正电子与镁原子碰撞的耦合通道光学势方法的理论研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文在等价局域势的基础上,发展了一个正电子与基态镁原子碰撞的、能够处理二体电荷转移过程和三体电离过程的极化势。应用这个势,使用动量空间耦合通道光学势模型,分别计算了入射能量20.0-100.0 eV内的正电子与镁原子碰撞的的正负电子偶素截面(简称Ps截面):Ps(1s),Ps(2s),Ps(2p)和总的Ps(n=1+2)形成截面以及中等能量范围(8-60 eV)正电子与镁原子碰撞的电离截面和弹性截面;在能量10 eV,20 eV,40 eV时,考虑和忽略正负电子偶素重排通道的影响的情况下,分别计算了弹性散射的微分截面,经过比较,发现即使在中等能量范围内,电离和正负电子偶素重排通道的效应,也不可忽略;在能量从正负电子偶素阈值到60.0 eV时,本文计算了正电子-镁原子碰撞的总的散射截面;在低能和中能范围内发现了四处共振,给出其共振能量和共振宽度,并给出了共振现象的合理的物理解释。与现有的相关的实验和理论结果进行比较,分析讨论发现我们的理论模型有效的包含了在低能和中能区域起重要作用的正负电子偶素形成通道和电离连续态通道,模拟了更接近真实碰撞过程的理论模型,与现有的实验数据符合的很好,这说明我们对动量空间耦合通道光学势理论方法的改进是成功的。此外,我们计算的电离截面,弹性截面和弹性散射的微分截面需要与更多的实验和理论数据进行比较,来验证我们理论计算的合理性。
     本论文对相关领域的正电子与原子、分子以及更加复杂体系的碰撞的理论发展,我们提出了一些设想和展望。
In recent years, positron-atom collision has simulated more and more scientific research. Great successes have been achieved both experimentally and theoretically, a number of theoretical calculations have given successful predictions that cover almost all aspects of the positron-hydrogen system (Igarashi and Toshima 1994, Kernoghan et al 1995, 1996, Mitroy and Stelbovics 1994, Ratnavelu et al 1996, Kuang and Gien 1997, Kadyrov A S and Bray I 2002, Zhou et al in press). However, as to the many-electron atoms scattering with positron, there remain obvious discrepancies between the experimental measurements and the theoretical predictions, for the various reaction within the complex collision system. Nowadays, with the remarkably improvement on the experimental technology, corresponding descriptions from the theory are expected urgently, which comes into being the great challenge to our theoretical workers.
     In the past 20 years, some theoretical models have been developed to the positron-atom collision, wherein the common models include the distorted-wave Born approximation method (DWBA), the R-matrix method, the convergent close coupling method (CCC) and the coupled-channels optical potential method (CCO). The DWBA method are more valid for the collision in the high energy range; the R-matrix method, which was proposed by Burke, Noble and Scott, and then developed by the Belfast groups, is more suitable for the collision in the low energy range and when the incident energy reach to the intermediate range, a series of pseudo-structure are caused due to the use of the large number of pseudo-states; the CCC method has advantage over the simple target atom, for example, the H and , and there are some difficulty in treating the more complex target atoms. So it is necessary to develop a more common theory model, which can descript the positron collision with the many-electrons atom explicitly. He
     The CCO method, developed in 1980’s by McCarthy et al, has been widely applied to the electron scattered by various atoms and molecules and has achieved great success. In the recent year, Prof Zhou Ya-jun et al have successfully developed the CCO method to the positron collision with atom H. In the present paper, we propose a complex, local polarization to represent the Positronium formation (Ps) arrangement channel and the ionization continuum channel, and develop the CCO method to the positron collision with the complex atom.
     In the present paper, we investigate the positron-Mg collision in the low and intermediate energy, and calculated the Ps, ionization, elastic, excitation and the total cross sections. We found resonance phenomena and calculated both the resonant cross sections and the partial resonant cross sections. In the intermediate energy collision, infinite reaction channels are open including the Ps and ionization channels, which must be considered effectively in order to descript the collision process explicitly. In the low and intermediate energy range, the ionization and Ps channels play a prominent role in the positron-Mg collision and must be considered carefully. We developed a complex, local polarization potential representing the Ps and ionization effects and add it to the polarization potential to the first order coupled potential, then through the CCO method, we can consider all the reaction channels effectively. To test the validity of the polarization potential model and the developed CCO method, we calculate the important channels cross sections including the Ps, ionization, elastic, excitation the total cross sections.
