α_1Na,K-ATPase和PDCD5在C57BL/6J小鼠耳蜗的年龄相关性表达及其与AHL的关系
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
第一部分成年小鼠耳蜗血管纹缘细胞的原代分离培养及鉴定
     目的:建立成年小鼠耳蜗血管纹边缘细胞(marginal cell, MC)的体外培养及鉴定方法,为进一步研究成年期MC的生理功能提供实验细胞。
     方法:显微分离成年期小鼠耳蜗血管纹组织,以Ⅱ型胶原酶消化原代培养边缘细胞,将其接种于六孔板中贴壁生长,加入含有15%胎牛血清、表皮生长因子、氢化可的松、胰岛素、三碘甲状腺原氨酸等促进细胞生长的完全培养基,在5%CO2/95%空气的37℃恒温培养箱中培养,每天观察细胞生长情况,换液一周两次或培养基颜色变浑浊。倒置显微镜下观察细胞形态,噻唑蓝(MTT)法测细胞的生长曲线,透射电镜观察细胞的超微结构,免疫荧光法检测上皮细胞的标志物-中间丝角蛋白18(CK18)和耳蜗血管纹的独特标志物KCNQ1的表达,RT-PCR检测CK18和KCNQ1mRNA的表达。
     结果:倒置显微镜下可见接种24-48h后细胞贴壁增殖,形成大小不等的细胞岛,一周后,细胞迅速生长,相互融合,紧密连接,形成单层极性上皮层,呈典型的“铺路石”样外观。透射电镜观察可见多角形细胞表面有较多微绒毛,胞浆内线粒体、内质网等细胞器丰富。免疫荧光细胞化学技术检测显示CK18和KCNQ1蛋白表达阳性,RT-PCR结果示CK18和KCNQ1的mRNA均有表达。
     结论:采用原代消化培养技术,成功建立成年小鼠耳蜗血管纹MC的体外原代培养,为进一步研究成年期MC的功能和某些内耳疾病的发病机制提供了实验细胞基础。
     第二部分α1Na,K-ATPase通道蛋白在C57BL/6J小鼠耳蜗的年龄相关性表达及其与AHL的关系
     目的:研究α1Na, K-ATPase离子转运蛋白在不同年龄段C57BL/6J(C57)小鼠耳蜗血管纹的表达及其意义。
     方法:选择3M,6M,9M,12M月龄C57J小鼠各12只,采用听性脑干反应(Auditory Brainstem Response, ABR)分别检测其听力变化。采用免疫组织荧光法和免疫印迹杂交Western blot (WB)检测α1Na,K-ATPase蛋白在小鼠耳蜗的表达变化,逆转录聚合酶链反应法(RT-PCR)检测各年龄段小鼠耳蜗α1Na,K-ATPase mRNA在不同鼠龄小鼠耳蜗中的表达水平。
     结果:随着鼠龄的增长,C57小鼠各频率ABR闽值逐渐升高,自6月龄小鼠的ABR反应闽逐渐增加,其数值与低龄组小鼠相比其差异均具有统计学意义(P<0.05)。免疫荧光检测显示α1Na,K-ATPase主要分布于血管纹底侧膜和螺旋韧带,表达量也随着鼠龄的增加呈现减少的趋势,Real-Time PCR检测显示α1Na,K-ATPase mRNA随着小鼠年龄的增长其表达逐渐下调,与其蛋白变化趋势相一致。
     结论:C57小鼠耳蜗α1Na,K-ATPase的表达随着年龄的增加而逐渐下降,可能与年龄相关性听力损失具有一定联系。
     第三部分α1Na,K-ATPas通道蛋白在成年C57BL/6J小鼠血管纹边缘细胞的表达和意义
     目的:初步研究α1Na,K-ATPase在血管纹缘细胞的表达和意义,为进一步探索耳蜗K+循环提供实验研究基础。
     方法:采用胶原酶消化法体外分离培养成年小鼠耳蜗血管纹边缘细胞。采用免疫组织荧光法检测α1Na,K-ATPase在血管纹边缘细胞的表达和分布,并运用RT-PCR检测α1Na,K-ATPase mRNA在边缘细胞的表达情况。
     结果:体外成功培养和纯化了血管纹边缘细胞,免疫荧光检测可见有α1Na,K-ATPase阳性表达,主要位于细胞膜,RT-PCR也检测到α1Na,K-ATPase mRNA的表达。
     结论:α1Na,K-ATPase在血管纹缘细胞表达,可能参与了耳蜗K+循环形成,在维持正常耳蜗听力中起重要作用。
     第四部分凋亡相关蛋白PDCD5在C57BL/6J小鼠耳蜗毛细胞和螺旋神经节细胞的年龄相关性表达及与老年性的关系
     目的:研究PDCD5和caspase-3在不同年龄段C57BL/6J(C57)小鼠耳蜗毛细胞、血管纹及螺旋神经节细胞的表达,初步探讨其在年龄相关性听力下降发生、发展中的作用。
     方法:选择C57小鼠3M,6M,9M,12M月龄段各15只,分为四组。对各组小鼠双侧click、6、8 kHz ABR阈值检测。采用免疫组织化学法和Western blotting(WB)检测各月龄段小鼠耳蜗PDCD5和caspase-3蛋白的表达,实时荧光定量PCR(Real-Time PCR)检测各月龄段小鼠耳蜗PDCD5和Caspase-3基因mRNA的表达变化。
     结果:随着年龄的增长,C57小鼠各频率ABR阈值逐渐提高,耳蜗PDCD5和caspase-3蛋白的表达亦逐渐增强。3月龄和6月龄小鼠耳蜗毛细胞和血管纹细胞及螺旋神经节细胞仅出现少量PDCD5和caspase-3蛋白表达,9月龄时表达有明显增加,至12月龄时表达最强,各组间相比有显著性差异(P<0.05)。Real-Time PCR检测显示PDCD5和Caspase-3基因mRNA随着小鼠年龄的增长其表达逐渐增强,与其蛋白变化趋势相一致。
     结论:C57小鼠耳蜗PDCD5和caspase-3的表达随着年龄的增长而明显增高,说明参与了小鼠耳蜗毛细胞和血管纹细胞及螺旋神经节细胞的凋亡调控过程,与耳蜗的老化密切相关,可能是老年性聋发病机制中的一个重要因素。
Part I Establishment of marginal cell culture from stria vascularis of adult mouse and the expression of KCNQ1 in MC
     Objective:To provide an in vitro cell model for further study of the function of marginal cell(MC), primary cultures of marginal cells of adult mouse were established.
