正电子与基态及激发态氦原子散射的理论研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在本论文中,我们对原有的动量空间耦合通道光学势方法作了进一步的发展,将极化势模型扩展到了正电子与复杂原子的碰撞问题,并对正电子与激发态原子的碰撞问题作了初步的研究。我们利用发展了的动量空间耦合通道光学势方法研究了正电子与基态及激发态氦原子的散射过程。首先应用一个复的等价局域近似的光学势来描述在正电子散射过程中非常重要的电子偶素形成过程,计算了低能和中能范围内正电子同基态氦原子碰撞的电子偶素形成截面。在此基础上,在考虑了电子偶素通道的影响后,我们计算了低能和中能范围内正电子同基态氦原子碰撞的总散射截面,弹性散射和各种激发散射截面,并与实验数据和其他的理论计算结果进行了比较。计算结果与实验数据和其他的理论数据符合得都比较好,这证明目前的光学势方法能够有效地处理正电子与复杂原子碰撞问题。在此基础上,我们又对正电子同激发态氦原子的散射过程进行了初步的研究。激发态原子体系的散射问题在近几年引起了很大的关注,一些理论方法已经被用来处理电子与激发态原子的碰撞。我们计算了正电子与激发态氦原子(2 3S)碰撞的400 eV以下的电子偶素形成截面,1000 eV以下的电离截面和200 eV以下的总散射截面。由于没有相应的实验和理论数据可供比较,我们将所得的截面数据与电子和激发态氦原子(2 3S)碰撞的散射截面,以及正电子与基态氦原子碰撞的的相应散射截面进行了比较。
The study of atomic and molecular collision,which is a fundamental topic ofatomic and molecular physics, can offer us more accurate understanding of micro-cosmic structure and basic interactions in many-body systems. In the past decades,the positron collisions with atoms and molecules have attracted much more atten-tion along with the founding of positron and development of experimental technique.Compared with electron scattering, there is no exchange-interaction in the positroncollision, and since the positron received a attractive potential from the target atom ormolecule, it is possible to form positronium bound states when energy is appropriate.The positronium formation process, a two-center problem, presents a new challengeto theoretical treatment for positron scattering besides the ionization continuum andthe long range of Coulomb potential.
     In the last century, several theoretical methods have been successfully developedfor positron scattering at low and high energies, while the theoretical calculations atintermediate energies are not satisfied until the latest close-coupling methods are ap-plied. In the positron collisions at medium energies, infinite reaction channels areopen, and the positronium formation and ionization continuum strongly in?uence thewhole scattering process. Based on these facts, theoretical calculations must includemany partial-waves, and the contributions of positronium formation channels and ion-ization continuum should be taken into account. Although the accurate variationalcalculation produced excellent data in low energy region, it can not be used whenenergy is higher since only few partial-waves can be included in calculation. TheDistorted-wave Born-approximation (DWBA) method behaved well for high-energycollisions but omitted the positronium formation channels. The calculation results us-ing the early close-coupling methods are also not satisfactory because the positroniumformation channels and ionization continuum are not included. In the past decades,several new close-coupling methods have been developed and successfully applied for positron collisions at medium energies.
     The ionization continuum and positronium formation channels are challengingfor theoretical work for positron scattering. In the CCC method, some pseudo-statesare applied in the basis to include the ionization continuum and positronium formationchannels. By this way, great successes have been achieved in positron and electronscattering with simple atoms. However, since the calculation results depend on thechoice of basis and the number of pseudo-states, there are many difficulties for thismethod to be applied in the intermediate energies. The momentum-space coupled-channel optical (CCO) method is an ab-initial method developed by McCarthy et alfor electron scattering. In this method, the whole space is split into P and Q spacesby the rejection vector P and Q. The P space consists of some discrete channels, andthe rest discrete channels and the ionization continuum are included in the Q space.The coupled equations are solved in the P space and the contribution of Q space is de-scribed by a complex optical potential. This method has been successfully applied inthe electron collisions with atoms and molecules. In the past few yeas, a polarizationpotential has been developed by Zhou et al to extend this method to positron scatter-ing, and the positron collisions with atomic hydrogen and alkali-metal atoms whichcan be described as a hydrogenic structure have been successfully studied using thismodel. In this paper, we have applied a complex equivalent local optical potential toextend the CCO method to the positron collisions with complex atoms in ground andexcited states.
