纤维素功能菌群及其木薯酒糟高效甲烷发酵技术的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
含有大量木质纤维素的木薯渣是木薯酒糟厌氧消化过程中的主要底物,它的不溶性和复杂性使其难于降解,因此木薯渣的高效水解是提高木薯酒糟厌氧发酵性能和产甲烷效率的关键。近年来,随着纤维质底物协同降解机理的研究,开发高效木质纤维素分解复合菌群对于木薯渣、甘蔗渣等工农业废弃物残渣向甲烷、氢气、酒精等高附加值产品转化具有重要的价值。
     本文通过底物限制性培养技术得到一组能够高效降解纤维质的功能菌群RXS,该菌群能够在40h内将滤纸和木薯渣降解明显,CMC酶和木聚糖酶活力分别为38.5U和90.2U。连续传代、-80℃冷冻保存半年和90℃高温处理20min后,该菌群对底物的降解效果和酶活力表达基本不变,表明该菌群稳定性良好;利用PCR-DGGE技术分析不同代时的微生物结构并进行初步鉴定。结果发现条带基本不变,一些兼性微生物(Beta proteobacterium HMD444)、厌氧微生物(Thermoanaerobacterium thermosaccharolyticum strain M18, Therm -anaerovibrio acidaminovorans DSM 6589, and Clostridium sp.strains LDC-8-c12, 5-8, CO6- 72, etc.)和不可培养细菌良好的共存于此体系中。
     对该菌群的酶活表达及其关键水解酶的酶学特性分析表明,该菌群分泌的胞外水解酶是一组包含木聚糖酶、CMC酶、β-葡萄糖苷酶、微晶纤维素酶、滤纸酶和果胶酶等的多酶复合体系;CMC酶和木聚糖酶的最适反应温度、pH和酶促反应时间分别为60℃、6.0和10min;温度和pH稳定性较好;同时发现Mn~(2+)对两种酶具有激活作用,Fe~(2+)、Cu~(2+)和SDS具有抑制作用。而Mg~(2+)对CMC酶有抑制作用,对木聚糖酶有促进作用。吐温-80、曲拉通-100、EDTA、K~+、Ca~(2+)、Li+、Ba~(2+)等对CMC酶和木聚糖酶活力影响不明显。
     在该菌群应用于木薯渣的水解过程中,监测发现CMC酶、木聚糖酶、果胶酶等关键酶的酶活力分别在第2~3d达到最大值34.4、80.5和15.8U;经过10d的发酵后,木薯渣中的纤维素、半纤维素及木质素分别降解了79.8%、85.9%和19.4%,且木薯渣的失重高达61.5%;此外,代谢产物主要是乙酸、丁酸、己酸和甘油;而溶解性COD、总糖和总挥发酸的变化表明第2d时木薯渣的水解率最高。培养基及其培养条件对复合菌群发酵性能的影响分析表明,复合菌群能够更好的分解滤纸、棉花等纤维素;而以木薯渣为唯一碳源时,20g/L的添加量分解效率最佳;利用蛋白胨和酵母粉做氮源时的纤维素分解活性远高于硝酸铵、尿素等无机氮源;在发酵温度、接种体积分数、初始pH、转速分别为50~60℃、5~10%、5.0~9.0和75~135r/min的范围内,菌群RXS对纤维质底物的分解能力较强。上述结果表明,该菌群能够有效地水解木薯燃料酒精生产过程中的废弃物—木薯渣,并有望用于木薯渣高效沼气发酵的前处理中。
     在有效体积为3L的水解反应器(CSTR)和13L的高温厌氧反应器(ASBR)中,考察了菌群RXS和高温厌氧出水循环耦合对木薯酒糟水解、产甲烷的影响。结果表明在木薯酒糟废液与高温消化液的比例为1:2、通气量为0.25vvm的水解条件下,经过24h的水解,出水TVFA(乙酸)含量由最初的0.89 g/L累积到3.57 g/L,水解液的累计甲烷产量相比处理0h时提高了17.7%,产气速率也明显升高。分析了不同OLR的木薯酒糟单相和两相甲烷发酵的产甲烷阶段的运行状况,结果表明单相厌氧发酵时,OLR在12.0gCOD.L-1.d-1的范围内,COD去除率在70%左右,TVFA/Talk在0.37附近波动,比产甲烷速率为0.115L CH4/g COD。两相发酵时,OLR在20.0gCOD.L-1.d-1范围内,COD去除率在75%左右,TVFA/Talk在0.20以下,比产甲烷速率为0.128L CH4/g COD。而高于这些OLR时,出水出现酸化现象,反应器运行不正常。这些结果表明通过纤维质水解功能菌群强化木薯渣水解过程的两相沼气发酵工艺,可以提高甲烷产量,并且使产甲烷阶段高效稳定运行,出水中可能含有更少的酒精发酵抑制物质。
Cassava residues composed by vast lignocellulose are the main substrates during the anaerobic digestion of cassava alcohol distillation wastewater. Because of their insolubility and complexity, they are extremely difficult to be degraded, so hydrolysis of cassava residues efficiently is the crucial step to improve the performance of anaerobic digestion and methane production rates. With the research of mechanism about cellulose degradation by synergistic relationships recently, study on complex microbial community with capacity of degrading lignocellulosic agro-industrial residues such as cassava residues and sugarcane bagasse is a promising approach which can provide efficient biomass conversion to value-added products,such as methane, hydrogen, alcohol.