     Methods:The marginal cells were isolated from the stria vascularis of adult mice by CollagenaseⅡto culture. The morphologic changes of the cells were observed under an inverted lightmicroscope and the growth curve of the cell was determined by MTT assay. The ultrastructure of the cultured cells was observed by transmission electron microscopy. The expression of CK18 and KCNQ1 were detected by immunofluorescence and reverse transcription- polymerase chain reaction (RT-PCR).
     Results:The primary cultured cells attached within 24-48 h of seeding and proliferated in an island-like monolayer. After one week, more and more epithelial-like cells had a tendency to become confluent and became tightly packed, growing into a monocellular layer,"cobblestone-like appearance. Transmission electron microscope showed typical epithelia with microvilli on the cells surface, massive mitochondria and rough endoplasmic reticulum in the cells. Expression of CK18 and KCNQ1 in MC was confirmed by immunofluorescence staining, and expression of CK18 mRNA and KCNQ1 mRNA was also detected by RT-PCR.
     Conclusions:The cell culture system of marginal cells of adult mouse has been successfully established by enzyme digestion which can provide a stable source of MC for investigation of the ongoing function of the marginal cell.
     PartⅡExpression ofα1Na,K-ATPase in the cochlea of the C57BL/6J mouse at different ages and relationship with presbycusis
     Objective:To investigate the age related changes of the expression ofα1Na,K-ATPase in the cochlea of the C57BL/6 (C57) mice, and also discusses the relationship ofα1Na,K-ATPase and Presbycusis.
     Method:Auditory function of C57 mice t different ages between 3 and 12 months old was measured by auditory brainstem response (ABR) respectively. The changes ofα1Na, K-ATPase protein in the cochlea was detected by immunofluorescence and Western blot, the expression ofα1Na, K-ATPase mRNA and caspase-3 mRNA were detected using RT-PCR.
     Result:The average ABR threshold value from 6-month-old C57 mice was not significantly different from that of 3-month-old mice (P>0.05), but the difference between the average ABR threshold value from mice of 12 months old than 9 months and that of 3-month-old mice was highly significant (P<0.01), and the average value appeared to progressively increase with age. The localization ofα1Na, K-ATPase was found mainly in the stria vascularis and the spiral ligament, and the expression ofα1Na, K-ATPase protein was decrease in the stria vascularis and the spiral ligament with age. The change ofα1Na, K-ATPase mRNA expression was in accordance with that ofα1Na,K-ATPase protein expression by the real-time PCR.
     Conclusion:Expression ofα1Na, K-ATPase in the cochlea of C57 mice gradually decreased with increasing age, and might play an important role in pathogenic mechanism of Age-related hearing loss (AHL).
     PartⅢExpression and significance ofα1Na, K-ATPase in the marginal cell from stria vascularis of adult C57BL/6J mice
     Objective:To study the expression and significance of ofα1Na, K-ATPase in the marginal cell from stria vascularis of adult C57BL/6J (C57) mice, and provides an experimental basis for explored K+ ion recycling.
     Method:The marginal cell isolated by CollagenaseⅡto culture. The expression ofα1Na, K-ATPase ion transporters in the marginal cell of C57 mice was detected by immunofluorescence and the expression ofα1Na, K-ATPase by RT-PCR
     Result:Theα1Na, K-ATPase were cultured and purified in vitro. The immunofluorescence results showedα1Na, K-ATPase only expressed in membrane of marginal cell, and the mRNA expression ofα1Na, K-ATPase was also detected by RT-PCR.
     Conclusion:The present results suggest that theα1Na,K-ATPase expression in membrane of of marginal cell may play an important role in the K+ ion recycling of the inner ear.
     Part IV Expression of PDCD5 and caspase-3 in the cochlea of different age C57BL/6J mice and relationship with presbycusis
     Objective:To investigate the age related changes of the expression of PDCD5 and caspase-3 in the cochlea of the C57BL/6(C57)mice. This paper also discusses the relationship of PDCD5 and caspase-3 and the possible role in the pathogenesis of Presbycusis.
     Method:C57 mice of 3,6,9 and 12 months old were selected and divided into 4 groups (fifteen mice each). Auditory function of C57 mice was measured by auditory brainstem response (ABR) respectively. The changes of PDCD5 and caspase-3 protein in the cochlea was detected by immunohistochemistry and Western blot, the changes of PDCD5 mRNA and caspase-3 mRNA were detected using RT-PCR.