     In this paper, we have done the following calculation:
     Firstly: By using the obtained polarization model, we calculated the Ps and ionization cross sections of the positron-Mg collision in the low and intermediate energy, and compared the results with the latest experimental measurements and other theoretical calculations. We found that the present Ps results agree quite well with the latest experiment and also in accord with the recent R-matrix and CCC calculations. For the ionization cross section, through there are no experimental results available, our calculations agree with the explicit DWBA calculation perfectly. The successful predictions of the Ps and ionization cross sections validate our polarization potential.
     Secondly: We add the polarization potential to the first order coupled potential and calculate the elastic, 3s-3p excitation cross section in the low and intermediate energy positron-Mg collision, furthermore, we calculated total cross section considering or omitting the Ps and ionization effect respectively. We found that, the effect of the Ps formation and the ionization on the total cross section is significant at lower energies. For there are no experiments data about the elastic and excitation cross sections in the positron-Mg collision, we just compare our calculations with the available theoretical results. We found that, our results accord well with the explicit R-matrix calculations on the whole, and in the higher incident energy range, our results converge to the other theoretical predictions.
     Through the theoretical calculation results, we could obtain the following conclusions:
     1. The complex, local polarization potential model successful predicted the Ps cross section in low energy positron-Mg collision and the ionization cross section in the intermediate energy positron-Mg collision, which validated the polarization model. In the low energy range, the Ps channel plays a prominent role in the positron-Mg atom collision and this effect is not negligible even in the intermediate energy range. In the intermediate energy range, the ionization channel is important and must be carefully considered in the positron-Mg collision.
     2. We add the polarization potential to the CCO method formalism and successfully predict the elastic, 3s-3p excitation and the total cross section. The effect of the Ps formation and the ionization on the total cross section is significant at lower energies. Accordingly it is necessary to take into account the ionization and Ps formation channels in the investigation of the positron-Mg collision at the intermediate energies.
     3. In the very low energy range, there are difference between our prediction and the experimental data of the Ps cross section. We think that the difference may be due to the use of the plane wave representation of the incident positron and the centre-of-mass motion of Ps, omitting the polarization effect of the incident positron and the residual target ion, and the single configuration Hartree-Fock wave function that is used in our calculation, which does not include the many configuration interactions. In the following work, we will center on the polarization effect and the higher-order electron-electron correlations to improve the calculations.
引文
[1] J.Berakdar, Energy-exchange effects in few-particle coulomb scattering, Phys.Rev.Lett., 1997, 78, 2712
    [2] A.S.Kheifets, I.Bray, Bartschat, Benchmark calculation for simultaneous ionization-excitation of Helium, 21st International Conference on the Physics of Electron and Atomic Collision, 1999, HR057-216