     In this study, a microbial consortium with high effective and stable cellulosic degradation ability was constructed by successive enrichment and incubation using cassava residues and filter paper as carbon sources, where the substrates in the culture could be evidently broken down, otherwise, CMCase and xylanase activity was 38.5U and 90.2U after incubated 40 hours. This consortium could remain a stable degrading ability and high enzymatic activity after subcultured 60 generations, preserved in -80℃for half a year and treated 20min under conditions of high temperature below 90℃. what's more, PCR-DGGE technique analysis showed that the composition of this microbial complex remained stable after subcultured for several times. Moreover, some aerobic/facultative anaerobic (Beta-proteobacterium HMD444) , strictly anaerobic bacteria (Thermoanaerobacterium thermosaccharolyticum strain M18, Thermanaerovibrio acidaminovorans DSM 6589, and Clostridium sp. strains LDC-8-c12, 5-8, CO6-72, etc.) coexisted in this constructed microbial consortium. In addition, a few unidentified uncultured bacteria also stably coexisted in this consortium.
     The excreted extracellular enzymes of this microbial community are a group of enzyme complex community including Xylanase, CMCase,β-glucosidase, Avicelase, FPA and Pectinase. Besides, the basic enzymatic activity characteristics of CMCase and Xylanase were analysed. Both were optimally active at 60℃and pH 6.0; Both was remained 80% original activity at a temperature between 20℃and 70℃,while retained at least 70% original activity for 60min in the pH range from 5.0~9.0; the presence of Mn~(2+) positively influenced both of activity, but the activity was greatly inhibited in the presence of Cu~(2+), Fe~(2+) and SDS, while Mg~(2+) have inhibition effect to CMCase but positively influence to xylanase; Meanwhile, tween-80, triton-100, EDTA, K+, Ca~(2+) have no difference to enzyme activity.
     During the degradation process of cassava residues, the key hydrolytic enzymes including CMCase, xylanase and pectinase showed a maximum enzyme activity of 34.4, 90.5 and 15.8U on the second or third day, respectively. After 10 days' fermentation, the degradation ratio of cellulose, hemicellulose and lignin of cassava residues was 79.8%, 85.9% and 19.4% respectively, meanwhile the loss ratio of cassava residues reached 61.5%. Otherwise,it was found that the dominant metabolites are acetic acid, butyric acid, caproic acid and glycerol, and the highest hydrolysis ratio was obtained on the second day by monitoring sCOD, total volatile fatty acids and total sugars. In addition, effect of culture mediums and cultural conditions on the fermentation capacity of complex microbial community bred by laboratory was investigated. The results showed that composite microbial system could directly degrade carbon source with high natural cellulose content (such as filter paper and cotton) effectively. When the addition amount of cassava residues as the sole carbon source was 20g/L, cellulase and hemicellulase showed a maxmium activity. what's more, state of hydrolysis using peptone and yeast powder as nitrogen source was higher than that of inorganic nitrogen source such as urea and ammonium nitrate. The optimum fermentation temperature, inoculum concentration, pH and rotate speed were 50~60℃, 5~10%, 5.0~9.0 and 75~135r/min. The above results revealed that this consortium can efficitvely hydrolyze cassava residues and has great potential to be utilized for the pretreatment of cassava residues for biogas fermentation.