     Result:With an increase of age,The mean value for ABR thresholds in response to click,4 kHz and 8 kHz sound stimulus of C57 mice gradually increased, the expression of PDCD5 and caspase-3 was increased also. At 3 months and 6 months of age in the cochlea of C57, all sorts of expression of PDCD5 and caspase-3 and the expression was enhanced with age. There was an evident expression at 9 months of age, but the highest expression was detected at 12 months of age. The PDCD5 and caspase-3 expression was statistically different in each group (P<0.05).The change of PDCD5 and caspase-3 mRNA expression was in accordance with that of PDCD5 and caspase-3 protein expression by the real-time PCR.
     Conclusion:The increased expression levels of PDCD5 and caspase-3 in the cochlea of C57 mice with age, the result s suggested that the expression of PDCD5 and caspase-3 participated in the regulatory procedure of apoptosis and might play an important role in pathogenic mechanism of Presbycusis.
引文
1. Weber PC, Cunningham CD, Schulte BA.Potassium recycling pathways in the human cochlea. Laryngoscope 2001,111:1156-1165.
    2. Wangemann P. K+ cycling and the endocochlear potential.Hearing Research,2002, 165:1-9.
    3. Kikuchi T, Adams JC, Miyabe Y.Potassium ion recycling pathway via gap junction systems in the mammalian cochlea and its interruption in hereditary nonsyndromic deafness. Med Electron Microse,2000,33:51-56
    4. Spicer SS, Schulte BA.Evidence for a medical K+ recycling pathway from inner hair cell. Hearing Research,1998,118:1-12
    5. Wangemann P, Liu J, Marcus DC.Ion transport mechanism responsibal for K+ secretion and the transepithelial voltage across marginal cells of stria vascularis in vitro. Hearing Research,1995,84:19-29
    6-Jespersen T, Grunnet M, Olesen S P. The KCNQ1 potassium channel:from gene to physiological function. Physiology (Bethesda),2005,20:408-416.
    7. Wangemann P.K+ cycling and regulation in the cochlea and Vestibular labyrinth. Audiol Neurootol,2002,7:199-205.
    8. Pace AJ,Lee E,Athirakul K,et al.Failure of spermatogenesis in mouse lines deficient in the Na(+)-K(+)-2Cl(-) cotransporter.J Clin Invest.2000,Feb; 105(4): 441-450.
    9. Pace AJ, Madden VJ.Henson OW. Ultrastructure of the inner ear of NKCC1-deficient mice.Hearing Research,2001,156:17-30
    10.李隽,孔维佳等。成年大鼠耳蜗血管纹缘细胞的体外培养。临床耳鼻咽喉头颈外科学杂志。2007,21,(22):1031-1033
    11. KIM HN,CHANG MS, CHUNG MH, et al. Establishment of primary cell culture from stria vascularis explants:Morphological and functional characterization. Acta Otolaryngol,1996,116:805-811.
    12. Xia A, Kikuchi T, Hozawa K, et al. Expression of connexin26 and Na, K- ATPase in the developing mouse cochlea lateral wall:functional implications. Brain Res, 1999,846:106-111.
    13. Gratton MA, Smyth BJ, Lam CF, et al. Decline in the endocochlear potential corresponds to decreased Na, K-ATPase activity in the lateral wall of quiet-aged gerbils. Hear Res.1997,108:9-16.
    14. Furu TA H, Luo L, Ryan A F, et al.Expression of mRNA encoding vasopressin V1a, vasopressin V2, and ANP-B receptors in the rat cochlea. Hear Res,1998, 117:140-148.
    15. ShibeshiW,Abraham G,Kneuer C,et al.Isolation and culture of primaryequine tracheal ep ithelial cells. In V itro CellDev B iolAnim,2008,44(7):179-184.
    16. Schroeder B,Waldegger S,Fehr S,et al. A constituivery open potassium channel formal by KCNQ1 and KCNE3. Nature,2000,403:196.
    17. Casimiro MC, Knollmann BC, Ebert SN. et al.Targeted disruption of the Kcnql gene produces a mouse model of Jervell and Lange-Nielsen Syndrome. Proc Natl Acad Sci USA,2001,98:25-26.
    18.褚汉启,黄孝文,周良强,等.KCNQ1基因缺失致小鼠听觉丧失和耳蜗形态异常.中华耳鼻喉头颈外利杂志,2006,41(11):867-868.
    1. Zheng QY, Johnson KR. Hearing loss associated with the modifier of deaf waddler (mdfw) locus corresponds with age-related hearing loss in 12 inbred strains of mice. Hear Res,2001,154:45-53.
    2. Johnson KR, Erway LC, Cook SA, et al.A major gene affecting age-related hearing loss in C57BL/6J mice. Hear Res,1997,114:83-92.
    3. Spicer S S, Schulte B A.Spiral ligament pathology in quietaged gerbils.Hear Res, 2002,172 (1/2):172-185.
    4. Gratton MA,Smyth BJ,Lam CF,et al. Decline in the endocochlear potential corresponds to decreased Na, K-ATPase activity in the lateral wall of quiet aged gerbils.Hear Res,1997,108 (1/2):9-16.
    5. Weber PC, Cunningham CD, Schulte BA.Potassium recycling pathways in the human cochlea. Laryngoscope 2001,111:1156-1165.
