二次调节静液传动车辆的关键技术及其优化研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着世界范围内工业技术的迅速发展,能源短缺和环境污染问题日趋严重,全球能源危机和环境恶化要求汽车工业发展节能环保型汽车。二次调节静液传动技术是一种新型的传动技术,该技术在恒压网络的基础上通过改变液压泵/马达的斜盘倾角,从而改变排量来适应负载的变化。利用液压泵/马达的四象限工作特性,能够有效地实现制动动能和重力势能的回收与再利用。液压储能系统功率密度大,全充和全放能力强,满足短时间车辆制动时的能量转换和储存要求。除此之外,静液传动技术还具有无级变速的精细速度调节、容易实现正反转、操控性强以及可靠性高等优点。因此,将二次调节静液传动技术应用于车辆传动系统中,对研究车辆的能量回收,减少环境污染以及提高车辆的整体性能具有重要意义。本文以二次调节静液传动技术应用于车辆传动系统中实现能量回收和再利用为主要内容,对二次调节静液传动车辆关键技术进行了全面深入的研究。
     在查阅大量国内外有关文献的基础上,本文概述了国内外能量存储技术的发展概况,对能量储能元件做了比较,分析了液压储能装置的优势和静液传动技术的特点,综述了国内外二次调节静液传动车辆的发展现状。
     阐述二次调节静液传动车辆的工作原理,分别建立静液传动车辆的数学模型和仿真模型。通过对比计算和仿真,分析了不同配置方式、循环工况及控制策略等因素对系统效率的影响。在此基础上提出了一种新型二次调节静液传动车辆的配置方式,提高了整车的传动效率和对复杂路面的适应性。
     通过对二次调节静液传动车辆的实际工程约束条件、整车性能设计指标及其与动力系统部件的相互影响进行分析,优化关键元件的匹配关系,完善静液传动系统的设计准则。仿真研究表明,基于自适应模拟退火遗传算法的多目标优化方法,能够根据不同的设计指标有效地识别出关键元件参数的最优解,提高系统的整体性能。
     针对静液传动技术功率密度大的特点,设计液压再生制动策略。根据制动强度和载荷的不同,合理地分配前后轴的制动力及再生制动力和摩擦制动力的比例关系,在确保车辆安全制动的同时,高效地回收车辆的制动动能。设计“功率跟随”+“恒温器”的综合控制策略,利用整车的仿真模型,优化能量利用策略的关键参数,并根据车辆载荷的不同动态调整控制策略的优化参数。仿真结果显示,能量利用策略保证发动机工作于高效区,有效地弥补了液压蓄能器能量密度小的缺点,避免了发动机的频繁起停,使节油率达到最高。
     根据驱动和制动系统的特点设计了转矩控制方式和转速控制方式,采用离散滑模变结构控制理论设计驱动和制动系统的鲁棒控制器,有效地抑制了系统参数大范围摄动、强非线性以及外界干扰的影响,提高车辆的控制性能。
     最后,利用搭建的二次调节静液传动车辆模拟试验平台,对本文相关的研究内容进行试验研究,并对试验结果进行分析。结果表明,转矩控制方式更适合于驱动和制动系统,并且验证了本文设计的鲁棒控制器、液压再生制动策略和能量利用策略的有效性。
Along with the rapid development of industrial technology in the word, the increasingly serious problem of energy shortage and environmental pollution requires automobile industries all over the world exploring and developing energy saving and clean automobile. Hydrostatic transmission with secondary regulation is a new kind of transmission technology, which changes the swash angle of hydraulic pump/motor in the constant pressure network to adapt to the load change. Hydraulic pump/motor has the characteristic of four quadrant work, which can regenerate and reuse the inertial and gravitational energy of load. Hydraulic accumulator has the advantage of higher power density and the ability to accept the high rates and high frequencies of charging and discharging, both of which are favorable for energy conversion and storage requirements during vehicle braking. In addition, hydrostatic transmission with secondary regulation has the advantages of continuously variable speed adjustment, easy to achieve positive inversion and prevent overload of engine and so on. Therefore hydraulic hybrid technology is well suited for luxury passenger cars, sport utility vehicles, light duty trucks and heavy-duty trucks. It is undoubtedly important to apply secondary regulation to developing and exploring new hybrid vehicles to save energy and protect environment. Based on the application of secondary regulation technology in hybrid vehicles, series hybrid vehicles of hydrostatic transmission with secondary regulation are studied and analyzed in depth and breadth in this article.
