酒精沼气双发酵耦联工艺探究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文主要研究“酒精沼气双发酵耦联工艺中影响酒精发酵的因素,探索厌氧沼液回用的可行方法。
     通过研究发现,硫酸盐还原产物中的SO32-与S2-均会对酒精发酵产生影响。当发酵液中SO32-的浓度为30mM时,发酵结束时残总糖高达2.25%,淀粉利用率下降到79.66%;随着S2-浓度的增大,发酵醪的残总糖由1.62%增大到2.60%,淀粉利用率也由88.20%下降到79.30%。这两种物质对酒精发酵的不利影响主要是由发酵过程中低pH条件下生成的SO_2和H_2S气体造成的。前者会导致甘油产量增多,最终酒精产量下降,淀粉利用率降低;后者会导致酵母的生命活力下降,严重时会造成酵母细胞破裂死亡,致使发酵过程延迟或停滞,甘油产量上升,淀粉利用率下降。所以厌氧沼液回用过程中对于这些还原态物质必须去除,避免对后期酒精发酵造成影响。
     厌氧沼液直接回用作为酒精发酵的配料水时,酒精产量比空白低4.49%,对于原料的高效利用不利,因而必须对厌氧沼液进行处理,否则会影响酒精发酵的效果。在现有的几种资源化处理方式中,温和氧化,脱氨处理以及活性炭吸附都能够很好的改善厌氧沼液的发酵效果,最终的酒精产量比空白高1%,是比较有效的资源化方式。考虑到经济性和可操作性,选择温和氧化的方式作为厌氧沼液的处理手段,该方法能耗小。该法处理的厌氧沼液,发酵最终酒精产量(14.50%)与对照(14.47%)相当,满足回用的要求。
     通过实验优化后发现,适用于工业应用的温和氧化工艺为:55℃,通气,相对真空度为-0.04—-0.05MPa,处理时间160min。假若通气量再增大一些,该处理方式的时间可以适当缩短。
     用该方法处理过的厌氧沼液,在料水比为1:3时,最终的发酵乙醇产量略优于去离子水配料。发酵过程无异常,甘油产量没有增多,残糖含量<1%。
     厌氧沼液温和氧化过程pH的上升是由于HCO_3~-分解和CO_3~(2-)水解造成的,温和氧化的温度越高,pH上升越高;同时厌氧沼液中碱度和铵态氮的比例越大,pH上升越高。温和氧化过程中碱度下降与铵态氮去除同时进行,且二者去除的当量(HCO_3~-和NH_4~+)相等。pH越高铵态氮去除越干净,铵态氮去除量越大,碱度下降幅度越大,温和氧化处理的终点应为铵态氮浓度小于100mg/L。
     厌氧沼液中碱度稳定存在依附于体系中的阳离子,这些阳离子主要是NH_4~+和一些金属阳离子,其中NH_4~+和Na~+含量较高分别为32.14mM和30.43mM。通过氢型阳离子树脂交换吸附,能够将碱度完全去除,可以考虑作为一种工业废水处理除碱度的方法。
The effect of inhibit factors in Dual Coupling of Ethanol and Methane Fermentation Technology on ethanol fermentation was studied in this article. We explored available alternatives to reuse the anaerobic efflux and laid foundation for the process goes smoothly.
     Under the research, we found that both sulfite ion and sulfidion inhibited the ethanol fermentation. The remnants of total sugar reached up to 2.25%, and the starch utilization rate dropped to 79.66% at the end of the fermentation when there were 30mM SO_3~(2-) in the fermentation mash. With the increase of sulfidion’s concentration, the remnants of total sugar reached up to 2.60% from1.62%, and the starch utilization rate dropped to 79.30% from 88.20%. The negative impact of these two substances on ethanol fermentation was caused by sulphur dioxide and hydrogen sulfide which were generated in low pH during the fermentation. The former one lead to more glycerol was produced, and then the ethanol yield decreased, as well as the starch utilization rate. The latter brought about the viability of the yeast decreased; severe cases could lead to the yeast fracture and die. And then, the fermentation process would be delayed or stagnated, the output of glycerol increased, and the starch utilization rate declined. Thus, we have to wipe of those reducing substances during the process of reusing anaerobic efflux to avoid the harmful effect they may cause to the ethanol fermentation.