    [3] M.Dogan and A.Crowe, Correlation studies of simultaneous excitation-ionization in Helium, 21st International Conference on the Physics of Electron and Atomic Collision, 1999, MO061-203
    [4] N.F.Land, The theory of electron-molecule collision, Rev.Mod.Phys., 1980, 52, 29
    [5] A.Dalgarno and R.A.McCray, Heating and ionization of hi-regions, Annu.Rev.Astron.Astrophys., 1972, 10, 375
    [6] P.Robertson, New Scientist, 1982(2)
    [7] H.Weyl, The theory of groups and quantum mechanics, transl.H.P.Robertson, Preface.Dover.New York (2n d edn)
    [8] C.D.Anderson, Energies of Comic-Ray Particles, Phys.Rev., 1932, 41, 405-421
    [9] C.D.Anderson, Cosmic-Ray Bursts, Phys.Rev., 1933, 43, 368-369
    [10] S.P.Khare and Vijayshri, Total collisional cross sections for e -Li scattering, J.Phys.B: At.Mol.Opt.Phys., 1983, 16, 3621-3626 +or-
    [11] S.P.Khare, A.Kumar and K.Lata, Elastic scattering of electrons and positrons by magnesium atoms at intermediate energies, J.Phys.B: At.Mol.Opt.Phys., 1983, 16, 4419-4426
    [12] M.Basu, P.S.Mazumdar and A.S.Ghosh, Ionization cross sections in positron-helium scattering, J.Phys.B: At.Mol.Opt.Phys., 1985, 18, 369-377
    [13] S.P.Khare and K.Lata, Elastic scattering of electrons and positrons by the helium atom and the hydrogen molecule at intermediate energies, J.Phys.B: At.Mol.Opt.Phys., 1985, 18, 2941-2954
    [14] K.Hasenburg, K.Bartschat, R.P.McEachran and A.D.Stauffer, Differential cross sections for elastic electron and positron scattering from xenon atoms, J.Phys.B: At.Mol.Opt.Phys., 1987, 20, 5165-5174
    [15] K.K.Mukherjee and P.S.Mazumdar, Total ionization cross sections in(e+ -Li) scattering, J.Phys.B: At.Mol.Opt.Phys., 1988, 21, 2327-2330
    [16] U.Roy and P.Mandal, Schwinger’s variational principle for positron-hydrogen atom collisions, J.Phys.B: At.Mol.Opt.Phys., 1989, 22, L261-L265
    [17] S.J.Ward, M.Horbatsch, R.P.McEachran and A.D.Stauffer, Close-coupling approach to positron scattering for lithium, sodium and potassium, J.Phys.B: At.Mol.Opt.Phys., 1989, 22, 1845-1861
    [18] R.N.Hewitt, C.J.Noble and B.H.Bransden, Positron collisions with alkali atoms at low and intermediate energies, J.Phys.B: At.Mol.Opt.Phys., 1993, 26, 3661-3677
    [19] D.De.Fazio, F.A.Gianturco, J.A.Rodriguez.Ruiz, K.T.Tang and J.P.Toennies, A semiclassical model for polarization forces in collisions of electrons and positrons with helium atoms, J.Phys.B: At.Mol.Opt.Phys., 1994, 27, 303-317
    [20] J.Moxom, G.Laricchia, M.Charlton, A.Kovar and W.E.Meyerhof, Threshold effects in positron scattering on noble gases, Phys.Rev.A, 1994, 50, 3129-3133
    [21] David.D.Reid and J.M.Wadehra, A quasifree model for the absorption effects in positron scattering by atoms, J.Phys.B: At.Mol.Opt.Phys., 1996, 29, L127-L133
    [22] Mary.T.McAlinden, Ann.A.Kernoghan and H.R.J.Walters, Positron scattering by lithium, J.Phys.B: At.Mol.Opt.Phys., 1997, 30, 1543-1561
    [23] á.K?vér, R.M.Finch, M.Charlton and G.Laricchia, Double differential cross sections for collisions of positrons with argon atoms, J.Phys.B: At.Mol.Opt.Phys., 1997, 30, L507-L512
    [24] P.Chaudhuri and S.K.Adhikari, Differential cross sections for target excitation and Positronium formation in positron-helium scattering, Phys.Rev.A, 1998, 57, 984-989
    [25] Puspitapallab.Chaudhuri and Sadhan.K.Adhikari, Close-coupling calculations of elastic and inelastic positron-helium scattering, J.Phys.B: At.Mol.Opt.Phys., 1999, 32, 129-136
    [26] James.P.Sullivan, Steven.J.Gilbert, Stephen.J.Buckman and Clifford.M.Surko, Search for resonances in the scattering of low energy positrons from atoms and molecules, J.Phys.B: At.Mol.Opt.Phys., 2001, 34,L467-L474