     After consulting a lot of related literatures and reference materials at home and abroad, this paper summarizes and compares the properties of the different energy storage technologies. This paper also analyses the advantages of hydraulic energy storage system and the characteristics of hydrostatic transmission hybrid technology. Furthermore, summarizes the development of hydrostatic transmission hybrid vehicles at home and abroad
     After studying the operation principle of hydrostatic transmission hybrid vehicles, vehicle mathematical mode and simulation model were established. Furthermore, a new type of hydrostatic transmission hybrid system configuration was proposed to improve vehicle efficiency and adaptability to the complexity of the road on the basis of analysis of the factors influencing the system efficiency, such as difference configurations, driving cycles and control strategies.
     After the analyzing the interactive influence of hybrid vehicle actual engineering constraints, vehicle performance design target and power systemic components, the matching relationship of key components and design guideline of hydrostatic transmission hybrid vehicles were researched. Simulation studies have shown that adaptive simulated annealing genetic algorithm multi-objective optimization method effectively distinguishes the key components optimal parameters values, substantial improving the performance of hydrostatic transmission hybrid system.
     The hydraulic regenerative braking strategy was designed according to the large power density characteristics of hydrostatic transmission technology, which reasonably distributes the front/rear axle braking forces and the relationship between regenerative braking force and frictional braking force according to braking intensity. Hydraulic regenerative braking system and frictional braking system work together to brake safely, and effectively regenerate braking energy. The“power following”+“thermostat”energy distribution strategy was designed and optimized by using the simulation model. The simulation results have shown that the energy strategy ensure the engine work in high efficiency area, effectively overcome the lower energy density of hydraulic accumulator and avoid frequent start/stop of engine.
     As to deal with the robust control problems against parameter uncertainty and load disturbance, discrete sliding mode control method is employed to design the robust controller of hydraulic regenerative braking system.
     The experimental research was done using hydrostatic transmission hybrid test bed. The experimental results shown that torque control method is well suit for hydrostatic transmission hybrid system, discrete sliding mode robust controller is better than PID controller and hydraulic regenerative braking strategy and energy control strategy are quite effective.
引文
1 L. Mitchell. A Commentary on 'the Energy Review'. Power Engineering Journal. 2002, 16(4):175~181
    2 V. L. Septimus. Bulk Energy Storage Potential in the USA, Current Developments and Future Prospects. Energy. 2006, 31(15):3446~3457
    3沈胜强,李素芬,徐钢.可持续发展战略与节能技术.节能. 1998, (12):4~7
    4严光明,秦安民.增强节能意识,推进节油技术进步.云南交通科技. 1994, 10(1):48~49
    5方茂东.我国汽车的排放与控制.汽车技术. 2002, (6):1~4
    6 A. T. Chan and M. W. Chung. Indoor–outdoor Air Quality Relationships in Vehicle: Effect of Driving Environment and Ventilation Modes. Atmospheric Environment. 2003, 37(27):3795~3808
    7 V. Wouk. Hybrids: Then and Now. Spectrum, IEEE, 1995, 32(7):16~21
    8 B. L. Lester and L. M. Heather. An Environmental-economic Evaluation of Hybrid Electric Vehicles: Toyota's Prius vs. its Conventional Internal Combustion Engine Corolla. Transportation Research Part D: Transport and Environment. 2002, 7(2):155~162
    9 Institute for the Analysis of Global Security. EPA Displays the First Advanced Hydraulic Hybrid Vehicle [2006-06-24]. http://www.iags.org/n 033104 t3.htm
    10陈清泉,孙逢春.现代电动汽车技术.北京理工大学出版社. 2002:150~200
    11 A. Szumanowski.混合电动车辆基础.北京理工大学出版社. 2001:30~60
    12姜继海.二次调节静液传动系统及其控制技术的研究.哈尔滨工业大学博士论文. 1998:1~30
    13姜继海,刘宇辉.二次调节静液传动技术在矿井提升机中的应用,机床与液压. 1999, (4):42~43
    14魏英俊.新型液压驱动混合动力运动型多用途车的研究.中国机械工程. 2006, 17(15):1645~1648
    15 L. O. Hewko and T. R. Weber. Hydraulic Energy Storage Based Hybrid Propulsion System for a Terrestrial Vehicle. Proceedings of the Intersociety Energy Conversion Engineering Conference, Reno, NV, USA. 1990:99~105
    16 US Environmental Protection Agency. Hydraulic Hybrid Technology - a Proven Approach [2006-06-24]. http://www.epa.gov/ otaq/technology /420f04024.pdf
    17 A. Lynn, E. Smid, M. Eshraghi, Caldwell N. Modeling Hydraulic RegenerativeHybrid Vehicles Using AMESim and Matlab/Simulink. Proceedings of SPIE - The International Society for Optical Engineering. 2005:24~40
    18 O. Joseph. Hydraulic Powertrains Propel These Hybrid Trucks[2007-07-17]. http://www.designnews.com/article/1152-Hydraulic_Powertrains_Propel_These_Hybrid_Trucks.php
    19 US Environmental Protection Agency. World’s First Full Hydraulic Hybrid SUV Presented at 2004 SAE Wold Congress [2006-06-24]. http://www. epa. gov/otaq/technology/420f04019.pdf.