     The ethanol yield was fell 4.49% compared to the blank when the anaerobic efflux was used as water for ethanol fermentation directly. It is not good for the utilization of raw material. So the anaerobic efflux must be treated before reused, if not, the ethanol fermentation will be influenced. Among the present resources recovery methods, mild oxidation, process of taking off the ammonia and activated carbon adsorption had great improved the character of anaerobic efflux for ethanol fermentation, the final ethanol yield was improved 1% compared to the constant. All of these were effective resources recovery methods. In consideration of economy and operability, we took the mild oxidation as the treatment of anaerobic efflux. It’s low energy consumption. The anaerobic efflux treated by this method met demands for ethanol fermentation. The final ethanol yield (14.50%) was equal to the blank’s (14.47%).
     After optimized the treatment of mild oxidation, we found that the best condition for industry was: temperature 55℃,ventilate, relative vacuum between -0.04 to -0.05MPa, and last for 160min. If the ventilatory capacity was bigger, the handling time would be shorter.
     We used the anaerobic efflux treated as the condition for ethanol fermentation. The final ethanol yield was a bit better than the deionized water’s when the solid-to-liquid ratio was 1:3. The whole fermentation process was normal, the glycerol yield wasn’t increased, and the final remnant of total sugar was less than 1%.
     The increase of pH during mild oxidation process was caused by decomposing of HCO_3~- and hydrolyzing of CO32-. The temperature was higher, the pH was higher. The ratio of alkalinity to ammonium-N went up also made the pH increased. In this process, alkalinity and ammonium-N decreased at the same time and the same equivalent (HCO_3~-and NH_4~+). The pH was higher, the rate of getting rid of ammonium-N and alkalinity was higher. The finishing point of the process should be the concentration of ammonium-N less than 100mg/L.
     The steady of alkalinity in the anaerobic efflux was hooked on to positive ions. Main of those positive ions are NH_4~+ and metallic cations. The concentration of NH_4~+ and sodion are higher, they are 32.14% and 30.43% respectively. After treated by hydrogen type of cation exchange resin, the alkalinity of anaerobic efflux was removed completely. The hydrogen type of cation exchange resin adsorption could be considered as a treatment for removing alkalinity in industrial sewage.
引文
1.王志,许樱,陈雄等.柠檬酸废水厌氧发酵产沼气的研究[J].中国酿造, 2009. 7(208): 135-137.
    2.郭勇,李纪顺.利用谷氨酸发酵废水生产饲料添加剂[J].发酵科技通讯, 2002. 31(004): 3-6.
    3.左文朴,裴建新,浩庞等.利用丙酮丁醇发酵废水偶联乙醇发酵的研究[J].酿酒科技, 2010. 3(189): 103-106.
    4.章克昌.酒精与蒸馏酒工艺学[M],北京:中国轻工业出版社. 2010.
    5.原丽,抗生素废水的预处理[D].黑龙江:哈尔滨工业大学, 2006.
    6. Khudenko B, Shpirt E, Pastrana A. High-Rate, High-Efficiency Diffused-Air Aeration System. in Waste Conference. Purdue University. 1981.
    7.郝雯娣,李红宇,刘青岩等. UASB厌氧处理系统处理柠檬酸废水[J].给力排水, 1999. 25(10): 41-45.
    8. Yang H, Shao P, Lu T, et al. Continuous bio-hydrogen production from citric acid wastewater via facultative anaerobic bacteria[J]. International Journal of Hydrogen Energy, 2006. 31(10): 1306-1313.
    9.朱宜庚,李茹,朱宜辛等.燃料乙醇生产废水处理工程[J].给水排水, 2007. 33(012): 69-71.
    10. Han S K, Kim S H, Shin H S. UASB treatment of wastewater with VFA and alcohol generated during hydrogen fermentation of food waste[J]. Process Biochemistry, 2005. 40(8): 2897-2905.
    11. Jeison D, Chamy R. Comparison of the behaviour of expanded granular sludge bed (EGSB) and upflow anaerobic sludge blanket (UASB) reactors in dilute and concentrated wastewater treatment[J]. Water science and technology, 1999. 40(8): 91-97.
    12. Sam-Soon P, Wentzel M, Marais G R, et al. Long-chain fatty acid, oleate, as sole substrate in upflow anaerobic sludge bed(UASB) reactor systems[J]. Water S. A., 1991. 17(1): 31-36.
    13. Li H, Zhao Y, Shi L, et al. Three-stage aged refuse biofilter for the treatment of landfill leachate[J]. Journal of Environmental Sciences, 2009. 21(1): 70-75.