     Helium atom is an ideal target for theoretical calculation and experimental mea-surement, since it is the most simple many-electron atom and more stable than atomichydrogen. In this paper,we have applied the CCO method to investigate the positroncollisions with ground and excited helium. In the present calculation,the in?uenceof Q space including ionization continuum and positronium formation channels aredescribed by coupling a special polarization potential to the static potential. Thepositronium formation cross sections,total scattering cross sections,elastic scat-tering cross sections and various excitation cross sections of positron collisions withground helium are given and compared with the experimental measurements of Steinet al. [62],Griffith et al.[63], Kappila et al. [64], Chalton and Laricchia [65], Moriand Sueoka [66], Fromme et al. [67], Jacobsen et al. [68], Moxom et al. [69], Ashleyet al. [70], Murtagh et al.[71], Charlton et al. [72], Fornari et al. [73], Diana et al.[74], and Overton et al. [75], and theoretical calculations of Schultz and Olson [79],Sarkar et al. [80], Mandal et al. [29], Igarashi and Toshima [30], Campeanu et al.[31,32], Hewitt et al. [81], Campbell et al. [82], Wu et al. [83] and Chaudhuriet al [84]. Excellent agreement can be found between present positronium formationcross sections and experimental measurements in the whole energy region, especially,the present results achieved the maximum at the same position (about 50 eV) with experimental data, while most of other theoretical results get their peak at 40-45 eV.The present results also agree well with the variational calculation of Van Reeth andHumberston [22] and the measurement of Murtagh et al.[71] from 17 to 22 eV, whilethe other calculations are all above 20 eV. In the calculations of total scattering crosssection, almost all theoretical results have a similar shape and differ with each otherin the magnitude.The present results agree well with the measurements of Stein etal.[62] and Griffith et al.[63], and a little lower than other theoretical calculations.However, significant disagreement exists in the peak position, which is about 60 eVfor Campbell et al.[82] and Wu et al.[83], 40 eV for present calculation, and 50 eVfor experimental measurements. As for the elastic scattering and various excitationcross sections, only the total excitation cross sections are measured by Chalton andLaricchia [65], and Mori and Sueoka [66], and significant disagreement exists amongdifferent calculations, as well as present results.
     In recent years,more and more attention have been concentrated on the scat-tering of excited atoms and molecules,wich can offer a new approach to under-stand the structure and interactions of microcosmic systems. Although some theo-retical calculations and experimental measurements have been performed for electronscattering with excited atoms,there is still no report for positron scattering with ex-cited atoms. In the present work, the CCO method have been applied to study thepositron collisions with excited helium (2 3S). The positronium formation cross sec-tions,ionization cross sections and total scattering cross sections are calculated andcompared with corresponding results of electron scattering with excited helium (2 3S)and positron scattering with ground helium. The present scattering cross section ofpositron scattering with excited helium (2 3S) are much higher than correspondingresults of positron scattering with ground helium,and the present total scatteringcross sections are very similar with electron scattering with excited helium (2 3S)in both shape and magnitude. This is the direct consequence of the low ionizationthreshold,minus positronium formation threshold and much higher dipole polariz-ability,which is 318.7 a03 for excited helium (2 3S) and 1.27 a03 for ground helium(Lamm and Szabo [98]).