    6. Wangemann P. K+ cycling and the endocochlear potential.Hearing Research,2002, 165:1-9.
    7. Kikuchi T, Adams JC, Miyabe Y. Potassium ion recycling pathway via gap junction systems in the mammalian cochlea and its interruption in hereditary nonsyndromic deafness. Med Electron Microse,2000,33:51-56
    8. Spicer SS, Schulte BA.Evidence for a medical K+ recycling pathway from inner hair cell. Hearing Research,1998,118:1-12
    9. Wangemann P, Liu J, Marcus DC.Ion transport mechanism responsibal for K+ secretion and the transepithelial voltage across marginal cells of stria vascularis in vitro. Hearing Research,1995,84:19-29
    10. Wangemann P. K+ cycling and regulation in the cochlea and Vestibular labyrinth. Audiol Neurootol,2002,7:199-205.
    11. Pace AJ,Lee E,Athirakul K,et al.Failure of spermatogenesis in mouse lines deficient in the Na(+)-K(+)-2Cl(-) cotransporter.J Clin Invest.2000,Feb; 105 (4):441-450.
    12. Pace AJ, Madden VJ,Henson OW.Ulrastructure of the inner ear of NKCC1-deficient mice.Hearing Research,2001,156:17-30
    13. Schulte BA, Steel KP.Expression of α and β subunit isoform of Na, K-ATPase in the mouse inner ear and changes with moutations at the Wv or sld loci. Hear Res, 1994,78:65.
    14. Tem- Cate WJF, Curtis LM, Rarey KE.Na, K- ATPase α and β subunit isoform distribution in the rat cochlear and vestibular tissues.Hear Res,1994,75:151.
    15. Sweadner KJ.Isozymes of the Na+, K+-ATP.Biochem Biophys Acta,1989, 988:185.
    16. Peters TA, Kuijpers W, Curfs JHAJ.Occurrence of Na, K-ATPase isoforms during rat inner ear development and functional implications. Eur Arch Otorhinolaryngol,2001,258:67-43
    17. Allen F,Ryan,Alan G,Watts.Expression of mRNAs Encoding α and β Subunit Isofonns of the Na, K-ATPase in the Rat Cochlea.Mol Cell Neurosci,1991, 2:179-187.
    18. Sakaguch N, Crouch JJ, Lytle C.Na-K-Cl cotransport expression in the developing and senescent gerbil cochlea.Hear Res,1998,118:114-122.
    19. Bartolome MV, Del CE, Lopez LM, et al. Effects of aging on C57BL/6J mice:an electrophysiological and morphological study. Adv Otorhinolaryngol,2002, 59:106-111.
    20. Schnerson A, Dev Pujol R. Age-related changes in the C57BL/6J mouse cochlea. Physiological findings. Brain Res,1981,2:65.
    21. Chole RA, Henry KR. Disparity in the cytocochleogram and the electrocochleogram in aging P/J and A/J inbred mice. Audiology,1983,22:383.
    22. Wu WJ,Sha SH,McLaren JD,Kawamoto K,Raphael Y,Schacht J.Aminoglycoside ototoxicity in adult CBA,C57BL and BALB mice and the Sprague-Dawley rat.Hear Res,2001;158(1-2):165-78.
    23.熊浩,褚汉启,黄孝文,吴振恭,张平,王春芳,崔永华。卡那霉素对三种小鼠耳毒性比较及对血管纹Na-K-2C1联合转运子表达的影响。中华耳鼻喉头颈外科杂志,2006;41(1):43-47.
    24. Erichsen S, Zuo J, Curtis L, Na,K-ATPase α and β-isoforms in the developing cochlea of the mouse.Hearing Research,1996,100:143-149.
    25.钟时勋,刘兆华。豚鼠内耳Na,K-ATP酶α亚基异构体的表达。听力及言语疾病杂志,2003,11,3(198-200)
    26. Diaz RC, Vazquez AE, Dou H.Conservation of hearing by simultaneous mutation of Na,K-ATPase and NKCC1.J Assoc Res Otolaryngol,2007,8:422-34.
    1.褚汉启,周良强,熊浩,王燕,陈请国等。2种钾离子转运蛋白在血管纹性老年性聋发病中的作用(不同基因型小鼠的听觉生理研究)。华中科技大学学报(医学版),2010,6,288-293.
    2. Weber PC, Cunningham CD, Schulte BA.Potassium recycling pathways in the human cochlea. Laryngoscope 2001, 111:1156-1165.
    3. Wangemann P. K+ cycling and the endocochlear potential. Hearing Research,2002, 165:1-9.
    4. Kikuchi T, Adams JC, Miyabe Y.Potassium ion recycling pathway via gap junction systems in the mammalian cochlea and its interruption in hereditary nonsyndromic deafness. Med Electron Microse,2000,33:51-56
    5. Spicer SS, Schulte BA.Evidence for a medical K+ recycling pathway from inner hair cell. Hearing Research,1998,118:1-12
    6. Wangemann P, Liu J, Marcus DC.Ion transport mechanism responsibal for K+ secretion and the transepithelial voltage across marginal cells of stria vascularis in vitro. Hearing Research,1995,84:19-29
    7. Wangemann P. K+ cycling and regulation in the cochlea and Vestibular labyrinth. Audiol Neurootol,2002,7:199-205.
    8. Salt, A.N. and Thalmann, R. Cochlear fluid dynamics. In:A.F. Juhn and J. Santos-Sacchi (Eds.), Physiology of the Ear,Raven Press, New York, pp. 1988,341-357.