    14. Chelliapan S, Wilby T, Sallis P J. Performance of an up-flow anaerobic stage reactor (UASR) in the treatment of pharmaceutical wastewater containing macrolide antibiotics[J]. Water Research, 2006. 40(3): 507-516.
    15.徐森,胡晓东,郑秋辉.生物组合工艺处理抗生素废水现状及展望[J].工业水处理, 2011. 31(002): 5-8.
    16.刘茵,曹方.柠檬酸发酵废水的循环再利用[J].大连轻工业学院学报, 1997. 16(004): 27-41.
    17.云逢霖.国外几种谷氨酸提取工艺[J].发酵科技通讯, 1993. 22(003): 26-29.
    18.刘乘龙,结晶技术对谷氨酸提取的影响[D].江苏:江南大学, 2009.
    19.赵传义.酒精废糟液综合治理工程实例[J].工业水处理, 2003. 23(002): 62-64.
    20.邹东辉,梁敏,邵红.酒精糟液的综合利用[J].酿酒, 2002. 29(3): 82-83.
    21.韩沛,张少倩.薯干酒精糟液综合利用及治理技术[J].水处理技术, 2000. 26(1): 60-62.
    22.王侠,姚文娟.采用DDG加沼气工艺综合利用酒精糟液[J].酿酒科技, 2000. 240(004): 74-76.
    23. Kishimoto M, Nitta Y, Kamoshita Y, et al. Ethanol production in an immobilized cell reactor coupled with the recycling of effluent from the bottom of a distillation column[J]. Journal of fermentation and bioengineering, 1997. 84(5): 449-454.
    24.张春明,孜力汗,赵心清等.废液全循环工艺中副产物积累对自絮凝酵母生长和乙醇发酵的影响[J].过程工程学报, 2010. 10(4): 772-776.
    25.连晓岚.机械蒸气再压缩蒸发器蒸发酒精蒸馏废液的八年经验[J].福建糖业, 1992(003): 61-67.
    26.孜力汗,张春明,任剑刚等.废糟液全循环对自絮凝酵母糖酵解途径关键酶,胁迫相关代谢物及胞内组分的影响[J].生物工程学报, 2010. 26(7): 1019-1024.
    27. Castro G, Caicedo L, Alméciga-Díaz C, et al. Solvent extraction of organic acids from stillage for its re-use in ethanol production process[J]. Waste Management & Research, 2010. 28(6): 533-538.
    28. Bialas W, Szymanowska D, Grajek W. Fuel ethanol production from granular corn starch using saccharomyces cerevisiae in a long term repeated SSF process with full stillage recycling[J]. Bioresource Technology, 2010. 101(9): 3126-3131.
    29.赵江,赵华.酒糟滤液全回用技术在酒精发酵上的应用[J].食品研究与开发, 2008. 29(006): 75-78.
    30.张静,翟芳芳,张建华等.酒精沼气双发酵偶联中厌氧沼气的发酵行为[J].食品与生物技术学报, 2010. 29(002): 276-281.
    31.翟芳芳,张静,张建华等.酒精沼气双发酵偶联工艺中沼液有机酸对酒精发酵的影响[J].食品与生物技术学报, 2010. 29(003): 432-436.
    32. Zhang C M, Mao Z G, Wang X, et al. Effective ethanol production by reutilizing waste distillage anaerobic digestion effluent in an integrated fermentation process coupled with both ethanol and methane fermentations[J]. Bioprocess and biosystems engineering, 2010. 33(9): 1067-1075.
    33. Sun F, Mao Z G, Tang L, et al. Exploration of water-recycled cassava bioethanol production integrated with anaerobic digestion treatment[J]. African Journal of Biotechnology, 2010. 9(37): 6182-6190.
    34. Sun F, Mao Z G, Zhang J, et al. Water-recycled Cassava Bioethanol Production Integrated with Two-stage UASB Treatment[J]. Chinese Journal of Chemical Engineering, 2010. 18(5): 837-842.
    35. Piper P, Calderon C O, Hatzixanthis K, et al. Weak acid adaptation: the stress response that confers yeasts with resistance to organic acid food preservatives[J]. Microbiology, 2001. 147(10): 2635-2641.
    36. Mollapour M, Shepherd A, Piper P W. Novel stress responses facilitate saccharomyces cerevisiae growth in the presence of the monocarboxylate preservatives[J]. Yeast, 2008. 25(3): 169-177.
