel monolithic di/triplexer design. The diplexer uses a ring cavity laser as the upstream transmitter and a 2x2 coupler of the ring also serves as a demultiplexer for up and down stream signals, simultanously. A bi-level etched structure is employed here as the coupler. The merit of the bi-level coupler is its compact footprint and low requirement for photolithography resolution. Moreover, the thesis also introduces an echelle grating to demulplex the two down stream signals so that the proposed diplexer can be extended to a triplexer.
     Finally, we systematiclly investigated the fabrication processes for photonic integrated devices, including lithography, dry and wet etching, planarization, metal sputtering, lift-off, chemical mechanical polishing and so on. A robust dry etching recipe which can achieve a vertical and smooth etched facet is obtained. Besides, the thesis also presents a method to planarize the ridge waveguide of lasers. It uses a thin spin-on polymer film to obtain the planarization which is robust to the non-uniformity of the film thickness and the speed of etch back. With the developed processes, we succesfully fabricated and experimentally demonstrated V-coupled cavity lasers.
引文
[1]C. R. Doerr, "InP-Based photonic devices", OFC/NFOEC 2008,OWE3
    [2]K.Okamoto, "Recent progress of integrated optics planar lightwave circuits", Optical and Quantum Electronics, no2.,vol.31,pp 107-129,1999.
    [3]R.Nagarajan, C.H. Joyner, R.P. Schneider et.al. "Large-Scale photonic integrated circuit", Journal of Selected Topic in Quantum Electronics, vol.11, no.l, pp.50-65,2005.
    [4]S. Charbonneau, E.S. Koteles, P.J. Poole, et.al., "Photonic integrated circuits fabricated using ion implantation", Journal of Selected Topics in Quantum Electronics, vol.4, no.4, pp.772-793,1998.
    [5]E. J. Skogen, J.S. Barton, S.P. Denbaars, et.al., "A quantum-well-intermixing process for wavelength-agile photonic integrated circuits", Journal of Selected Topics in Quantum Electronics, vol. 8, no.4, pp.863-869,2002
    [6]M. K. Smit. "New focusing and dispersive planar component based on an optical phased array", Electronics Letters, vol.24, no.7, pp.385-386,1988.
    [7]C. Dragone. "An N×N optical multiplexer using a planar arrangement of two star couplers", IEEE Photonics Technology Letters, vol.3, no.9, pp.812-815.
    [8]K. Maru, Y. Abe, M. Ito, et.al., "2.5%-Δ silica-based athermal arrayed waveguide grating employing spot-size converters based on segmented core", IEEE Photonics Technology Letters, vol.17, no.11,pp. 2325-2327,2005
    [9]T. Shibata, S. Kamei, T. Kitoh, et.al., "Compact and low insertion loss (-1.0 dB) Mach-Zehnder interferometer-synchronized arrayed-waveguide grating multiplexer with flat-top frequency response", Optics Express, vol.16, pp.16546-16551,2008
    [10]R. Adar, M. R. Serbin, and V. Mizrahi, "Less than 1 dB per meter propagation loss of silica waveguides measured using a ring resonator", Journal of Lightwave Technology, vol.12, no.8, pp.1369-1372, 1994
    [11]H.A. Rowland, "On concave gratings for optical purposes", Philosophical Magazine Series 5, 1941-5990, vol.16, no.99, pp.197-210,1883.
    [12]J.-J. He, B. Lamontagne, A. Lynden et.al., "Monolithic integrated wavelength demultiplexer based on a waveguide rowland circle grating in InGaAsP/InP," Journal of Lightwave Technology, vol.16, no.4, pp. 631-638,1998
    [13]J.-J. He, E.S. Koteles,B. Lamontagne, et al., "Integrated polarization compensator for WDM waveguide demultiplexers", IEEE Photonics Technology Letters, vol.11, no.2, pp.224-226,1999
    [14]V. I. Tolstikhin, A. Densmore, K.Pimenov et al., "Monolithically integrated optical channel monitor for DWDM transmission systems," Journal of Lightwave Technology, vol.22, no.1, pp.146-153,2004
    [15]F. Horst, W. Green, B. J. Offrein, et al., "Echelle grating WDM (de-)multiplexers in SOI technology,based on a design with two stigmatic points", Proc. SPIE, vol.6996,69960R,2008
    [16]I. Hayashi, M.B. Panish, P.W. Foy. et al., "Junction lasers which operate continuously at room temperature", Applied Physics Letters, vol.17, no.3, pp.109-111,1970
    [17]Z.I. Alferov, V.M. Andreev, D.Z. Garbuzov et al., "Investigation of influence of AlAs-GaAs heterostructure parameters on laser threshold current and realization of continuous emission at room temperature", Soviet Physics Semiconductors-Ussr, vol.4, no.9:pp.1573-1575,1971
    [18]V. Jayaraman, A. Mathur, L. A. Coldren, et al., "Theory, design, and performance of extended tuning range in sampled grating DBR lasers," IEEE Journal Quantum Electronics, vol.29, no.6, pp. 1824-1834,1993
    [19]N. Natakeyama, K. Naniwae, K. Kudo et al., "Wavelength-Selectable microarray light sources for S-, C-, and L-band WDM systems", IEEE Photonnic Technology Letters., vol.15, no.7, pp.903-905, 2003.