    20刘明辉.混合动力客车整车控制策略及总成参数匹配研究.吉林大学博士学位论文. 2005:30~40
    21张维刚,谭彧,朱小林.液压技术在混合动力汽车节能方面的应用.机床与液压. 2006, (6):144~146
    22刘海昌.飞轮储能型二次调节流量耦联系统研究.哈尔滨工业大学博士论文. 2008:1~16
    23 S. W. Shen, E. V. Frans. Analysis and Control of a Flywheel Hybrid Vehicular Powertrain. IEEE Transactions on Control Systems Technology. 2004, 12(5):645~660
    24孙逢春,张承宁,祝嘉光.电动汽车——21世纪的重要交通工具.北京理工大学出版社. 1997:1~40
    25何仁.汽车制动能量再生方法的探讨.江苏大学学报(自然科学版). 2003, 24(6):1~4
    26 B. Simon, E. Christine, G. Edward and G. K. Markus. Hydraulic Hybrid Systems for Commercial Vehicles. SAE Paper No. 2007-01-4150
    27 Hybrid Comparisons. http://www.permo-drive.com/compare/index.htm
    28 J. M. Miller and M. Everett. An Assessment of Ultra-capacitors as the Power Cache in Toyota THS-II, GM-Allision AHS-2 and Ford FHS Hybrid Propulsion Systems. The 20th IEEE Applied Power Electronics Conference and Exposition. 2005, (1):481~490
    29 J. V. Mierlo, G. Maggetto, P. Lataire. Which Energy Source for Road Transport in the Future? A Comparison of Battery, Hybrid and Fuel Cell Vehicles. Energy Conversion and Management. 2006, 47(17):2748~2760
    30 P. Buchwald, H. Christensen, H. Larsen and P. S. Pedersen. Improvement of City Bus Fuel Economy Using a Hydraulic Hybrid Propulsion System-a Theoretical and Experimental Study. SAE Paper No. 790305
    31 E. D. Mark. The Evaluation and Analysis of a Power Split Hydraulic Hybrid Drivetrain. Thesis on Master of University of Missouri-Columbia. 2003:30~50
    32赵春涛.车辆串联混合系统中二次调节静液驱动技术的研究.哈尔滨工业大学博士论文. 2001:18~30
    33 J. L. Edward. Control of a Hydrostatic Powertrain for Automotive Applications. Thesis on Doctor of University of Wisconsin-Madison. 1990:53~66
    34 R. W. Glenn, W. J. Travis. Balance of Power. http://www.swri.org/3pubs/ ttoday/Fall06/Balance.htm
    35 Z. Pawelski, P. Roberto and T. Michael.为老式市内公共汽车配备力士乐驱动装置. RIQ. 1997, (1):27~28
    36 S. Hiroki, I. Shigeru, K. Eitaro. Study on Hybrid Vehicle Using Constant Pressure Hydraulic System with Flywheel for Energy Storage. SAE Paper No. 2004-01-3064
    37 M. Hubertus and W. Edgar. Recent Developments for the Control of Variable Displacement Motors with Impressed Pressure. The 3th JHPS International Symposium on Fluid Power. Yokohama, Japan. 1996:79~84
    38 W. H. Close. Report on Noise Testing: Permo-drive Regenerative Drive Shaft, 2002. http://www.permo-drive.com
    39 W. H. Close. Analysis of Performance and Fuel Consumption Tests: Permo-drive Regenerative Drive Shaft, 2002. http://www.permo-drive.com
    40 H. Robert and J. K. John. Hydraulic Hybrid Promises Big Savings for UPS. http://www.hydraulicspneumatics.com/200/Issue/Article/False/38545/Issue.