    [27] N.Natchimuthu and K.Ratnavelu, Optical potential study of positron scattering by atomic sodium at intermediate energies, Phys.Rev.A, 2001, 63, 052707
    [28] Utpal.Roy and Y.K.Ho, S-wave resonances in positron-lithium scattering, J.Phys.B: At.Mol.Opt.Phys., 202, 35, 2149-2157
    [29] M.Z.M.Kamali and K.Ratnavelu, Positron-hydrogen scattering at low intermediate energies, Phys.Rev.A, 2002, 65, 014702
    [30] N.Yamanaka and Y.Kino, Time-dependent coupled-channel calculation for elastic scattering of positrons by hydrogen atoms and helium ions, Phys.Rev.A, 2003, 68, 052715
    [31] F.Salvat, Optical model potential for electron and positron elastic scattering by atoms, Phys.Rev.A, 2003, 68, 012708
    [32] J.P.Marler, J.P.Sullivan and C.M.Surko, Ionization and Positronium formation in noble gases, Phys.Rev.A, 2005, 71, 022701
    [33] Y.Nagashima, F.Saito, Y.Itoh, A.Goto and T.Hyodo, Measurement of Cu K-shell and Ag L-shell ionization cross sections by low energy positronimpact, Phys.Rev.Lett., 2004, 92, 223201
    [34] D.A.Przybyla, W.Addo-Asah, W.E.Kauppila, C.K.Kwan and T.S.Stein, Measurements of differential cross sections for positrons scattered from N , CO, O , N O and CO , Phys.Rev.A, 1999, 60, 359-363 22 2 2
    [35] A.Surdutovich, J.Jiang, W.E.Kauppila, C.K.Kwan, T.S.Stein and S.Zhou, Measurements of Positronium formation cross sections for positrons scattered by Rb atoms, Phys.Rev.A, 1996, 53, 2861-2864
    [36] S.P.Parikh, W.E.Kauppila, C.K.Kwan, R.A.Lukaszew, D.Przybyla, T.S.Stein and S.Zhou, Toward measurements of total cross sections for positrons and electrons scattered by potassium and rubidium atom, Phys.Rev.A, 1933, 47, 1535-1538
    [37] L.Dou, W.E.Kauppila, C.K.Kwan, D.Przybyla, S.J.Smith and T.S.Stein, Evidence for resonances and absorption effects in positron-krypton differential-elastic-scattering measurements, Phy.Rev.A, 1992, 46, R5327-R5330
    [38] K.L.Baluja and A.Jain, Positron scattering from rare gases (He, Ne, Ar,Phys.Rev.A, 1992, 46, 1279-1290
    [39] W.Sperber, D.Becker, K.G.Lynn, W.Raith, A.Schwab, G.Sinapius, G.Spicher and M.Weber, Measurement of Positronium formation in positron collisions with hydrogen atoms, Phys.Rev.Lett., 1992, 68, 3690-3693
    [40] L.Dou, W.E.Kauppila, C.K.Kwan and T.S.Stein, Observation of structure in intermediate energy positron-argon differential elastic scattering, Phys.Rev.Lett., 1992, 68, 2913-2916
    [41] G.Spicher, B.Olsson, W.Raith, G.Sinapius and W.Sperber, Ionization of atomic hydrogen by positron impact, Phys.Rev.Lett., 1990, 64, 1019-1022
    [42] M.S.Dababneh, Y.F.Hsieh, W.E.Kauppila, C.K.Kwan, S.J.Smith, T.S.Stein and M.N.Uddin, Total cross section measurements for positron and electron scattering by O2 , CH4 and SF6 , Phys.Rev.A, 1988, 38, 1207-1216
    [43] J.Mitroy, M.W.J.Bromley and G.G.Ryzhikh, Positron and Positronium binding to atoms, J.Phys.B: At.Mol.Opt.Phys., 2002, 35, R81-R116
    [44] A.P.Jr.Mills, Positronium molecule formation, Bose-Einstein condensation and stimulated annihilation, Nucl.Instrum.Methods B, 2002, 192, 107-116
    [45] V.Tsytovich and C.B.Wharton, Laboratory electron-positron plasma. A new research object, Comments Plasma Phys.Control.Fusion, 1978, 4, 91-100
    [46] C.M.Surko and R.G.Greaves, Emerging physics and technology of antimatter plasmas and trap-based beams, Phys.Plasmas, 2004, 11, 2333
    [47] N.Guessoum, R.Ramaty and R.E.Lingenfelter, Positron annihilation in the interstellar medium, Astrophys.J., 1991, 378, 170-180