    [20]N. Nunoya, H. Ishii, Y. Kawaguchi, et al, "Wideband tuning of tunable distributed amplification distributed feedback laser array", Electronics. Lettetters., vol.44, no.3, pp.205-207,2008
    [21]W. T. Tsang, "The cleaved-coupled-cavity (C3) laser", Semicond. Semimetals, vol.22, pp.77-293,1985
    [22]M. J. R. Heck, A. La Porta, X..J.M. Leijtens,"Monolithic AWG-based discretely tunable laser diode with nanosecond switching speed", IEEE Photonics Technology Letters, vol.21, no.13, pp:905-907, 2009
    [23]O. K. Kwon, J. H. Kim, K. H. Kim et al, "Monolithically integrated grating cavity tunable lasers", IEEE Photonics Technology Letters, vol.17, no.9, pp.1794-1796,2005
    [24]B. Liu, A. Shakouri, and J. E. Bowers, "Passive micro-ring resonator coupled lasers," Applied Physics Letters, vol.79, no.22, pp.3561-3563,2001
    [25]S. Park, S. Kim, L. Wang, et al., "Single-mode lasing operation using a microring resonator as a wavelength selector," IEEE Journal Quantum Electronics, vol.38, no.3, pp.270-273,2002
    [26]S. Matsuo, and T. Segawa, "Microring-Resonator-Based Widely Tunable Lasers", Journal of Selected Topics in Quantum Electronics, vol.15, no.3, pp.545-554,2009
    [27]A. Hayakaw, K. Takabayashi, S. Tanaka, et al., "Tunable twin-guide distributed feedback laser with 8-nm modehop-free tuning range," CLEO-PR2005, pp.628-629,2006
    [28]N. Nunoya, H. Ishii, Y. Kawaguchi et al., "Wideband tuning of tunable distributed amplification distributed feedback laser array," Electronics Letters, vol.44, no.3, pp.205-207,2008
    [29]N. Fujiwara, T. Kakitsuka, M. Ishikawa, et al., "Inherently mode hop-free Distributed Bragg reflector (DBR) laser array," Journal of Selected Topics in Quantum Electronics, vol.9, no.5, pp.1132-1137, 2003
    [30]K. Kudo, P. Delansay, N. Kida, et al. "Tunable stair-guide (TSG) DBR lasers for single current continuous wavelength tuning," IEEE Electronics. Letters, vol.31, no.21, pp.1843-1844,1995
    [31]H. Ishii, H. Tanobe, Y. Kondo, et al."A tunable interdigital electrode (TIE) DBR laser for single current continuous tuning," IEEE Photonic Technology Letters, vol.7, no.11, pp.1246-1248,1995
    [32]孙杰贤,兰明,“聆听FTTH的脚步声”,通讯世界,no.9,pp.40-43,2005,
    [33]www.catr.cn/scgc/sczs/200812/t20081208_869176.htm.
    [34]朗婷婷,[博士学位论文],杭州浙江大学,2009.
    [35]W. Huang, X. Li, C. Xu, et al., "Optical Transceivers for Fiber-to-the-Premises Applications:System Requirements and Enabling Technologies", Journal of Lightwave Technoogy, vol.25, no.1, pp.11-27, 2007
    [36]V. I. Tolstikhin, R. Moore, K. Pimenov, Y. Logvin, et al., "One-Step Growth Optical Transceiver PIC in InP", ECOC 2009 Vienna, Austria
    [37]R. Marz, and C. Cremer, et al. "On The Theory of Planar Spectrographs", Journal of Lightwave Technology, vol.10, no.12, pp.2017-2022,1992
    [38]盛钟延,何赛灵,何建军,“蚀刻衍射光栅设计的一点法与二点法”,光电子激光,vol.12,no.7,pp.671—674,2001.
    [39]R. Guther and S. Polze, "The construction of stigmatic points for concave gratings", Journal of Modern Optics, vol.29, no.5, pp 659-665,1982
    [40]J A. Ogilvy, "Theory of wave scattering from random rough surfaces", London IOP, pp.75-99,1992..