     In this paper,the momentum-space coupled-channel optical method has beenused to study the positron scattering with ground and excited helium,and the cal-culation results agree well with experimental measurements and other theoretical cal-culations. It is approved that the present polarization potential model for positron-ium formation channels are successful,and the CCO method is an effective tool forpositron scattering with complex atoms. From the present calculation,we can havethe conclusion that the positronium formation channels and ionization continuum areimportant for positron scattering with ground helium at low and intermediate energyregion,and neglectable for positron scattering with excited helium. Meanwhile,due to its unique feature,the positron scattering with excited atoms has very differentfigures and can extend our understanding of interactions in many-body systems. Al-though great success has been achieved in present model,some defects could befound in present calculation,and extensive development would be made in the fu-ture.
引文
[1] J.Berakdar. Energy-exchange effects in few-particl coulomb scattering.Phys.Rev.Lett. 1997 78 2712
    [2] A. S. Hheifets, I. Bray, Bartschat. Benchmark calculation for simultaneousionization-excitation of Helium. 21st Intermational Conference on The Physicsof Electron and Atomic Collision. 1999 HR057-216
    [3] M. Dogan and A. Crowe. Correlation studies of simultaneous ionization-excitation of Helium. 21st Intermational Conference on The Physics of Electronand Atomic Collision. 1999 MO061-203
    [4] N. F. Lane. The theory of electron-molecule collisions. Rev.Mod.Phys. 1980 5229
    [5] A. Dalgarno and R. A. McCray. Heating and ionization of hi-regions.Annu.Rev.Astron. Astrophys. 1972 10 375
    [6] E. Surdutovich, M. Harte, W. E. Kauppila, C. K. Kwan, and T. S. Stein. Mea-surements of positronium formation cross sections in positron-Mg collisions.Phys.Rev.A 2003 68 022709
    [7] E. Surdutovich, J. M. Johnson, W. E. Kauppila, C. K. Kwan, and T. S. Stein.Positronium formation in e+ ? Li and e+ ? Na collisions at low energies.Phys.Rev.A 2002 65 032713
    [8] Y. Zhou, K. Ratnavelu, and I.E. McCarthy. Momentum-space coupled-channeloptical method for positron-hydrogen scattering. Phys.Rev.A 2005 71 042703.
    [9] C. Makochehanwa, O. Sueoka, M. Kimura, M. Kitajima, and H. Tanaka. Elec-tron and positron scattering from per?iuorocyclobutane (c?C4 ?F8) molecules.Phys.Rev.A 2005 71 032717
    [10] D. D. Reid, W. B. Klann, and J. M. Wadehra. Scattering of low- to intermediate-energy positrons from molecule hydrogen. Phys.Rev.A 2004 70 062714
    [11] G. F. Gribakin and J. Ludlow. Many-body theory of positron-atom interactions.Phys.Rev.A 2004 70 032720
    [12] Y. K. Ho and Z. C. Yan. High partial wave resonances in positron-hydrogenscattering. Phys.Rev.A 2004 70 032720
    [13] P. Froelich, S. Jonsell, A. Saenz, S. Eriksson, B. Zygelman, and A. Dalgarno.Leptonic annihilation in hydrogen-antihydrogen collisions. Phys.Rev.A 2004 70022509
    [14] Sabyasachi Kar and Y. K. Ho. S-wave resonances in e+ ? He scattering belowthe Ps(n=2) excitation threshold. J. Phys. B: At. Mol. Opt. Phys. 2004 37 3177
    [15] P.Robertson. New Scientist 1982(2)
    [16] H. Weyl. The theory of groups and quantum mechanics, transl. H.P. Robertson.Preface. Dover. New York (2nd edn).