    41 Ford to Build 60-mpg F150 [2006-07-19]. http://www.fordmuscle.com/blog /ford-to-build-60-mpg-f150/112114
    42 H. Wang, Y. Y. Liu and Z. D. Ma. Sub-frame Design for a Hydraulic Hybrid Vehicle System. Proceedings of the ASME Design Engineering Division. 2005, 118(1):193~200
    43 H. E. Mohammad, T. Nguyen, W. O. Walter, F. Paul. Noise and Vibration Control in Hydraulic Hybrid Vehicles. SAE Paper No. 2006-01-1970
    44 T. M. Nguyen and M. H. Elahinia. Vibration Isolation for Parallel Hydraulic Hybrid Vehicles. Shock and Vibration. 2008, 15(2):193~204
    45 T. M. Nguyen and M. H. Elahinia. A Magnetoreological Vibration Isolator for Hydraulic Hybrid Vehicles. Proceedings of the ASME Design Engineering Division. 2005, 118(1):185~191
    46路华鹏,马彪,孙宪林等.轻型军用静液传动车辆的模糊控制.吉林大学学报(工学版). 2007, 37(2):286~290
    47王会义.静液储能传动系统节能机理及实验研究.哈尔滨工业大学博士论文. 1996:1~18
    48 B. Ante. Introducing Hydraulic-electric Synergy into Hybrid Transmission Using the Free-Piston Engine Technology. SAE Paper No. 2007-01-4112
    49王意.行走机械液压驱动技术发展大观.液压气动与密封. 2000, (1):19~28
    50战兴群.静液驱动二次调节技术控制特性的研究.哈尔滨工业大学博士论文. 1999:31~48
    51姜继海.二次调节静液传动技术.液压气动与密封. 2000, 12(6):1~3
    52姜继海,刘宇辉,于庆涛等.二次调节静液传动液压抽油机.机床与液压. 2005, (8):59~61
    53刘宇辉,姜继海.二次调节流量耦联系统功率匹配研究.南京理工大学学报. 2007, 31(6):701~705
    54董宏林.基于二次调节原理的液压提升装置节能及控制技术研究.哈尔滨工业大学博士学位论文. 2002:74~98
    55吴光强,王会义.车辆静液驱动与智能控制系统.上海科学技术文献出版社. 1998:1~30
    56赵春涛,姜继海,高维忠,赵克定.新型二次调节静液汽车传动系统.汽车技术. 2001, (5):4~6
    57赵春涛,姜继海,赵克定.采用准恒压系统的公交汽车主要元件参数匹配的研究.机床与液压. 2001, (2):36~38
    58陈华志.车辆制动能回收与再利用系统及控制技术研究.北京理工大学硕士论文. 2003:83~102
    59周奉香.具有能量缓冲系统的车辆动力性分析及控制技术研究.北京理工大学硕士论文. 2004:75~85
    60韩文.新型电控液驱车关键技术的研究.南京理工大学博士论文. 2005:81~94
    61李翔晟,常思勤.新型电控液驱车辆能量再生系统建模与实验.农业机械学报. 2006, 37(10):31~34
    62易纲,常思勤.基于模糊神经预测的新型电控液驱车辆的能量管理策略研究.机床与液压. 2006, (11):121~123
    63 B. Trevor and A. Scott. Hybrid Refuse Truck Study. Software Virtual Product Development Conference. 2004. Huntington Beach, California.