     Effect of coupled microbial consortium and anaerobic effluent circulation on hydrolysis and methanogenic of cassava distillage were studied in hydrolytic-acidogenic reactor with a valid volume 3L and methanogenic reactor with a effective volume of 13L. The results demonstrated that the maximum total volatile fatty acid concentration in the hydrohynates was accumulated from 0.89g/L to 3.57g/L after treated 24h under conditions of 1:2(the ratio of cassava residues and effluent) and 0.25vvm(The volume of aeration). The total methane production volume was improved by 17.7% compared to untreated. What's more, the biogas production rate was rose greatly. Methagenic of cassava distillations untreated and treated in ASBR, the results showed that the methanogenic reactor operated normally for OLRs lower than 12.0gCOD.L-1 during single fermentation. This behaviour was shown by the total volatile fatty acids/total alkalinity ratio, whose values were always kept lower than 0.37 and the total COD removal rate was kept around 70%. A methane yield of 0.119L CH4 g-1COD eliminated was achieved. But while operated as two phase biogas digestion, The methanogenic reactor operated with high stability for OLRs lower than 20.0 gCOD.L-1, this behaviour was shown by the volatile fatty acids/total alkalinity ratio, whose values were always kept lower than 0.12. The total COD removal rate was kept around 75%. A methane yield of 0.128L CH4 g-1COD eliminated was achieved. Once higher this OLR, the effluent acided soon and the reactor operated failure. All these results demonstrated that the integrated digestion process promoted the biotransformation of cassava residues to biogas from the high-rate hydrolytic-acidification phase to the methanogenic phase and ultimately make the methanogenic digestion process operating much more stable. More importantly, less inhibitor of alcoholic fermentation produced in this system.
引文
1 Sanchez O J, Cardona C A. Trends in biotechnological production of fuel ethanol from different feedstocks[J]. Bioresource Technology, 2008(99):5270-5295.
    2徐国华,赵新海,张庆华等.利用玉米酒精废糟液生产单细胞蛋白[J].微生物学杂志, 1993(1):48-51.
    3 Kim Y, Mosier N S, Hendrickson R, et al. Composition of corn dry-grind ethanol by-products: DDGS, wet cake, and thin stillage[J]. Bioresource technology, 2008, 99(12): 5165-5176.
    4 Kim J S, Kim B G, Lee C H. Development of clean technology in alcohol fermentation industry[J]. Cleaner Prod,1997, 5(4) :263-267.
    5 Cuzin N, Farinet J, Segretain C, et al. Methanogenic fermentation of cassava peel using a pilot plug flow digester[J]. Bioresource technology, 1992, 41(3): 259-264.
    6吴星,章克昌.酒精厂酒糟滤液全回流新工艺固形物循环分析[J].无锡轻工业学报,1993, 12(4):276-280.
    7 Zhang C M, Mao Z G, Wang X, et al. Effective ethanol production by reutilizing waste distillage anaerobic digestion effluent in an integrated process coupled with both ethanol and methane fermentations[J]. Bioprocess Biosyst. Eng, 2010, 33(9):1067-1075.
    8 Sun F B, Mao Z G, Zhang J, et al. Water-recycled Cassava Bioethanol Production Integrated with Two-stage UASB Treatment[J]. Chinese Journal of Chemical Engineering, 2010, 18(5): 837-842.
    9毛忠贵,张建华.酒精制造的“零能耗零污染”趋势[J].生物工程学报, 2008, 24(6):946-949.
    10 Zhang Q H, Lu X, Tang L, et al. A novel full recycling process through two-stage anaerobic treatment of distillery wastewater for bioethanol production from cassava[J]. Journal of Hazardous Materials, 2010 (179 ):635-641.
    11 Zhang Q H, Tang L, Zhang J, et al. Optimization of thermal-dilute sulfuric acid pretreatment for enhancement of methane production from cassava residues[J]. Bioresource technology, 2011, 4(102): 3958-3965.