    [41]盛钟延,何赛灵,何建军,“标量衍射理论模拟蚀刻衍射光栅”,光电工程vol.28,no.6,pp.29-32,2001
    [42]Z. Shi, J.-J. He and Sailing He, "A hybrid diffraction method for the design of etched diffraction grating demultiplexers", Journal Lightwave Technology, vol.23, no.3, pp.1426-1434,2005
    [43]L. Wang, J. Song, J.-J. He et al., "Design and optimization of a novel InP-based monolithically integrated optical channel monitor/receiver", Journal of Lightwave Technology, vol.24, no.10, pp. 3743-3750,2006
    [44]V. I. Tolstikhin, A. Densmore, K. Pimenov, et. al., "monolithically integrated optical channel monitor for DWDM transmission systems", Journal Lightwave Technology, vol.22, no.1, pp.146-153,2004
    [45]A. Katz, B. E. Weir, W.C. Dautremont et al., "Au/Pt/Ti contacts to p-In0.53Ga0.47As and n-InP layers formed by a single metallization common step and rapid thermal processing", Journal of Applied Physics vol.68, no.3, pp 1123-1128,1990
    [46]V. I. Tolstikhin, A. Densmore, K. Pimenov, et al., "Single-mode vertical integration of PIN photodetectors with optical waveguides for monitoring in WDM transmission systems", Photonic, Technology Letters., vol.15, no.6, pp.843-845,2003
    [47]H. Wen. S. He, Z. Sheng, et. al., "Design of a flat-field EDG wavelength demultiplxer using a two stigmatic points method", Acta Photonica Sinica, vol.32, no.3, pp.308-310,2003
    [48]S. Janz, A. Balakrishnan, S. Charbonneau, et al., "Planar waveguide echelle gratings in silica-on-silicon", Photonic Technology Letters, vol.16, no.2, pp.503-505,2004
    [49]V. I. Tolstikhin, "Optical properties of semiconductor heterostructures for active photonic device modeling", J. Vac. Sci. Technol. A, vol.18, no.2, pp.605-609,2000
    [50]E. Michielssen, W. C. Chew, D. S. Weile, "Genetic algorithm optimized perfectly matched layers for finite difference frequency domain applications, Antennas and Propagation Society International Symposium",1996. AP-S. Digest, vol..3, pp.2106-2109,1996.
    [51]G. R. Hadley, "Multistep method for wide-angle beam propagation", Optics Letters, vol.17, no.24, pp. 1743-1745,1992.
    [52]J.-J. He, E. S. Koteles, B. Lamontagne, et. al., "Integrated polarisation compensator for WDM waveguide demultiplexers, Photonics Technology Letters., vol.11, no.2, pp.224-226,1999
    [53]Jian-Jun He and Dekun Liu, "Wavelength switchable semiconductor laser using half-wave Ⅴ-coupled cavities," Opt. Express, vol.16, pp.3896-3911,2008
    [54]J.Weber, "Optimization of the carrier-induced effective index change in InGaAsP waveguides-application to tunable bragg filters," Journal of Quantum, Electronics, vol.30, no.8, pp. 1801-1816,1994
    [55]T. Koch, and U. Koren, "Semiconductor lasers for coherent optical fiber communications", Journal of Lightwave Technology, vol.8, no.3,pp.274-293,1990
    [56]A. Behfar, M. Green, A. Morrow,et al., "Monolithically integrated diplexer chip for PON applications", Optical Fiber Communication Conference,2005
    [57]http://www.binoptics.com/company_timeline.html.
    [58]K. Muro, C. Stagaresen, A. Schremer,et al., "Single-mode etched-facet distributed bragg reflector Laser for uncooled operation",Optical Fiber Communication Conference,2004
    [59]V. I. Tolshikhin and F. Wu, et al,"Integrated vertical wavelength (de)multiplexer", US Patent No.7532784 B2,2009.
    [60]C. Watson, K. Pimenov, V. I. Tolstikhin et.al.,"Enhanced efficiency laterally-coupled distributed feedback lasers", US Patent Application'No.US 2009/0116522 Al,2009
    [61]Li Zhang, Lei Wang, and Jian-Jun He, Monolithically Integrated FTTH Diplexer Using Bi-level Etched 2x2 Optical Coupler,, Applied Optics, vol.48, no.25, pp. F45-48,2009
    [62]H. Lu, C. Blaauw, and T. Makino, "Single-mode operation over a wide temperature range in 1.3 μmInGaAsP-InP distributed feedback lasers", Journal Of Lightwave Tecnology, vol.14, no.5, pp: 851-859,1996
    [63]L. B. Soldano and E. C. M. Pennings, "Optical multi-mode interference devices based on self-imaging: principles and applications", Journal of Lightwave Tecnology, vol.13. no.4, pp:615-627,1995.