    [17] C. D. Anderson. Energies of Cosmic-Ray Particles. Phys. Rev. 1932 41 405
    [18] W. E. Kauppila, E. G. Miller, H. F. M. Mohamed, K. Pipinos, T. S. Stein, and E.Surdutovich. Investigations of Positronium Formation and Destruction Using 3gamma / 2 gamma Annihilation-Ratio Measurements. Phys. Rev. Lett. 2004 93113401
    [19] D. P. Sural and S. Barman Electron capture by positrons from atomic hydrogenusing the second Born and Padéapproximations. Phys. Rev. A 10, 1162 (1974)
    [20] P. G. Burke, C. J. Nobel, and M. P. Scott. R-matrix theory of electron scatteringat intermediate energies. Proc. Roy. Soc. Lond. A 1987 410 289
    [21] X. Zhang, C. T. Whelan, and H. R. J. Walters. Energy sharing (e,2e) collisionsionization of helium in perpendicular plane. J. Phys. B: At. Mol. Opt. Phys. 199023 L173
    [22] X. Zhang, I. E. McCarthy, E. Weigold, and D. Zhang. Direct observation of themomentum-density profile of excited and oriented sodium atoms. Phys. Rev.Lett. 1990 64 1358
    [23] X. Zhang, C. T. Whelan, H. R. J. Walters, R. J. Allan, P. Bickert, W. Hink, and S.Schonberger. (e,2e) cross sections for inner-shell ionization of Argon and Neon.J. Phys. B: At. Mol. Opt. Phys. 1992 25 4325
    [24] D. H. Madison, I. Bray and I. E. McCarthy. Exact second-order distorted-wavecalculation for hydrogen including second-order exchange. J. Phys. B: At. Mol.Opt. Phys. 1991 24 3861
    [25] Guoguang Liu and T. T. Gien. Variational close-coupling calculation forpositron-hydrogen scattering at low energies. Phys. Rev. A 1992 46 3918
    [26] T. T. Gien and Guo Guang Liu Variational close-coupling calculation for D-wavepositron-hydrogen scattering. Phys. Rev. A 48, 3386 (1993)
    [27] P. Van Reeth and J. W. Humberston. Elastic scattering and positronium formationin low-energy positron-helium collisions. J.Phys.B 1999 32 3651.
    [28] M. W. J. Bromley and J. Mitroy Variational calculation of positron-atom scat-tering using configuration-interaction-type wave functions. Phys. Rev. A 67,062709 (2003)
    [29] P. Mandal, S. Guha, and N. C. Sil. Positronium formation in positron scatteringfrom hydrogen and helium atoms: the distorted-wave approximation. J.Phys.B1979 12 2913.
    [30] A. Igarashi and N. Toshima. Positronium formation in positron-helium collisionsat intermediate energies. Phys.Lett.A 1992 164 70.
    [31] R. I. Campeanu, R. P. McEachran, and A. D. Stauffer. Positron impact ionizationof He, Ne, and Ar. Can.J.Phys. 1996 74 544.
    [32] R. I. Campeanu, D. Formme, G. Kruse, R. P. McEachran, L. A. Parcell, W.Raith, G. Sinapius, and A. D. Stauffer. Partitioning of the positron-helium totalscattering cross section. J.Phys.B:At.Mol.Opt.Phys. 1987 20 3557.
    [33] Ann A. Kernoghan, D. J. R. Robinson, Mary T. McAlinden, and H. R. J. Walters.Positron scattering by atomic hydrogen. J. Phys. B: At. Mol. Opt. Phys. 1996 292089
    [34] Ann A. Kernoghan, Mary T. McAlinden, and H. R. J. Walters. Positron scatteringby Rubidium and caesium. J. Phys. B: At. Mol. Opt. Phys. 1996 29 3971
    [35] Ann A. Kernoghan, Mary T. McAlinden, and H. R. J. Walters. Positron scatteringby potassium. J. Phys. B: At. Mol. Opt. Phys. 1996 29 555
    [36] I. Bray and A. T. Stelbovics. Convergent close-coupling calculations of electron-hydrogen scattering. Phys.Rev.A 1992 46 6995.