    12 Zeikus J. Microbial populations in digesters. Vol. 61. 1980: Applied Science Publishers[M], London.
    13. Ren N, Wang B, Huang J. Ethanol-type fermentation from carbohydrate in high rate acidogenic reactor[J]. Biotechnology and Bioengineer,1997, 54(5):428-433
    14. Cohen A. Anaerobic digestion of glucose with separated acid production and methane formation[J]. Water Resource,1979, 3(13):570-580
    15张德清.薯类酒精废糟液治理工程设计探讨[J].给水排水, 1999, 25(7) : 34-36.
    16高大文,彭永臻,王淑莹.污水处理智能控制的研究、应用与发展[J].中国给水排水,2002, 18(6): 35-39.
    17罗刚,谢丽,周琪等.高温厌氧CSTR反应器处理木薯酒精废水研究[J].中国给水排水, 2008, 24(9): 13-16.
    18浦跃武,赵晓生,刘族安等.木薯酒精废水厌氧处理研究[J].现代食品科技, 2009, 25(001) : 50-54
    19孙佳伟,谢丽,周琪等.高温厌氧EGSB反应器处理木薯酒精废水的启动与运行[J].水处理技术, 2008, 34(11): 68-71.
    20 Luo G, Xie L, Zhou Q. Enhanced treatment efficiency of an anaerobic sequencing batch reactor (ASBR) for cassava stillage with high solids content[J]. Journal of bioscience and bioengineering,2009, 107(6): 641-645.
    21吴满昌,孙可伟,李如燕等.不同反应温度的城市生活垃圾厌氧发酵研究[J].化学与生物工程, 2005, 22(009) : 28-30.
    22 Harikishan S, Sung S. Cattle waste treatment and Class A biosolid production using temperature-phased anaerobic digester[J]. Advances in Environmental Research, 2003, 7(3): 701-706.
    23 Ghosh S, Henry M P, Sajjad A, et al. Pilot-scale gasification of municipal solid waste by high rate and two-phase anaerobic digestion (TAPD)[J]. Water Sci.Tech., 2000,41(3):101-110
    24张记市,张雷,王华等.城市有机生活垃圾厌氧发酵处理研究[J].生态环境,2005,14(3):321-324
    25 Karim K, Hoffmann R, Thomas Klasson K, et al. Anaerobic digestion of animal waste: Effect of mode of mixing[J]. Water research, 2005, 39(15): 3597-3606.
    26 Vavilin V, Angelidaki I, et al. Anaerobic degradation of solid material: importance of initiation centers for methanogenesis, mixing intensity, and 2D distributed model[J]. Biotechnology and bioengineering, 2005, 89(1): 113-122.
    27 Panichnumsin P, Nopharatana A, et al. Production of methane by co-digestion of cassava pulp with various concentrations of pig manure[J]. Biomass and Bioenergy,2010, 34(8): 1117-1124.
    28 Kayhanian M, Rich D. Pilot-scale high solids thermophilic anaerobic digestion of municipal solid waste with an emphasis on nutrient requirements[J]. Biomass and Bioenergy, 1995, 8(6): 433-444.
    29 Rincón B, Borja R, González J, et al. Influence of organic loading rate and hydraulic retention time on the performance, stability and microbial communities of one-stage anaerobic digestion of two-phase olive mill solid residue[J]. Biochemical Engineering Journal,2008, 40(2): 253-261.
    30郭燕锋,孔晓英,刘婉玉等.有机负荷对厨余垃圾常温厌氧发酵产甲烷的影响[C].全国农村清洁能源与低碳技术学术研讨会论文集, 2011.
    31 Ghosh S, Pohland F G. Kinetics of substrate assimilation and product formation in anaerobic digestion[J]. Water Pollution Control Federation, 1974: 748-759.
    32 Demirel B ,Yenigün O. Two‐ phase anaerobic digestion processes: a review[J]. Journal of Chemical Technology and Biotechnology, 2002, 77(7): 743-755.
    33席北斗,魏自民,刘洪亮等.有机固体废弃物管理与资源化技术[M].北京:国防工业出版社,2006
    34 Pirt S, Lee Y. Enhancement of methanogenesis by traces of oxygen in bacterial digestion of biomass[J]. FEMS Microbiology Letters, 1983, 18(12): 61-63.