    9. Pace AJ,Lee E,Athirakul K,et al.Failure of spermatogenesis in mouse lines deficient in the Na(+)-K(+)-2Cl(-) cotransporter.J Clin Invest.2000,Feb; 105(4):441-450.
    10. Pace AJ, Madden V.T,Henson OW.Ultrastructure of the inner ear of NKCC1-deficient mice.Hearing Research,2001,156:17-30
    11. Marcus, D.C. Neurosensory electrophysiology of the cochlea:Stria vascularis. In: R.A. Altschuler, D.W. Hoffman and R.P.Bobbin, Neurobiology of Hearing:The Cochlea, RavenPress, New York, pp.1986,123-137.
    12. Sweadner KJ.Isozymes of the Na+, K+-ATP.Biochem Biophys Acta,1989,988:185.
    13. Peters TA, Kuijpers W, Curfs JHAJ.Occurrence of NaK-ATPase isoforms during rat inner ear development and functional implications. Eur Arch Otorhinolaryngol,2001,258:67-43
    14. Allen F.Ryan AND Alan G. Watts.Expression of mRNAs Encoding α and β Subunit Isoforms of the Na, K-ATPase in the Rat Cochlea.Mol Cell Neurosci, 1991,2:179-187.
    15. De Weer. P. Cellular sodium-potassium transport. In:D.W. Seldin and G. Giehisch. (Eds.). The kidney:Physiology and pathophysiology.Raven Press. New York. NY.pp.1985,31-4Ⅹ.
    16. Kuijpers, W., van der Vleuten, A.C. and Bonting, S.L. Cochlear function and sodium and potassium activated adenosine triphosphatase.Science,1967,157, 949-950.
    17. Kerr, T.P., Ross, M.D. and Ernest, S.A. Cellular localization of Na+, K+-ATPase in the mammalian cochlear duct:Significance for cochlear fluid balance. Am. J. Otolatyngol.1982,3,332-338.
    18. Iwano, T., Yamamoto, A., Omori, K., Akayama, M., Kumazawa, T.and Tashiro, Y. Quantitative immunocytochemical localization of Na+, K+-ATPase a-subunit in the lateral wall of rat cochlear duct.Histochem.Cytochem.1989,37,353-363.
    19. Schulte, B.A. and Adams, J.C. Distribution of immunoreactive Na, K-ATPase in gerbil cochlea.Histochem.Cytochem.1989,37,127-134.
    20. Schulte BA, Steel KP. Expression of α and β subunit isoform of Na, K-ATPase in the mouse inner ear and changes with moutations at the Wv or sld loci. Hear Res,1994,78:65.
    21. Tem- Cate WJF,Curtis LM,Rarey KE. Na,K- ATPase α and β subunit isoform distribution in the rat cochlear and vestibular tissues.Hear Res,1994,75.151.
    22. Xiaofei Yao, Wouter J.F. ten Cate, Lisa M. Curtis,et al. Expression of Na+,K+-ATPase csubunit mRNA in the developing rat cochlea.Hearing Research, 1994,80:31-37.
    23. Zuo J, Curtis LM, Yao X, Ten Cate WJ, Rarey KE. Expression of Na+,K+-ATPase alpha and beta isoforms in the neonatal rat cochlea.Acta Otolaryngol.1995, Jul:115(4):497-503.
    24 Ryan, A.F. and Watts, A.G. Expression of mRNAs encodingα and β subunit isoforms of the Na,K-ATPase in the rat cochlea.Mol. Cell Neurosci.1991,2, 179-187.
    25 McGuirt, J.P. and Schulte, B.A. Distribution of immunoreactive α and β subunit isoforms of Na,K-ATPase in gerbil inner ear. J.Histochem.Cytochem.1994,42, 843-853.
    26 Spicer S S, Schulte B A.Spiral ligament pathology in quietaged gerbils.Hear Res, 2002,172 (1/2):1722-851
    27 Gratton MA,Smyth BJ,Lam CF,et al.Decline in the endocochlear potential corresponds to decreased Na,K-ATPase activity in the lateral wall of quiet aged gerbils.Hear Res,1997,108 (1/2):9-16.
    28. Erichsen S, Mikkola M, Sahlin L, Hultcrantz M. Cochlear distribution of Na+,K+-ATPase and corticosteroid receptors in two mouse strains with congenital hearing disorders. Acta Otolaryngol.2001, Oct:121(7):794-802.
    1. Zhan Y, van de Water B, Wang Y, et al.The roles of caspase-3 and bcl-2 in chemically-induced apoptosis but not necrosis of renal epithelial cells. Oncogene, 1999,18:6505-6512.
    2. Weiju Han, Xiaorui Shi, Alfred L et al.AIF and endoG translocation in noise exposure induced hair cell death.Hearing Research,2006,211:85-95.
    3. Takahashi K, Kamiya K, Urase K et al.Caspase-3-deficiency induces hyperplasia of supporting cells and degeneration of sensory cells resulting in the hearing loss. Brain research,2001,2:359-67.
    4. Morishita H, Makishima T, Kaneko C, et al.Deafness due to degeneration of cochlear neurons in easpase-3-deficient mice. Biochem Biophys Res Commun, 2001,284:142-149.
