智能化耳科手术电钻的初步研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
研究背景和目的
     耳科手术中高速旋转的电钻钻头很容易碰到正常组织而造成副损伤,如何减少甚至避免电钻造成的副损伤,一直是有待解决的问题。一些学者尝试用导航或手术机器人的方法来控制电钻的运行,目前大多处于实验室阶段。
     由实际耳科手术经验可知,当术中出现钻头打滑、磨穿骨质、棉片缠绕等异常情况时容易造成正常组织结构的损伤。在对钻头受力分析的基础上,结合多传感器信息融合、微弱信号检测等相关技术,我们对正常磨削(包括正常离开)、钻头打滑、磨穿骨质、棉片缠绕等各种情况下钻头受力的变化情况进行分析,探索其规律,并利用该规律对电钻的运行状态进行实时识别,最终实现耳科手术电钻的智能化控制。
     近年来,多传感器信息融合技术和微弱信号检测技术的快速发展和广泛应用为本课题的成功实施提供了较强的技术背景。
     材料与方法
     基于耳科手术电钻运行时钻头的受力分析,首先对第一台耳科手术电钻进行改装并合理布置了多维力传感器、电流传感器、电压传感器和转速传感器,采用单一条件(同一操作者、最大电压和3mm切割钻头),在新鲜猪肩胛骨上模拟进行正常磨削(包括正常离开)、钻头打滑、磨穿骨质、棉片缠绕等四种情况各1000次,采集传感器信号,分析其规律性,并提取出各种异常情况下的特征信号;设计合适的多传感器信息融合系统识别电钻的运行状态,统计识别率,并设计停机程序使电钻在出现异常运行状态时自动快速地停止磨削。
     然后对第二台耳科手术电钻进行改装并安装了多维力传感器、电流传感器和电压传感器,采用复杂条件(最大电压,10名不同的操作者,直径2.5mm、4mm、5.9mm的切割钻头和直径4.2mm的金刚石钻头)下,在尸头颞骨上,每名操作者应用每种钻头模拟进行正常磨削(包括正常离开)、钻头打滑、磨穿骨质、棉片缠绕等四种情况各100次,采集传感器信号进行分析,应用多传感器信息融合系统识别电钻的运行状态,统计识别率。
     结果
     单一条件下,在正常磨削(包括正常离开)、钻头打滑、磨穿骨质、棉片缠绕等每种情况下,各传感器信号变化的趋势和过程大部分是一致的,可重复性强,有较强的规律性,能够提取出异常情况(包括钻头打滑、磨穿骨质和棉片缠绕)发生初期的特征信号;运用我们设计的BP神经网络,对正常磨削(包括正常离开)、钻头打滑、磨穿骨质、棉片缠绕的识别率分别为82.2%、75.6%、71.6%和70.2%;当融合系统识别出电钻出现异常情况时,自动停机程序反应快速准确,能在0.2-0.3秒之内使电钻停止磨削。
     复杂条件下,各传感器信号变化的趋势和过程大部分一致,可重复性较强,有较强的规律性,与单一条件下的结果相似;我们设计的BP神经网络对复杂情况下正常磨削(包括正常离开)、钻头打滑、磨穿骨质、棉片缠绕的平均识别率分别为81.3%、72.625%、68.575%和70.5%。
     结论
     本实验利用多种传感器对各种情况下钻头受力变化过程进行分析,发现在正常磨削(包括正常离开)、钻头打滑、磨穿骨质、棉片缠绕等四种情况发生过程中,钻头的受力变化有一定的规律性,能够提取出三种异常情况发生时的特征信号,经合适的BP神经网络融合后能较好的识别电钻的运行状态,为最终实现耳科手术电钻的智能化控制提供了较好的基础。但还需要进一步的研究,这部分工作我们正在进行中。
Background
     In otologic surgery, the high-speed rotating drill bit is easy to touch important healthy structures and cause collateral damage, so minimizing or avoiding damage caused by loss of control during drilling is an important issue. Thus far, some navigational or robotic concepts for guiding the drill have been pursued in experimental temporal bone surgery, but certain key problems have not been resolved, and these studies have not yet led to clinical application.
     Practical experience of otologic surgery indicates that damage to important healthy structures is most likely to occur during drilling faults, such as drill bit slippage, drilling through the bone tissue wall and cotton swab entanglement. Using multi-sensor information fusion and weak signal detection techniques, we want to explore the change rule of forces acting on the drill bit during normal drilling (including normal removal of the drill bit from the working surface), drill bit slippage, drilling through the bone tissue wall and cotton swab entanglement, and use the rule to identify the drilling faults in real time and make an intelligent otologic drill finally.