    [48] R.L.Wahl, Principles and practice of positron emission tomography (Philadelphia, PA: Lippincott, Williams and Wilkins), 2002
    [49] P.J.Schultz and K.G.Lynn, Interaction of positron beams with surfaces, thin films and interfaces, Rev.Mod.Phys., 1988, 60, 701-779
    [50] J.Xu and J(ed).Moxom, Proc. 7 Int. Conf. on positron and positron chemistry, radiation physics and chemistry, 2003, vol 68 (Amsterdam: Pergamon), 329-680 th
    [51] C.M.Surko, M.Leventhal, W.S.Crane, A.Passner and F.Wysocki, Use of positrons to study transport in tokamak plasmas (invited), Rev.Sci.Instrum., 1986, 57, 1862-1867
    [52] L.D.Hulett, D.L.Donohue, J.Xu, T.A.Lewis, S.A.McLuckey and G.L.Glish, Mass spectrometry studies of the ionization of organic molecules by low energy positrons, Chem.Phys.Lett., 1993, 216, 236-240
    [53] C.M.Surko, G.F.Gribakin and S.J.Buckman, Low energy positron interactions with atoms and molecules, J.Phys.B: At.Mol.Opt.Phys., 2005, 38, R57-R126
    [54] P.G.Burke, C.J.Noble and M.P.Scott, Proc.Roy.Soc,Lond.A, 1987,410, 289
    [55] Ann.A.Kernoghan, D.J.R.Robinson, Mary.T.McAlinden and H.R.J.Walters, Positron scattering by atomic hydrogen, J.Phys.B: At.Mol.Opt.Phys., 1996, 29, 2089-2102
    [56] Keith A.Berrington, Werner B.Einssner, Patrick H.Norrington, RMATRX1: Belfast atomic R-matrix codes, Computer Physics Communications, 1995, 92, 290-420
    [57] Oleg Zatsarinny, BSR: B-spline atomic R-matrix codes, Computer Physics Communications, 2005, 174, 273-356
    [58] Ann.A.Kernoghan, Mary.T.McAlinden and H.R.J.Walters, Positronscattering by rubidium and caesium, J.Phys.B: At.Mol.Opt.Phys., 1996, 29, 3971-3987
    [59] Ann.A.Kernoghan, Mary.T.McAlinden and H.R.J.Walters, Positron scattering by potassium, J.Phys.B: At.Mol.Opt.Phys., 1996, 29, 555-569
    [60] Igor.Bray and Andris.T.Stelbovics, Convergent close-coupling calculations of electron-hydrogen scattering, Phys.Rev.A, 1992, 46, 6995-7011
    [61] P.Mandal, S.Guha and N.C.Sil, Positronium formation in positron scattering from hydrogen and helium atoms: the distorted-wave approximation, J.Phys.B: At. Mol. Phys., 1979, 12, 2913-2924
    [62] A.Igarashi and N.Toshima, Positronium formation in positron-helium collisions at intermediate energies, Phys.Lett.A, 1992, 164, 70-72
    [63] R.I.Campeanu, R.P.McEachran and A.D.Stauffer, Positron impact ionization of He, Ne, and Ar, Can.J.Phys., 1996, 74, 544-547
    [64] E.Weigold, L.Frost and K.J.Nygaard, Large-angle electron-photon coincidence experiment in atomic hydrogen, Phys.Rev.A, 1980, 21, 1950-1954
    [65] C.P.Campbell, Mary.T.McAlinden, F.G.R.S.MacDonald and H.R.J.Walters, Scattering of positronium by atomic hydrogen, Phys.Rev.Letts., 1998, 80, 5097-5001
    [66] H.R.J.Walters and C.Starrett, Positron and positronium scattering, Phys.Stat.Sol.(c), 2007, 10, 3429-3436
    [67] P.G.Burke and T.G.Webb, Electron scattering by atomic hydrogen using a pseudostate expansion. III. Excitation of 2s and 2p states at intermediate energies, J.Phys.B: At.Mol.Opt.Phys., 1970, 3, L131-L134
    [68] W.E.Kauppila, W.R.Ott and W.L.Fite, Excitation of atomic hydrogen to the metastable 22S1/2 state by electron impact, Phys.Rev.A, 1970, 1, 1099-1108
    [69] J.Callaway, For a review article on close-coupling approximation and other approximations of prevalent use in theoretical calculations of electron scattering by atoms, Adv.Phys., 1980, 29, 771
    [70] Alisher.S.Kadyrov and Igor.Bray, Two-center convergent close-coupling approach to positron-hydrogen collisions, Phys.Rev.A, 2002, 66, 012710
    [71] I.Bray, K.Bartschat and A.T.Stelbovics, Box-based convergentclose-coupling method for solving Coulomb few-body problems, Phys.Rev.A, 2003, 67, 060704