    [37] A. S. Kadyrov and I. Bray. Two-center convergent close-coupling approach topositron-hydrogen collisions. Phys.Rev.A 2002 66 012710
    [38] I. Bray, K. Bartschat, and A. T. Stelbovics. Box-based convergent close-couplingmethod for solving Coulomb few-body problems. Phys. Rev. A 2003 67 060704
    [39] I. Bray. Close-coupling approach to Coulomb three-body problems.Phys.Rev.Lett. 2002 89 273201
    [40] C. Plottke and I. Bray. e-H scattering S-wave model for initial excited states.Phys. Rev. A 2001 64 022704
    [41] I. Bray, D. V. Fursa, and A. T. Stelbovics. Cloes-coupling approach to electron-impact ionization of helium. Phys. Rev. A 2001 63 040702
    [42] D. V. Fursa and I. Bray. Excitation of the 31P state of magnesium by electronimpact from the ground state. Phys. Rev. A 2001 63 032708
    [43] I. Bray, D. V. Fursa, and I. E. McCarthy. Convergent close-coupling method forelectron scattering on helium. J.Phys.B 1994 27 L421
    [44] V. E. Bubelev, D. H. Madison, I. Bray, and A. T. Stelbovics. Theoretical crosssections, angular-correlation parameters and polarization fractions for electron-hydrogen scattering. J.Phys.B 1995 28 4619
    [45] I. Bray, I. E. McCarthy, and A. T. Stelbovics. Comparision of convergentelectron-hydrogen calculations. J.Phys.B 1996 29 L245
    [46] J. Mitroy An L2 calculation of positron-hydrogen scattering at intermediate en-ergies. J.Phys.B 1996 29 L263
    [47] I. E. McCarthy and M.R.McDowell. Total reaction cross sections in the atomiccoupled-channels optical model. J.Phys.B: At.Mol.Opt.Phys. 1979 12 3775.
    [48] I. E. McCarthy and A. T. Stelbovics. Continuum in the atomic optical model.Phys.Rev.A 1980 22 502.
    [49] I. E. McCarthy, B. C. Saha, and A. T. Stelbovics. The polarisation potential inelectron-atom scattering. J.Phys.B 1981 14 2871
    [50] I. E. McCarthy and A. T. Stelbovics. Coupled-channels optical theory for e-Hscattering J. Phys. B 1983 16 1233
    [51] I. E. McCarthy and A. T. Stelbovics. Momentum-space coupled-channels opticalmethod for electron-atom scattering. Phys. Rev. A 1983 28 2693
    [52] I. E. McCarthy, K. Ratnavelu and A. M. Weigold. Continuum effects in electron-helium total cross sections. J.Phys.B 1988 21 3999.
    [53] I. E. McCarthy, K. Ratnavelu, and Y. Zhou. Coupled-channels optical calculationof electron-helium scattering. J.Phys.B 1991 24 4431.
    [54] A. M. Rossi and I. E. McCarthy. An ab initio momentum-space optical potentialfor electron-molecule scattering. J. Phys. B 1995 28 3593
    [55] A. M. Rossi. Momentum-space calculation of electron-molecule scattering. PHDThesis, The Flinder University of South Australia, 1995
    [56] I. E. McCarthy and A. M. Rossi. Momentum-space calculation of electron-molecule scattering. Phys. Rev. A 1994 49 4645
    [57] I. E. McCarthy and Y. Zhou. Equivalent-local calculation of the continuum con-tributions to electron and positron reactions on atoms. Phys.Rev.A 1994 49 4597.
    [58] G. Nan, Y. Zhou, and Y. Ke. Optical model for positronium formation cross sec-tions in e+ ?K collisions at low impact energies. Phys.Rev.A 2005 72 012709.
    [59] Y. Ke, Y. Zhou, and G. Nan. Optical model for positronium formation in e+?Nacollision. Phys.Rev.A 2004 70 024702.
    [60] C. Cheng and Y. Zhou. Optical model for the positronium formation in positron-Mg collision. Phys.Rev.A 2006 73 024701.