    [64]马慧莲,杨建义,江晓清等,“MMI型1.31/1.55um GaAs波分复用/解复用器的研制”.半导体光电vol 12.no.1,2001
    [65]R. Roijen, E. C. M. Pennings, M. J. N. Stalen, et al., "Compact InP based ring lasers employing multimode interference couplers and combiners", Applied Physics Letters, vol.64, no 14,1994
    [66]L. W. Cahill and T.T. Le, "MMI devices for photonic signal processing", Transparent Optical Networks, vol 7, no. 1,pp 202-205,2007
    [67]Q. Wang and S. He, "A new design method for directional couplers",光子学报vol.12,2002
    [68]G.Stareev等,“用低能Ar离子束溅射得到p-InGaAs极低电阻欧姆接触的一种可靠地制造技术”,半导体情报,vol.32,no.2,1995.
    [69]屠玉珍等,“增益导引GaAlAs/GaAs锁相列阵激光器”,中国激光,,vol.18,no.8,pp.561—564,1991
    [70]S. Adachi, "Refractive indices of III-V compounds:key properties of InGaAsP relevant to device design", Journal of Applied Physics, vol.53, no.8, pp.5863-5869,1982.
    [71]C. R. Doerr, "InP-Based photonic devices", OFC/NFOEC 2008, OWE3.
    [72]H. Ichikawa, K. Inoshita, and T. Baba, "Reduction in surface recombination of GaInAsP microcolumns by CH4 plasma irradiation", Applied Physics Letters, vol 78, no.15, pp.2119-2121,2001
    [73]J.-R. Einfeldt, S. Kruger, O. Hoffmann, et. al., "Laser scribing for facet fabrication of InGaN MQW diode lasers on sapphire substrates", Photonics Tecnology Letters, vol.22, no.6, pp.416-418,2010.
    [74]P. Rai-Choudhury, "Handbook of microlithography, micromachining and microfabricatin", SPIE Optcial Engineering Press,2000
    [75]庞克俭,"HMDS预处理系统”,新设备与新技术,vol.141,pp.70-72,2006
    [76]罗飚,陈永诗,沈坤等,“光栅干法刻蚀与湿法刻蚀的研究”,光学与光电技术,vol.1,no.1,pp.54-56,2003
    [77]樊中朝,余金中,陈少武,“ICP刻蚀技术及其在光电子器件制作中的应用”,微细加工技术,no.2,pp.21—28,2003
    [78]张鉴,黄庆安.“ICP刻蚀技术与模型.”微纳电子技术,no.6,pp.288-296.2005
    [79]R. Varrazza, L. Deng, A. Goodyear, and S. Yu, "Controllable H-free, anisotropic InP ICP etching pocesses for photonics applications",. Presented at the Dry Etching—Advances Trends Conf., London, U.K., Jan.22,2003.
    [80]C. Lee, D. Nie, T. Mei, M.K.Chin, "Study and optimization of room temperature ICP etching of InP using C12/CH4/H2 and CH4/H2", Journal of Crystal Growth, vol.288, no.1, pp.213-216,2006,.
    [81]Mothi Madhan Raj, Shunsuke Toyosima, and Shigehisa Arai, "Multiple micro -cavity laser with 1/4-wide deep grooves buried with benzocyclobutene", Jpn. J. Appl. Phys, vol.38, no.7B, pp.L811-L814, 1999
    [82]P. Strasser, R. Wuest, et al. "An ICP-RIE etching process for InP-based photonic crystals using C12/Ar/N2 chemistry",17th Int. Conf. Indium Phosphide Related Materials, pp. TuP-24, Glasgow, Scotland, UK,2005
    [83]T. Peng, C. Yang, Y. Huang, et al., "Self-terminated oxide polish technique for the waveguide ridge laser diode fabrication", J. Vac. Sci. Technol. B, vol.23, no.3, pp.1060-1063,2005
    [84]赵岳星,”化学机械抛光后板刷撩洗清洗”,电子工业专用设备,vol.33,no.2,2004
    [85]Jun-Fei Zheng etc., "Novel planarization and passivation in the integration of Ⅲ-Ⅴ semiconductor devices", Proc. SPIE, vol.5356, pp.81-91,2004.
    [86]H. Lu, C. Blaauw, and T. Makino, "Single-mode operation over a wide temperature range in 1.3 nm InGaAsP/InP distributed feedback lasers", Journal of Lightwave Technology, vol.14, no.5, pp: 851-859,1996.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700