    [72] I.Bray, Close-coupling approach to Coulomb three-body problems, Phy.Rev.Lett., 2002, 89, 273210
    [73] C.Plottke and I.Bray, e-H scattering S-wave model for initial excited states, Phy.Rev.A, 2001, 64, 022704
    [74] I.Bray, D.V.Fursa and A.T.Stelbovics, Close-coupling approach to electron-impact ionization of helium, Phys.Rev.A, 2001, 63, 040702
    [75] D.V.Fursa and I.Bray, Excitation of the 31P state of magnesium by electron impact from the ground state, Phys.Rev.A, 2001, 63, 032708
    [76] I.Bray, D.V.Fursa and I.E.McCarthy, Convergent close-coupling method for electron scattering on helium, J.Phys.B: At.Mol.Opt.Phys., 1994, 27, L421-L425
    [77] V.E.Bubelev, D.H.Madison, I.Bray and A.T.Stelbovics, Theoretical cross sections, angular-correlation parameters and polarization fractions for electron-hydrogen scattering, J.Phys.B: At.Mol.Opt.Phys., 1995, 28, 4619-4638
    [78] Igor.Bray, Ian.E.McCarthy and Andris.T.Stelbovics, Comparison of convergent electron-hydrogen calculations, J.Phys.B: At.Mol.Opt.Phys., 1996, 29, L245-L247
    [79] Jim.Mitroy, An L2 calculation of positron-hydrogen scattering at intermediate energies, J.Phys.B: At.Mol.Opt.Phys., 1996, 29, L263-L269
    [80] D.H.Madison, I.Bray and I.E.McCarthy, Exact second-order distorted-wave calculation for hydrogen including second-order exchange, J.Phys.B: At.Mol.Opt.Phys., 1991, 24, 3861-3888
    [81] R.I.Campeanu, D.Formme, G.Kruse, R.P.McEachran, L.A.Parcell, W.Raith, G.Sinapius and A.D.Stauffer, Paritioning of the positron-helium total scattering cross section, J.Phys.B: At. Mol. Phys., 1987, 20, 3557-3570
    [82] Sharon Gilmore, Jennifer E. Blackwood and H. R. J. Walters, Positronium formation in positron–noble gas collisions, Nuclear Instruments and Methods in Physics Research B, 2004, 221, 129-133
    [83] I.E.McCarthy and A.T.Stelbovics, Momentum-space coupled-channels optical method for electron-atom scattering, Phys.Rev.A, 1983, 28, 2693-2707
    [84] H.Feshbach, Ann.Phys. (N.Y.), 1962, 19, 287
    [85] I.E.McCarthy and A.T.Stelbovics, Coupled-channels optical theory for e-H scattering, J.Phys.B: At.Mol.Opt.Phys., 1983, 16, 1233-1245
    [86] I.E.McCarthy and A.T.Stelbovics, Continuum in the atomic optical model, Phys.Rev.A, 1980, 22, 502-513
    [87] A.M.Rossi and I.E.McCarthy, An ab initio, momentum-space optical potential for electron-molecule scattering, J.Phys.B: At.Mol.Opt.Phys., 1995, 28, 3593-3602
    [88] Adrian.M.Rossi, Momentum-space calculation of electron-molecule scattering, PHD Thesis, The Flinders University of South Australia, 1995
    [89] I.E.McCarthy and A.M.Rossi, Momentum-space calculation of electron-molecule scattering, Phys.Rev.A, 1995, 49, 4645-4652
    [90] I.E.McCarthy and Y.Zhou, Equivalent-local calculation of the continuum contributions to electron and positron reactions on atoms, Phys.Rev.A, 1994, 49, 4597-4601
    [91] ZHOU Ya-jun and PAN Shou-fu, Calculation of total cross sections for positron scattering on helium, Chin.Phys.Lett., 1998, 15, 180-182
    [92] I.McCarthy, K.Ratnavelu and Y.Zhou, Calculation of total cross sections for electron and positron scattering on sodium and potassium, J.Phys.B: At.Mol.Opt.Phys., 1993, 26, 2733-2739
    [93] WU Yong and ZHOU Ya-Jun, Calculation of total cross sections for positron scattering by lithium at intermediate energies, Chin.Phys.Lett., 2005, 22, 861-864
    [94] Y.Ke, Y.Zhou and G.Nan, Optical model for positronium formation in e+-Na collision, Phys.Rev.A, 2004, 70, 024702