    [61] H. Conroy. Molecular Schro¨dinger Equation. A new method for the evaluationof multidimensional integrals. J. Chem. Phys. 1967 47 5307.
    [62] T. S. Stein, W. E. Kauppila, V. Pol, J. H. Smart, and G. Jesion. Measurementsof total scattering cross sections for low-energy positrons and electrons collidingwith helium and neon atoms. Phys.Rev.A 1978 17 1600.
    [63] T. C. Griffith and G. R. Heyland. Experimental aspects of the study of the inter-action of low-energy positrons with gases. Phys.Rep. 1978 39 169.
    [64] W. E. Kauppila, T. S. Stein, J. H. Smart, M. S. Dababneh, Y. K. Ho, J. P.Downing, and V. Pol. Measurements of total scattering cross sections forintermediate-energy positrons and electrons colliding with helium, neon, andargon. Phys.Rev.A 1981 24 725.
    [65] M. Chalton and G. Laricchia. Positron impact phenomena.J.Phys.B:At.Mol.Opt.Phys. 1990 23 1045.
    [66] S. Mori and O. Sueoka. Excitation and ionization cross sections of He,Ne andAr by positron impact. J.Phys.B 1994 27 4349.
    [67] D. Fromme, G. Kruse, W. Raith, and G. Sinapius. Partial-Cross-Section Mea-surements for Ionization of Helium by Positron Impact. Phys.Rev.Lett. 1986 573031.
    [68] F. M. Jacobsen, N. P. Frandseb, H. Knudsen, U. Mikkelsen, and D. M. Schrader.Single ionization of He,Ne and Ar by positron impact. J.Phys.B 1995 28 4691.
    [69] J. Moxom, P. Ashley, and G. Laricchia. Single ionization by positron impact.Can.J.Phys. 1996 74 367.
    [70] P. Ashley, J. Moxom, and G. Laricchia. Near-Threshold Ionization of He and H2by Positron Impact. Phys.Rev.Lett. 1996 77 1250.
    [71] D. J. Murtagh, M. Szluinska, J. Moxom, P. Van Reeth, and G. Laricchia.Positron-impact ionization and positronium formation from helium. J.Phys.B2005 38 3857.
    [72] M. Charlton, G. Clark, T. C. Griffith, and G. R. Heyland. Positronium formationcross sections in the inert gases. J.Phys.B 1983 16 L465.
    [73] L. S. Fornari, L. M. Diana, and P. G. Coleman. Positronium Formation in Colli-sions of Positrons with He,Ar,and H2. Phys.Rev.Lett. 1983 51 2276.
    [74] L. M. Diana, P. G. Coleman, D. L. Brooks, P. K. Pendleton, and D. M. Nor-man. Positronium formation cross sections in He and H2 at intermediate ener-gies. Phys.Rev.A 1986 34 2731.
    [75] N. Overton, R. J. Mills, and P. G. Coleman. The energy dependence of thepositronium formation cross section in helium. J.Phys.B 1993 26 3951.
    [76] D. P. Dewangen and H. R. J. Walters. The elastic scattering of electrons andpositrons by helium and neon: the distorted-wave second Born approximation.J.Phys.B 10 637.
    [77] F. W. Byron and C. J. Joachain. Elastic scattering of electrons and positrons bycomplex atoms at intermediate energies. Phys.Rev.A 1977 15 128.
    [78] F. W. Byron. Total cross sections in electron- and positron-helium scattering.Phys.Rev.A 1978 17 170.
    [79] D. R. Schultz and R. E. Olson. Single-electron–removal processes in collisionsof positrons and protons with helium at intermediate velocities. Phys.Rev.A 198838 1866.
    [80] N. K. Sarkar, M. Basu, and A. S. Ghosh. Positronium formation in the n = 1 andn = 2 states in e+ ?He scattering. Phys.Rev.A 1992 45 6887.
    [81] R. N. Hewiit, C. J. Nobel, and B. H. Bransden. He(21S21P) excitation andpositronium formation in positron-helium collisions at intermediate energies.J.Phys.B 1992 25 557.