    35 Zhu M, LüF, Hao L P, et al. Regulating the hydrolysis of organic wastes by micro-aeration and effluent recirculation. Waste Management[J], 2009, 29(7): 2042-2050.
    36 Chen L, Jiang W Z, Kitamura Y, et al. Enhancement of hydrolysis and acidification of solid organic waste by a rotational drum fermentation system with methanogenic leachate recirculation[J]. Bioresource technology, 2007, 98(11): 2194-2200.
    37 Jiang W Z, Kitamura Y, Li B. Improving acidogenic performance in anaerobic degradation of solid organic waste using a rotational drum fermentation system[J]. Bioresource technology, 2005, 96(14): 1537-1543.
    38 Wang Q, Kuninobu M, Ogawa H I, et al. Degradation of volatile fatty acids in highly efficient anaerobic digestion[J]. Biomass and Bioenergy,1999, 16(6): 407-416.
    39 Tiehm A, Nickel K, Zellhorn M, et al. Ultrasonic waste activated sludge disintegration for improving anaerobic stabilization[J]. Water research,2001, 35(8): 2003-2009.
    40张爱军,陈洪章,李佐虎等.有机固体废物厌氧消化处理的研究现状与进展[J].环境科学研究,2002, 15(5):52-54
    41 Clarkson W W, Xiao W. Bench-scale Anaerobic Bioconversion of Newsprint and Office Paper [J]. Water Sci. Technol., 2000, 41(3): 93-100
    42 Tanaka S, Kamiyama K. Thermochemical pretreatment in the anaerobic digestion of waste activated sludge[J]. Water Sci. Technol. 2002, 46, 173-179.
    43 Schmidt A S, Thomsen A B. Optimization of wet oxidation pretreatment of wheat straw[J]. Bioresource technology, 1998, 64(2): 139-151.
    44 Lissens G, Thomsen A B, De Baere L, et al. Thermal wet oxidation improves anaerobic biodegradability of raw and digested biowaste[J]. Environmental science & technology, 2004, 38(12): 3418-3424.
    45 Weemaes M, Grootaerd H, Simoens F, et al. Anaerobic digestion of ozonized biosolids[J]. Water research, 2000, 34(8): 2330-2336.
    46 Hatakka A I. Pretreatment of wheat straw by white-rot fungi for enzymic saccharification of cellulose[J]. Applied microbiology and biotechnology, 1983, 18(6): 350-357.
    47 Kivaisi A, Eliapenda S. Application of rumen microorganisms for enhanced anaerobic degradation of bagasse and maize bran[J]. Biomass and Bioenergy,1995, 8(1): 45-50.
    48 Vikman M, Karjomaa S, Kapanen A, et al. The influence of lignin content and temperature on the biodegradation of lignocellulose in composting conditions[J]. Applied microbiology and biotechnology, 2002, 59(4): 591-598.
    49 Haruta S, Cui Z, Huang Z, et al. Construction of a stable microbial community with high cellulose-degradation ability[J]. Applied microbiology and biotechnology, 2002, 59(4): 529-534.
    50 Wongwilaiwalin S, Rattanachomsri U, Laothanachareon T, et al. Analysis of a thermophilic lignocellulose degrading microbial consortium and multi-species lignocellulolytic enzyme system[J]. Enzyme and Microbial Technology, 2010, 47(6): 283-290.
    51 Gladden J M, Allgaier M, Miller C S, et al. Glycoside Hydrolase Activities of Thermophilic Bacterial Consortia Adapted to Switchgrass[J]. Applied and environmental microbiology,2011, 77(16): 5804-5812.
    52崔宗均,李美丹,朴哲等.一组高效稳定纤维素分解菌复合系MC1的筛选及功能[J].环境科学,2002,11(3)
    53王伟东.木质纤维素快速分解菌复合系及有机肥微好氧新工艺[D]. 2005,中国农业大学.
    54刘长莉,王小芬,牛俊玲等.一组多功能细菌复合系NSC-7的培养特性及稳定性.微生物学通报[J], 2008, 35(5): 725-730.
    55罗辉.高效厌氧纤维素降解菌的筛选,复合菌系的构建及应用研究[D]. 2008,中国农业科学院.
    56牛俊玲,李国学,崔宗均等.堆肥中高效降解纤维素林丹复合菌系的构建及功能[J].环境科学, 2005, 26(4): 186-190.