    5. Gates GA, Mills JH. Presbycusis.Lancet,2005,366:1111-1120.
    6. Yamasoba T, Someya S, Yamada C, et al.Role of mitochondrial dysfunction and mitochondrial DNA mutations in age-related hearing loss. Hear Res,2007, 226:185-193.
    7. Someya S, Yamasoba T, Weindruch R et al.Caloric restriction suppresses apoptotic cell death in the mammalian cochlea and leads to prevention of presbycusis. Neurobiology of aging,2007,28:1613-22.
    8. Ichimiya I, Suzuki M, Mogi G.Age-related changes in the murine cochlear lateral wall. Hear Res,2000,39:116-122.
    9. Keithley EM, Canto C, Zheng QY, et al. Age-related hearing loss and the ahl locus in mice. Hear Res,2004,188:21-8.
    10. Liu H,Wang Y, Zhang, et al.Study of cDNA cloning for expression and function of a novel apoptosis related gene TFAR19.High Techno Logy Letters,1998,8 (5):6210.
    11. MA DL.Discovery and functional clarification of novel human genes encoding cytokines and apoptosis-related molecules. Journal of Beijing Medical University, 2002,34:488-492
    12. Rui M, Chen Y, Zhang Y, et al.Transfer of anti-TFARI9 monoclonal antibody into HeLa cells by in situ electoporation can inhibit the apoptosis. Life Sci,2002, 71:1771-8.
    13. Tsujimoto Y, Finger LR, YunisJ, et al.Cloning of the chromosome break-point of neoplastic B cells with the T (14; 18) chromosome translocation. Science,1984, 226:1097-9.
    14. Enari M, Sakahira H, Yokoyama H, et al.A caspase-activated DNase that degrades DNA during apoptosis, and its inhibitor ICAD. Nature,1998,391:43-50.
    15. Nicotera TM, Hu BH, Henderson D.The caspase pathway in noise-induced apoptosis of the Chinchilla cochlea. JARO,2003,4:466-477.
    16. Nevado J, Sanz R. Casqueiro JC et al.Ageing evokes an intrinsic pro-apoptotic signalling pathway in rat cochlea. Acta oto-laryngologica,2006,126:1134-9.
    17. Alam SA, Oshima T, Suzuki M, et al.The expression of apoptosis-related proteins in the aged cochlea of Mongolian Gerbils. Laryngoscope,2001,111:528-34.
    18. Liu W, Staecker H, Stupak H, et all.Caspase inhibitors prevent cisplatin-induced apoptosis of auditory sensory cells.Neuroreport,1998,9:2609-2614.
    19. Wang HB, Sun YM, Xu ZQ et al.Expression of PDCD5 and human osteosarcoma U2-OS cells. Chinese Journal of Cancer Prevention and Treatment,2010, 17:266-269.
    20. Chen C, Zhou H, Xu L et al.Recombinant human PDCD5 sensitizes chondrosarcomas to cisplatin chemotherapy in vitro and in vivo. Apoptosis,2010, 15:805-813.
    21. Wang N, Lu HS, Guan ZP et al.Involvement of PDCD5 in the regulation of apoptosis in fibroblast-like synoviocytes of rheumatoid arthritis. Apoptosis, 2007,12:1433-41.
    22 Chen LN, Wang Y, M DL, et al. Short interfering RNA against the PDCD5 attenuates cell apoptosis and caspase-3 activity induced by Bax overexpression. Apoptosis,2006,11:101-111.
    1. Yamasoba T, Someya S, Yamada C, et al.Role of mitochondrial dysfunction and mitochondrial DNA mutations in age-related hearing loss. Hear Res,2006, 226:185-193.
    2. Pearlman RC. Presbycusis:the need for a clinical definition. Am J Otol,1982, 3:183-186.
    3. Wright D.Scott-Brown's Otolaryngology,15th, Butterworths.1987,81
    4. Rosen S,Plester D,Mofly AE,et al. Hight frequency audiometer in presbycusis.Arch Otolaryngol,1964,79:18
    5. Schuknecht HF,Watanuki K,Takahashi T,et al.Atrophy of the stria vasculasis. Laryngoscope,1974,84:1777
    6.唐云青,谢庆林,杨永生.耳老化因素的多元回归分忻.中国中西医结合耳鼻咽侯科杂志,2001,9(4):182-184.
    7. Delpire E, Lu J, England R, et al. Deafness and imbalance associated.1999, 22:192-195.
    8. Erichsen S,Zuo J,Curtis L,et al.Na,K-ATPase alpha and beta isoforms in the developing cochlea of the mouse. Hear Res,1996,100:143-149.
    9. Jentsch TJ.Neuronal KCNQ1 potassium channels:physiology and role in disease. Nat Rev Neurosci,2000,1(1):21
    10. Cooper EC, Jan LY. Ion channel genes and human neurological disease:recent progress, prospects, and challenges. Proc Natl Acad Sci USA,1999,96(9):4759
    11. Casimiro C, Knollmann C, Ebert N, et al. Targeted disruption of the Kcnql gene produces a mouse model of Jervell and Lange-Nielsen syndrome.PNAS,2001,98: 2526-2531.
    12. Wangemann P, Liu J, Marcus C. Ion transport mechanisms responsible for K+ secretion and the transepithelial voltage across marginal cells of stria vascularis in vitro. Hear Res,1995,84:19-29
    13. Sakagmi M, Fakumi T, Onkub H,et al.Cellular locatization of rat Isk protein in the stria vascularis by immunohistochemical observation. Hear Res,1991,56:168.