    [95] G.Nan, Y.Zhou and Y.Ke, Optical model for positronium formation cross sections in e+-K collisions at low impact energies, Phys.Rev.A, 2005, 72, 012709
    [96] T.S.Stein, M.Harte, J.Jiang, W.E.Kauppila, C.K.Kwan, H.Li and S.Zhou, Measurements of positron scattering by hydrogen, alkali metal, and other atoms, Nucl.Instrum.Methods Phys.Res.B, 1998, 143, 68-80
    [97] E.Surdutovich, M.Harte, W.E.Kauppila, C.K.Kwan and T.S.Stein, Measurements of Positronium formation cross sections in positron-Mg collisions, Phys.Rev.A, 2003, 68, 022709
    [98] G.F.Gribakin and W.A.King, Positron scattering from Mg atoms, Can.J.Phys., 1996, 74, 449-459
    [99] R.N.Hewitt, C.J.Noble, B.H.Bransden and C.J.Joachain, Coupled-channel calculations of e+-Mg scattering, Can.J.Phys., 1996, 74, 559-563
    [100] O.Fojón, J.Hanssen, P.A.Hervieux and R.D.Rivarola, Transfer excitation in collisions of positrons with He and alkaline-earth metals, J.Phys.B: At.Mol.Opt.Phys., 2000, 33, 3090-3105
    [101] Henry.A.Kurtz and Yngve ?hrn, Calculation of 2P shape resonance in Be and Mg, Phys.Rev.A, 1979, 19, 43-48
    [102] Frank E.Harris, Expansion approach to scattering, Phys.Rev.Letts., 1967, 19, 173-175
    [103] M.W.J.Bromley, J.Mitroy and G.Ryzhikh, The elastic scattering of positrons from beryllium and magnesium in the low-energy region, J.Phys.B: At.Mol.Opt.Phys., 1998, 31, 4449-4458
    [104] P.D.Burrow, J.A.Michejda and J.Comer, Low-energy electron scattering from Mg, Zn, Cd and Hg: shape resonances and electron affinities,J.Phys.B: At.Mol.Opt.Phys., 1976, 9, 3225-3236
    [105] G.D.Doolen, J.Nuttall and C.J.Wherry, Evidence for a resonance in e+-H S-wave scattering, Phys.Rev.Letts., 1978, 40, 313-315
    [106] S.J.Ward, M.Horbatsch, R.P.McEachran and A.D.Stauffer, Resonances in low-energy positron scattering from Li, Na and K, J.Phys.B: At.Mol.Opt.Phys., 1989, 22, 3763-3774
    [107] P.Chaudhuri, S.K.Adhikari and A.S.Ghosh, Resonance in positron-helium scattering at medium energy, J.Phys.B: At. Mol. Phys., 1997, 30, L81-L85
    [108] Y.K.Ho and Z.C.Yan, High paritial wave resonances in positron hydrogen scattering, Phys.Rev.A, 2004, 70, 032716
    [109] Y.K.Ho, Atomic resonances involving positrons, Nuclear Instruments and Methods in Physics Research B, 2008, 266, 516-521
    [110] J.Mitroy and M.W.J.Bromley, Generating phase shifts from pseudostate energy shifts, Phys.Rev.Lett., 2007, 98, 173001
    [111] I.Bray, I.E.McCarthy, J.Mitroy and K.Ratnavelu, Coupled channels in the distorted-wave representation, Phys.Rev.A, 1989, 39, 4998-5009
    [112] S.Gradshteyn and I.M.Ryzhik, Tables of Integrals, Series and Products (Academic, New York, 1965)
    [113] I.E.McCarthy, B.C.Saha and A.T.Stelbovics, The polarization potential in electron-atom scattering, J.Phys.B: At.Mol.Opt.Phys., 1981, 14, 2871-2893
    [114] I.E.McCarthy and M.R.McDowell, Total reaction cross sections in the atomic coupled-channels optical model, J.Phys.B: At.Mol.Opt.Phys., 1979, 12, 3775-3785
    [115] I.E.McCarthy, K.Ratnavelu and A.M.Weigold, Continuum effects in electron-helium total cross sections, J.Phys.B: At.Mol.Opt.Phys., 1988, 21, 3999-4005
    [116] G.Breit and E.Wigner, Capture of slow neutrons, Phys.Rev., 1936, 49, 519-531
    [117] R.E.DeWames, W.F.Hall and G..W.Lehman, Anomalous particle penetration in perfect crystals, Phys.Rev., 1966, 148, 181-185
    [118] Y.Peng, C.Cheng and Y.J.Zhou, Resonances in positron-Mg collision , Chin.Phys.Lett., 2007, 24, 695-697
    [119] H.Conroy, Molecular Schr?dinger Equation.VIII. A new method for the evaluation of multidimensional integrals, J.Chem.Phys., 1967, 47, 5307-5318

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700