    57张记市.城市生活垃圾厌氧消化的关键生态因子强化研究[D].昆明:昆明理工大学博士学位论文, 2007.
    58 Zhang Y H, Himmel M E, Mielenz J R. Outlook for cellulase improvement: screening and selection strategies[J]. Biotechnology advances, 2006, 24(5): 452-481.
    59 Leschine S B. Cellulose degradation in anaerobic environments[J]. Annual Reviews in Microbiology, 1995, 49(1): 399-426.
    60 Bayer E A, Belaich J P, Shoham Y, et al. The cellulosomes: multienzyme machines for degradation of plant cell wall polysaccharides[J]. Annual Reviews in Microbiology, 2004, 58: 521-554.
    61 Schwarz W. The cellulosome and cellulose degradation by anaerobic bacteria[J]. Applied microbiology and biotechnology, 2001, 56(5): 634-649.
    62 Irwin D C, Spezio M, Walker L P, et al. Activity studies of eight purified cellulases: specificity, synergism, and binding domain effects[J]. Biotechnology and bioengineering,1993, 42(8): 1002-1013.
    63 Bayer E A, Kenig R, Lamed R. Adherence of Clostridium thermocellum to cellulose[J]. Journal of bacteriology, 1983, 156(2): 818.
    64 Lamed R, Setter E, Kenig R, et al. Cellulosome: a discrete cell surface organelle of Clostridium thermocellum which exhibits separate antigenic, cellulose-binding and various cellulolytic activities[M]. 1983: Tel Aviv Univ., Ramat Aviv, Israel.
    65刘长莉.木质纤维素分解复合菌群NSC-7菌种组成及种间协作机理[D]. 2008,东北林业大学.
    66 Gal L, Pages S, Gaudin C, et al. Characterization of the cellulolytic complex (cellulosome) produced by Clostridium cellulolyticum[J]. Applied and environmental microbiology,1997, 63(3): 903.
    67 Zhu H, Qu F, Zhu L H. Isolation of genomic DNAs from plants, fungi and bacteria using benzyl chloride[J]. Nucleic Acids Research, 1993, 21(22): 5279.
    68高亦豹,王海燕,徐岩.利用PCR-DGGE未培养技术对中国白酒高温和中温大曲细菌群落结构的分析[J].微生物学通报, 2010,37(7) : 999-1004.
    69 Updegraff D M. Semimicro determination of cellulose inbiological materials[J]. Analytical biochemistry, 1969, 32(3): 420-424.
    70 Van Soest P J, Robertson J, Lewis B. Methods for dietary fiber, neutral detergent fiber, andnonstarch polysaccharides in relation to animal nutrition[J]. Journal of dairy science,1991, 74(10): 3583-3597.
    71国家环境保护总局.水和废水监测分析方法编委会水和废水监测分析方法(第四版) .北京:中国环境科学出版社[M], 2002.210-284.
    72 Dubois M, Gilles K A, Hamilton J K, et al. Colorimetric method for determination of sugars and related substances[J]. Analytical chemistry, 1956, 28(3): 350-356.
    73任南琪,王爱杰,马放.产酸发酵微生物生理生态学[M].北京:科学出版社,2005,275-289.
    74施特尔马赫著,钱嘉渊译.酶的测定方法[M].北京:中国轻工业出版社,1992.103-177.
    75张飞,岳田利,费坚等.果胶酶活力的测定方法研究[J].西北农业学报,2004, 13(4):134-137.
    76 Kaur J, Chadha B S, Kumar B A, et al. Purification and characterization ofβ-glucosidase from Melanocarpus sp. MTCC 3922[J]. Electronic Journal of Biotechnology, 2007, 10(2): 260-270
    77谢志鹏,徐志南,郑建明.靛酚蓝反应测定发酵液中的氨态氮[J].浙江大学学报, 2005, 39(3):437-440.
    78 Kato S, Haruta S, Cui Z J, et al. Stable coexistence of five bacterial strains as a cellulose degrading community[J]. Applied and environmental microbiology, 2005, 71: 7099-7106.
    79 Kato S, Haruta S, Cui Z J, et al. Effective cellulose degradation by a mixed-culture system composed of cellulolytic Clostridium and aerobic non-cellulolytic bacteria[J]. FEMS Microbiology Ecology. 2004, 51:133-142.