    14.李建玲,禇汉启,周良强,熊浩,王燕等。C57BL/6J小鼠耳蜗KCNQ1和NKCC1钾离子转运蛋白的年龄相关性表达及其与听力的关系。中华耳鼻喉头颈外科杂志,2011,2:139-143
    15. Dixon MJ, Gazzard J, Chaudhry S,et al.Mutation of the Na-K-Cl cotransporter gene Slc/2a results in deafness in mice. Hum Mol Genet,1999,8:1 579.
    16. Crouch JJ, Sakaguchi N, Lytle C, et al. Immunohistochemical localization of the Na-K-Cl Co-transporter (NKCC1) in the Gerbil Inner Ear. The Journal of Histochemistry & Cytochemistry,1997,45(6):773-778.
    17. Sakaguch N, Crouch JJ, Lytle C. Na-K-Cl co-transport expression in the developing and senescent gerbil cochlea. Hear Res 1998,118:114-122.
    18. Wangemann P. K+ cycling and the endocochlear potiential. Hear Res,2002, 165:1-9.
    19.褚汉启,熊浩,韩芳,吴振恭等。半拷贝基因NKCC1杂合小鼠与年龄相关性听力下降的关系。中华耳鼻喉头颈外科杂志,2006,7:537-541.
    20. De Weer. P. Cellular sodium-potassium transport. In:D.W. Seldin and G. Giehisch. (Eds.). The kidney:Physiology and pathophysiology.Raven Press. New York. NY. pp.1985,31-4Ⅹ.
    21. Sweadner KJ.Isozymes of the Na+, K+-ATP. Biochem Biophys Acta,1989, 988:185.
    22. Salt, A.N. and Thalmann, R. Cochlear fluid dynamics. In:A.F. Juhn and J. Santos-Sacchi (Eds.), Physiology of the Ear, Raven Press, New York, pp.1988, 341-357.
    23. Weber C, CunninghamD, Schulte A. Potassium recycling pathways in the human cochlea. Laryngoscope,2001,111:1156-1165.
    24. Peters A, Kuijpers W, Curfs J. Occurrence of Na, K-ATPase isoforms during rat inner ear development and functional implications. Eur Arch Otorhinolaryngol, 2001,258:67-43
    25. Allen F, Ryan, Alan G. Expression of mRNAs encoding α and β Subunit Isoforms of the Na, K-ATPase in the Rat Cochlea. Mol Cell Neurosci,1991,2:179-187.
    26. Schulte, B.A. and Adams, J.C. Distribution of immunoreactive Na,K-ATPase in gerbil cochlea.Histochem.Cytochem.1989,37,127-134.
    27. Kerr, T.P., Ross, M.D. and Ernest, S.A. Cellular localization of Na+, K+-ATPase in the mammalian cochlear duct:Significance for cochlear fluid balance. Am. J. Otolatyngol.1982,3.332-338.
    28. Kuijpers, W., van der Vleuten, A.C. and Bonting, S.L. Cochlear function and sodium and potassium activated adenosine triphosphatase. Science,1967,157, 949-950.
    29. Iwano, T., Yamamoto, A., Omori, K., Akayama, M., Kumazawa, T.and Tashiro, Y. Quantitative immunocytochemical localization of Na+,K+-ATPase α-subunit in the lateral wall of rat cochlear duct. Histochem. Cytochem.1989,37,353-363.
    30. Gratton A, Smyth J, Lam F, et al. Decline in the endocochlear potential corresponds to decreased Na, K-ATPase activity in the lateral wall of quiet aged gerbils. Hear Res,1997,108 (1/2):9-16.
    31. Spicer S S,Schulte B A.Spiral ligament pathology in quietaged gerbils.Hear Res,2002,172(1/2):172-185
    32.惠宏襄,金明,赵小宁等。自由基与细胞凋亡。生物化学与生物物理进展,1996;23:12.
    33. Tadros SF, D'Souza M, Zhu X et al. Apoptosis-related genes change their expression with age and hearing loss in the mouse cochlea.Apoptosis, 2008:13(11):1303-1321.
    34. Alam SA, Oshima T, Suzuki M et al. The expression of apoptosis-related proteins in the aged cochlea of Mongelian gerbils.Laryngoscope,2001,111(3): 528-534
    35. Zheng Y, Ikeda K, Nakamura M, et al.Endonuclease cleavage of DNA in the aged cochlea of Mongolian gerbil. Hear Res,1998,126:11-8
    36. Usami S, Takumi Y, Fijita S, et al. Cell death in the inner ear associated with aging in apoptosis. Brain Res,1997,747:147-50
    37. Wang J, Menchenton T, Yin S et al. Over-expression of Ⅹ-linked inhibitor of apoptosis protein slows presbycusis in C57BL/6J mice. Neurobiol Aging, 2008,26-38
    38. Schriner SE, Linford NJ, Martin JM et al. Extension of murine life span by overexprossion of catalase targeted to mitochondria.Science,2005,308:1909-11.