    37. Narendranath N, Thomas K, Ingledew W. Effects of acetic acid and lactic acid on the growth of Saccharomyces cerevisiae in a minimal medium[J]. Journal of Industrial Microbiology & Biotechnology, 2001. 26(3): 171-177.
    38. Thomas K, Hynes S, Ingledew W. Influence of medium buffering capacity on inhibition of saccharomyces cerevisiae growth by acetic and lactic acids[J]. Applied and environmental microbiology, 2002. 68(4): 1616.
    39. Graves T, Narendranath N V, Dawson K, et al. Effect of pH and lactic or acetic acid on ethanol productivity by Saccharomyces cerevisiae in corn mash[J]. Journal of Industrial Microbiology & Biotechnology, 2006. 33(6): 469-474.
    40. Graves T, Narendranath N V, Dawson K, et al. Interaction effects of lactic acid and acetic acid at different temperatures on ethanol production by Saccharomyces cerevisiae in corn mash[J]. Applied microbiology and biotechnology, 2007. 73(5): 1190-1196.
    41. Bayrock D P, Ingledew W M. Inhibition of yeast by lactic acid bacteria in continuous culture: nutrient depletion and/or acid toxicity?[J]. Journal of Industrial Microbiology & Biotechnology, 2004. 31(8): 362-368.
    42. Pronk J T, van der Linden-Beuman A, Verduyn C, et al. Propionate metabolism in Saccharomyces cerevisiae: implications for the metabolon hypothesis[J]. Microbiology, 1994. 140(4): 717.
    43. Abbott D A, Ingledew W. Buffering capacity of whole corn mash alters concentrations of organic acids required to inhibit growth of saccharomyces cerevisiae and ethanol production[J]. Biotechnology letters, 2004. 26(16): 1313-1316.
    44. Taherzadeh M J, Niklasson C, Lidén G. Acetic acid--friend or foe in anaerobic batch conversion of glucose to ethanol by Saccharomyces cerevisiae?[J]. Chemical engineering science, 1997. 52(15): 2653-2659.
    45.孙廷宏,赵长新.几种无机离子对啤酒酵母生理代谢的影响及发酵过程的产酸机制[J].大连轻工业学院学报, 2002. 21(001): 29-32.
    46.王欣,酒精沼气双发酵耦联工艺技术中酒精酵及抑制因子的研究[D].江苏:江南大学, 2010.
    47.任南琪,王爱杰,赵阳国.废水厌氧处理硫酸盐还原菌生态学[M].北京:科学出版社, 2009.
    48.陈程,木薯酒精沼气双发酵耦联工艺研究—影响沼气转化及水资源化因素的探讨[D].江苏:江南大学, 2010.
    49.郭金格,郑树朝,张芳等.还原糖测定方法的研究[J].河北化工, 2008. 31(11): 34-35.
    50.王福荣.酿酒分析与检测[M],北京:化学工业出版社. 2005.
    51.诸葛健,王正祥.工业微生物实验技术手册[M]:中国轻工业出版社. 1994.
    52.谢志鹏,徐志南,郑建明等.靛酚蓝反应测定发酵液中的氨态氮[J].浙江大学学报(工学版), 2005. 39(3): 437-439.
    53.任南琪,王爱杰,马放.产酸发酵微生物生理生态学[M]:科学出版社. 2005.
    54.郑新,闵航.亚硫酸盐,硫化物对厌氧消化的影响[J].环境污染与防治, 1995. 17(004): 1-4.
    55.王欣,张成明,姜立等.“乙醇沼气双发酵耦联工艺技术”的无糖化工艺探讨[J].生物加工过程, 2010.9(2): 33-38.
    56.焦安英,李永峰,熊筱晶.环境毒理学教程[M],上海:上海交通大学. 2009.
    57.冮洁,卜红宇.氧应力和前体氨基酸对酿酒酵母合成谷胱甘肽的影响[J].食品科学, 2009. 30(009): 176-179.
    58. Varela C, Pizarro F, Agosin E. Biomass Content Governs Fermentation Rate in Nitrogen-Deficient Wine Musts[J]. Applied and Environmental Microbiology, 2004. 70(6): 3392-3399.
    59.王文林.水溶液中碳酸氢钠热分解反应研究[J].化学教学, 2006. 9(02): 62-63.
    60. Speece R E.工业废水的厌氧生物技术[M],北京:中国建筑工业出版社. 2001.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700