    80 Kato S, Haruta S, Cui Z J, et al. Network relationships of bacteria in a stable mixed culture[J]. Microbial ecology, 2008, 56(3): 403-411.
    81 Kato S, Haruta S, Cui Z J, et al. Effective cellulose degradation by a mixed‐ culture system composed of a cellulolytic Clostridium and aerobic non‐ cellulolytic bacteria. FEMS microbiology ecology[J], 2004, 51(1): 133-142.
    82赵越,武彬,阎伯旭等.纤维二糖抑制外切纤维素酶水解作用机理的分析[J].中国科学: C辑, 2003, 33(5): 454-460.
    83朴哲,崔宗均,苏宝林等.一组高效稳定纤维素分解菌复合系MC1的酶活特性[J ].中国农业大学学报, 2003, 8 (3) :74-79.
    84 Liu J B, Wang W D. The process of rice-straw degradation and dynamic trend of pH by the microbial community of MC1[J] . Journal of Environmental Sciences,2006, 18(6): 1142-1146.
    85刘爽.复合菌系降解木质纤维素特性及其菌群动态[D]. 2009,东北农业大学.
    86 Kumar R, Singh S, Singh O V. Bioconversion of lignocellulosic biomass: biochemical and molecular perspectives[J]. Journal of industrial microbiology & biotechnology,2008, 35(5): 377-391.
    87 Chang V S, Holtzapple M T. Fundamental factors affecting biomass enzymatic reactivity[J]. Applied biochemistry and biotechnology,2000, 84(1): 5-37.
    88 Taherzadeh M J, Karimi K. Enzymatic-based hydrolysis processes for ethanol from lignocellulosic materials: A review[J]. 2007.
    89任南琪,刘敏,王爱杰等.两相厌氧系统中产甲烷相有机酸转化规律[J].环境科学,2003, 24(4):89-93.
    90 Mshandete A, Bj?rnsson L, Kivaisi A K, et al. Enhancement of anaerobic batch digestion of sisal pulp waste by mesophilic aerobic pre-treatment[J]. Water research,2005, 39(8): 1569-1575.
    91 Hagesawa S, Shiota N, Katsura K, et al. Solubilization of organic sludge by thermophilic aerobic bacteria as a pre-treatment for anaerobic digestion[J]. Water Science and Technology, 41 (3):163-169.
    92 Zoltán Bagi, Norbertács, Balázs Bálint, et al. Biotechnological intensification of biogas production[J]. Applied Microbiology Biotechnology, 2007, 76:473-482.
    93 JOHANCEN J E ,Bakke R. Enhancing hydrolysis with microaeration[J]. Water science and Technology, 2006, 53(8): 43-50.
    94 Díaz I, Donoso-Bravo A, Fdz-Polanco M. Effect of microaerobic conditions on the degradation kinetics of cellulose[J]. Bioresource technology, 2011.
    95 Deng Y, Fong S S. Influence of culture aeration on the cellulase activity of Thermobifida fusca[J]. Applied microbiology and biotechnology, 2010, 85(4): 965-974.
    96 Zhang Q, He J, Tian M, et al. Enhancement of methane production from cassava residues by biological pretreatment using a constructed microbial consortium[J]. Bioresource technology, 2011.
    97 Zhu M, LüF, Hao L P, et al. Regulating the hydrolysis of organic wastes by micro-aeration and effluent recirculation. Waste Management[J], 2009, 29(7): 2042-2050.
    98郝丽萍,吕凡,何品晶等.甲烷化出水循环量对固体废物厌氧水解的影响[J].环境科学, 2008, 29(9): 2637-2642.
    99 Gilbert H J, Hazlewood G P. Bacterial cellulases and xylanases[J]. Journal of General Microbiology, 1993, 139(2): 187.
    100 Fannin K. Start-up, operation, stability, and control. IN: Anaerobic Digestion of Biomass[M]. Elsevier Science Publishing Co., New York. 1987, 4(53):171-196.
    101 Borja R. Evaluation of the methanogenic step of a two-stage anaerobic digestion process of acidified olive mill solid residue from a previous hydrolytic-acidogenic step[J]. Waste Management, 2009, 29(9): 2566-2573.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700