    64 G. Charles. Hydraulic Hybrids: EPA Hydraulic Truck Initiative. http://files.harc.edu/Projects/Transportation/HydraulicHybridsGray.pdf
    65 H. W. Nikolaus. Energieeinsparung und Energierückgewinnung bei hydro?statischen Antrieben. O+P. ?lhydraulik und Pneumatik. 1980, 24(7):523~531
    66 W. Backéand H. Murrenhoff. Regelung eines Verstellmotors an einem Konstant-drucknetz. O+P. ?lhydraulik und Pneumatik. 1981, 25(8):635~642
    67 W. Holz. Power Matching Control(Secondary Regulation). Rexroth Information Quarterly. 1988, (1):17~24
    68 N. H. Beachley et al. Modeling of Hydraulic Energy Regeneration System- part I: Analytical Treatment. Journal of Dynamic Systems, Measurement, and Control. 1992, (114):155~159
    69 H. Mantel. Hydrostatic with Secondary Control Unit. Thesis on Doctor of Universieit Van Link ping Zweden. 1995:193~195
    70 N. Canter. Developing Hydraulic Hybrid Vehicles. Tribology and Lubrication Technology, 2005, 61(9):12~15
    71余志生.汽车理论(第4版).机械上业出版社. 2006:74~120
    72李翔晟,常思勤.新型电控液驱车辆传动系统特性及匹配研究.机床与液压. 2006, (5):105~107
    73 Y. J. Kim and Z. Filipi. Series Hydraulic Hybrid Propulsion for a Light Truck– Optimizing the Thermostatic Power Management. SAE Paper No. 2007-24-0080
    74 L. B. Karen, E. Mehrdad, K. Preyas. Matlab-based Modeling and Simulation Package for Electric and Hybrid Electric Vehicle Design. IEEE Transaction on Vehiculer Technology. 1999, 48(6):1770~1778
    75 A. J. Robyn, S. Paul and B. Steven. Physical System Model of a Hydraulic Energy Storage Device for Hybrid Powertrain Applications. SAE Paper No. 2005-01-0810
    76 M. Paul and S. Jacek. Development and Simulation of a Hydraulic Hybrid Powertrain for Use in Commercial Heavy Vehicles. SAE Paper No. 2003-01-3370
    77张彦廷.基于混合动力与能量回收的液压挖掘机节能研究.浙江大学博士学位论文. 2006:31~91
    78张庆永,常思勤.液驱混合动力车辆制动过程能量损耗仿真研究.机床与液压. 2008, 36(9):121~124
    79王庆年,金启前,初亮,王伟华.传动系参数和控制参数对并联混合动力轿车性能的影响.吉林大学学报(工学版).2005, 35(3):243~248
    80 Y. C. Gu, C. L. Yin and J. W. Zhang. Optimal torque control strategy for parallel hybrid electric vehicle with automotive mechanical transmission. Chinese Journal of Mechanical Engineering. 2007, 20(1):16~20
    81魏跃远,林程,林逸,何洪文,申荣卫.混合动力汽车系统效率的影响因素.吉林大学学报(工学版). 2006, 36(1):20~24
    82 K. Alexander, I. Monika. Power Split Transmissions Versus Hydrostatic Multiple Motor Concepts–a Comparative Analysis. SAE Paper No. 2004-01-2676
    83 Z. Filipi, L. Louca, B. Daran, C. C. Lin, U. Yildir, B. Wu. Combined Optimization of Design and Power Management of the Hydraulic Hybrid Propulsion System for the 6×6 Medium Truck. International Journal of Heavy Vehicle Systems. 2004, 11(3):372~402
    84朱正礼.并联式混合动力轿车动力系统性能匹配与优化研究.上海交通大学博士学位论文. 2004:74~92
    85 S. Alev and B. Zafer. Hybrid Genetic Algorithm and Simulated Annealing for Two-dimensional Non-guillotine Rectangular Packing Problems. Engineering Applications of Artificial Intelligence. 2006, (19):557~567
    86袁立鹏,许宏光,赵克定.基于改进遗传算法的坦克发动机道路模拟测试平台轨迹寻优.东南大学学报(自然科学版). 2006, 36(2):237~241.