    39. Staecker H, Zheng QY, Van De Water TR. Oxidative stress in aging in the C57BL/6J mouse cochlea.Acta Otolaryngol,2001,121(6):666-672
    40. Chesseman KH.Studies on lipid peroxidation in normaland tumour tissues. Biochem J,1988; 250:247
    41. McFadden SL, Ding D, Ohlemiller K et al. The role of superoxide dismutase in age-related and noise-induced hearing loss:Clues from SOD1 knockout mice. Handbook of Mouse Auditory Research,2001,489-504
    42.吕向光,王倩,刘涛,韩朝等。老年性聋病人血浆SOD及MDA含量的检测。齐鲁医学杂志,2001,3,202-203
    43. McFadden SL, Ding D, Burkard RF et al. Cu/Zn SOD defieieney potentiates hearing loss and cochlear pathology in aged 129, CD-1 mice. J Comp Neurol, 1999,413:101-112
    44. Keithley EM, Canto C, Zheng QY et al. Cu/Zn superoxide dismutase and age-related hearing loss. Hearing Research,2005,209:76—85
    45. Zhang X, Han D, Ding D et al. Deletions are easy detectable in cochlear mitochondrial DNA of Cu/Zn superoxide dismutase gene knockout mice. Chinese Med J,2002,115(2):258-263
    46. Michael D, Seidman MD.Effects of dietary restriction and antioxidants on prebyacusis. Laryngoscope,2000, May; 110:727-38
    47. Tima Le, Keithley EM. Effects of antioxidants on the aging inner ear. Hearing Research,2007,226:194-202
    48. Fischel-Ghodsian N. Mitochondrial mutations and hearing lossparadigm for mitochondrial genetics. Am J Hum Genet,1998;62(1):15-19
    49. Kameoka K, Isotani H, Tanaka K et al. Novel mitochondrial DNA mutation in Trna (Lys) (8296, rarG) associated with diabetes. Biochem Biophys Res Commun,1998,45(2):523-527
    50. Vialettes BH, Paquis-Flucklinger V, Pelissier JF et al.Phenotypic expression of diabetes secondary to a T14709C mutation of mitochondrial DNA. Diabetes Care,1997;20(10):1731-37
    51.孔维佳,胡钰娟,王琼等.大鼠内耳拟老化伴线粒体突变模型的建立.临床耳鼻咽喉科杂志,2006,2(19):888-890.
    52.魏雪梅,杨元,梁传玉等.豚鼠线粒体DNA4568缺失与老年性聋的关系.中华医学遗传学杂志,2006;23(6):673-676
    53. Beckman KB. Ames BN. The free radical theory of aging matures. Pysiol Rev, 1998; 78:547-581
    54. Kujoth GC, Hiona A, Push TD et al. Mitochondrial DNA mutations, oxidative stress and apoptosis in mammalian aging.Science,2005,33:481-484
    55. Zhang X, Han D, Ding D et al.Cochlear mitochondrial DNA3867bp deletion in aged mice. Chinese Med J,2002,115(9):1390-1393
    56. Someya S, Yamasoba T, Kujoth GC et al. The role of mtDNA mutations in the pathogenesis of age-related hearing loss in mice carrying a mutator DNA polymerase gamma. Neurobiol Aging,2008,29(7):1080-1092
    57. Hirano K, Ikeda K, Kawase T. Prognosis of sudden deafness with special reference to risk factors of microvascular pathology. Auris Nasus Larynx, 1999,26(2):111-115.
    58. Suzuki A,Ren T,Nutall A,et al. Age-related changes in cochlear blood flow response to occlusion of anterior inferior cerebellar artery in mice. Ann Otol Rhinol Laryngol,1998,107 (8):648-653.
    59. Seidman D, Khan J, Dolan F, et al. Age-related defferences in cochlear microcirculation and auditory brainstem response. Arch Otolaryngol Head Neck Surg,1996,122(11):1221.
    60. Frisina ST, Mapes F, Kim SH et al. Characterization of hearing loss in aged type Ⅱ diabetics. Hearing Research,2006,211:103-113.
    61. Dai P, Yang W, Jiang S et al. Correlation of cochlear blood supply with mitochondrial DNA common deletion in presbyacusis.Acta Otolaryngol,2004, 124(2):130-136.
    62. Stenberg E, Wang H, Fish J, et al. Estrogen receptors in the normal adult and developing human inner ear and in Turner's syndrome. Hear Res,2001, 157:87-92.
    63. Guimaraes P, Zhu X, Cannon T, et al. Sex differences in distortion product otoacoustic emissions as a function of age in CBA mice.Hear Res,2004, 192:83-89.
    64. Kim H, Kang M, Chae D, et al.The association between serum estradiol level and hearing sensitivity in postmenopausal women. Obstet Gynecol Obstetrics Gynecol, 2002,99:726-730.
    65. Stenberg E, Simonoska R, Stygar D, et al. Effect of estrogen and antiestrogens on the estrogen receptor content in the cochlea of ovariectomized rats. Hear Res, 2003,182:19-23.
    66. Hill A, Popolo S, Jones E, et al. Estrogen deficiency leads to apoptosis in dopaminergic neurons in the medial preoptic area and arcuate nucleus of male mice. Mol Cell Neurosci,2004,27:466-476.
    67.王天铎,樊忠.实用耳鼻咽喉科学.济南:山东科学技术出版社,1997.197.
    68.戴朴,姜泗长,顾瑞,等.颞骨内疱疹类病毒感染与AHL关系的研究.临床耳鼻咽喉科杂志,2003,17(7):385-387.
    69.傅得兴.老年人的药代动力学特点.中华老年医学杂志,2004,23(4):287-288.
    70.刘汴生.衰老与老年病的关系.老年医学与保健,1999,5(2):53-55.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700