    [82] C. P. Campbell, M. T. McAlinden, A. A. Kernoghan, and H. R. J. Walters.Positron collisions with one- and two-electron atoms. Nucl.Instrum.MethodsB 1998 143 41.
    [83] H. Wu, I Bray, D. V. Fursa, and A. T. Stelbovics. Convergent close-couplingcalculations of positron–helium scattering at intermediate to high energies.J.Phys.B 2004 37 1165.
    [84] P. Chaudhuri and S. K. Adhikari. Close-coupling calculations of elastic andinelastic positron-helium scattering. J.Phys.B:At.Mol.Opt.Phys. 1999 32 129.
    [85] Ashok Jain. Total (elastic plus inelastic) cross sections for positron-methane(helium) collisions at low,intermediate,and high energies . Phys.Rev.A 198735 4826.
    [86] L. A. Parcell, R. P. McEachran, and A. D. Stauffer. Positron excitation of the 21Sstate of helium. J.Phys.B:At.Mol.Opt.Phys. 1983 16 4249.
    [87] A. Dalgarno and N. Lynn. Proc. Phys. Soc. A 1957 70 223.
    [88] L. A. Parcell, R. P. McEachran, and A. D. Stauffer. Positron excitation of the21P state of helium. J.Phys.B:At.Mol.Opt.Phys. 1987 20 2307.
    [89] A. K. Katiyar and Srivastava Rajesh. Distorted-wave calculation of the cross sec-tions and correlation parameters for e+ ?He(11S21S21P31Sand31P) collisions.Phys.Rev.A 1988 38 2767.
    [90] H. S. W. Massey and E. H. S. Burhop. Electronic and Ionic Impact Phenomena.Oxford: Clarendon Press, 1969 vol. 1.
    [91] C. C. Lin and L. W. Anderson. In Advances in Atomic, Molecular, and OpticalPhysics. Orlando,FL: Academic Press,1992 vol.29 1
    [92] A. J. Dixon, M. F. A. Harrison, and A. C. H. Smith. A measurements of theelectron impact ionization cross section of helium atoms in metastable states.J.Phys.B 1976 9 2617.
    [93] I. Bray and D. V. Fursa. Calculation of electron scattering from the metastablestates of helium. J.Phys.B 1995 28 L197.
    [94] D. Ton-That and M. R. Flannery. Cross sections for ionization of metastablerare-gas atoms (Ne?,Ar?,Kr?,Xe?) and of metastable N2?,CO? moleculesby electron impact. Phys.Rev.A 1977 15 517.(Born approximation)
    [95] D. Ton-That, S. T. Manson, and M. R. Flannery. Cross sections for excita-tion and ionization in e-He(2 13S) collisions. J.Phys.B 1977 10 621. (Bornapproximation,Binary-encouter approximation)
    [96] D. Margreiter, H. Deutsch, and T. D. Mark . Absolute Electron Impact Cross Sec-tions for Single Ionization of Metastable Atoms of H,He,Ne,Ar,Kr,Xeand Rn. Contrib. Plasma Phys. 1990 30 487 (semiclassical,classical bonary-encouter approximation)
    [97] Y. Zhou, K. Ratnavelu, Z. Zhong and I. E. McCarthy. Electron impact on excitedhelium. J.Phys.B 1998 31 L959.
    [98] Gene Lamm and Attila Szabo. Analytic Coulomb approximations for dynamicmultipole polarizabilities and dispersion forces. J. Chem. Phys. 1980 72 3354.
    [99] R. M. Glover and F. Weinhold. Dynamic polarizabilities of two-electronatoms,with rigorous upper and lower bounds. J. Chem. Phys. 1976 65 4913.
    [100] W. G. Wilson and W. L. Williams. Total cross sections for the scattering oflow-energy electrons by helium metastable atoms. J.Phys.B 1976 9 423.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700