    87 Y. J. Kim and Z. Filipi. Simulation Study of a Series Hydraulic Hybrid Propulsion System for a Light Truck. SAE Paper No. 2007-01-4151
    88 A. A. Mukhitdinov, S. K. Ruzimov, S. L. Eshkabilov. Optimal Control Strategies for CVT of the HEV during a Regenerative Process. IEEE Conference on Electric and Hybrid Vehicles. Pune, India, 2006:1~12
    89 Y. J. Huang, C. L. Yin and J. W. Mang. Development of the Energy Management Strategy for Parallel Hybrid Electric Urban Buses. Chinese Journal of Mechanical Engineering. 2008, 21(4):44~50
    90王庆丰,张彦廷,肖清.混合动力工程机械节能效果评价及液压系统节能的仿真研究.机械工程学报. 2005, 41(12):135~140
    91白志峰,张传伟,李舒欣等.电动汽车驱动与再生制动的H∞鲁棒控制.西安交通大学学报. 2005, 39(3):256~260
    92 S. R. Cikanek and K. E. Bailey. Electric Vehicle Braking System. The 14th International Electric Vehicle Symposium and Exposition. Orlando, USA: Electric Vehicle Association of the Americas, 1997.
    93彭栋,殷承良,张建武.基于模糊控制的并联式混合动力汽车制动控制系统.吉林大学学报(工学版). 2007, 37(4):756~761
    94 D. Peng, C. L. Yin, J. W. Zhang. Advanced Braking Control System for Hybrid Electric Vehicle Using Fuzzy Control Logic. SAE Paper No. 2006-01-3583
    95彭栋.混合动力汽车制动能量回收与ABS集成控制研究.上海交通大学博士学位论文. 2007:48~83
    96 J. L. Zhang, C. L. Yin and J. W. Zhang. Design and Analysis of Electro-mechanical Hybrid Anti-lock Braking System for Hybrid Electric Vehicle Utilizing Motor Regenerative Braking. Chinese Journal of Mechanical Engineering. 2009, 22(1):42~49
    97 F. Doug, W. Glenn, W. Chris. Analysis of a Hybrid Multi-mode Hydromechanical Transmission. SAE Paper No. 2007-01-1455
    98 R. P. Kepner. Hydraulic Power Assist– a Demonstration of Hydraulic Hybrid Vehicle Regenerative Braking in a Road Vehicle Application. SAE Paper No. 2002-01-3128
    99 Q. Y. Zhang and S. Q. Chang. Study on Hydraulic System of Hydraulic Hybrid Vehicle. International Conference on Mechanical Engineering and Mechanics. Wuxi, China. 2007: 2025~2029
    100秦大同,邓涛,杨阳,林志煌.基于前向建模的ISG型CVT混合动力系统再生制动仿真研究.中国机械工程. 2008, 19(5):618~624
    101 B. Wu, C. C. Lin, Z. Filipi, H. Peng, D. Assanis. Optimal Power Management for a Hydraulic Hybrid Delivery Truck. Vehicle System Dynamics. 2004,(42):23~40
    102李晓英,于秀敏,李君,吴志新.串联混合动力汽车控制策略.吉林大学学报(工学版).2005, 35(2):122~126
    103于秀敏,曹珊,李君高等.混合动力汽车控制策略的研究现状及其发展趋势.机械工程学报. 2006, 42(11):10~16
    104朱元,田光宇,陈全世,吴昊.混合动力汽车能量管理策略的四步骤设计方法.机械工程学报. 2004, 40(8):127~133
    105 C. C. Lin, P. Peng, W. Jessy. Power Management Strategy for a Parallel Hybrid Electric Truck. IEEE Transactions on Control Systems Technology. 2003, (6):839~849
    106 M. G. Morteza, P. Amir, G. Babak. Application of Genetic Algorithm for Optimization of Control Strategy in Parallel Hybrid Electric Vehicles. Journal of the Franklin Institute. 2006, (343):420~435
    107叶敏,郭振宇,程博,曹秉刚.基于参数摄动的电动汽车再生制动鲁棒混合控制研究.西安交通大学学报. 2007, 41(1):64~68
    108童毅.并联式混合动力系统动态协调控制问题的研究.清华大学博士学位论文. 2004:24~43
    109谢辉,宋小武,周能辉.轻度混合动力系统控制模式分层决策及能量管理策略的研究.内燃机学报. 2005, 23(2):155~161
    110王瑞明.交流伺服驱动系统新型控制策略研究.浙江大学博士学位论文. 2005:43~70
    111杜福银.时变时滞系统滑模变结构智能控制策略研究.西南交通大学博士学位论文. 2006:13~25
    112刘金琨.滑模变结构控制MATLAB仿真.清华大学出版社. 2005:65~108

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700