     The rapid development and wide application of multi-sensor information fusion and weak signal detection techniques ensure the success of this research.
     Materials and Methods
     Based on the analysis of forces acting on the drill bit when drilling, the first otologic drill was modified and equipped with force sensor, current sensor, voltage sensor and speed sensor. Under consistent conditions (the same surgeon, maximum voltage and a 3mm diameter cutting burr), the modified drill was used to simulate four different drilling scenarios in otologic surgery, including normal drilling (including normal removal of the drill bit from the working surface), drill bit slippage, drilling through the bone tissue wall and cotton swab entanglement, each scenario was repeated about 1000 times on fresh porcine scapulas. During the trials all sensor signals were recorded and analyzed the rule, then the significant sudden changes in the signals were extracted as characteristic signals. A multi-sensor information fusion system was designed to identify the drilling faults and to add up the identification rate, and a stop program was designed to make the drill stop drilling when the drilling faults were identified.
     Then the second otologic drill was modified and equipped with force sensor, current sensor and voltage sensor. Under different conditions(the maximum voltage,10 different otologic doctors, cutting burr of 2.5mm、4mm、5.9mm diameter and a 4.2mm diameter diamond bit), each doctor used each kind of drill bit to simulate each scenario for 100 times on the cadaveric temporal bone, all sensor signals were recorded and analyzed. The information fusion system was used to identify the drilling faults and to add up the identification rate.
     Results
     Under consistent conditions, the signal of each sensor changed consistently during each drilling scenario, with high repeatability and regularity of signal variation. It is possible to extract a characteristic signal for each kind of drilling fault. Using our multi-sensor information fusion system(BP neural networks), the rate of identifying normal drilling (including normal removal of the drill bit from the working surface) was 82.2%, drill bit slippage was 75.6%, drilling through the bone tissue wall was 71.6% and cotton swab entanglement was 70.2%. The stop program made the drill stop drilling in 0.2-0.3 seconds when the drilling faults was identified.
     Under different conditions, the signal of each sensor changed consistently too, with high repeatability and regularity of signal variation,like the results of consistent conditions. The average identification rate was 81.3%,72.625%,68.575% and 70.5% respectively.
     Conclusions
     This study shows that, during normal drilling (including normal removal of the drill bit from the working surface), drill bit slippage, drilling through the bone tissue wall and cotton swab entanglement during otologic surgery, the forces acting on the drill bit change predictably under different conditions, characteristic signals can be extracted from three kinds of drilling faults. Using suitable BP neural networks, the drilling faults can be identified. This provides a good foundation of predicting the drilling faults and controlling the drill automatically. Further experiments are necessary to be done, these are underway.
引文
1. Green JD, Shelton C, Brackmann DE. Iatrogenic facial nerve injury during otologic surgery. Laryngoscope[J],1994,104(8):922-926.
    2. Wormald PJ, Nilssen EL. Do the complications of mastoid surgery differ from those of the disease? Clin Otolaryngol Allied Sci[J],1997,22(4):355-357.
    3. Strauss G, Koulechov K, Hofer M,et al. The Navigation-Controlled Drill in Temporal Bone Surgery:A Feasibility Study. Laryngoscope[J],2007,117 (3):434-441.
    4. Warren FM, Balachandran R, Fitzpatrick JM, et al. Percutaneous cochlear access using bone-mounted, customized drill guides:demonstration of concept in vitro. Otol Neurotol[J],2007,28(3):325-329.
    5. Majdani O, Bartling SH, Leinung M, et al. A true minimally invasive approach for cochlear implantation:high accuracy in cranial base navigation through flat-panel-based volume computed tomography. Otol Neurotol[J],2008,29(2):120-123.
    6. Labadie RF, Balachandran R, Mitchell JE, et al. Clinical validation study of percutaneous cochlear access using patient-customized microstereotactic frames. Otol Neurotol[J],2010,31(1):94-99.
    7. Federspil PA, Geisthoff UW, Henrich D, et al. Development of the first force-controlled robot for otoneurosurgery. Laryngoscope[J],2003,113(3):465-471.
    8. Federspil PA, Plinkert PK. Robotic surgery in otorhinolaryngology. Otolaryngol Pol[J],2004,58 (1):237-42.
    9. Brett PN, Taylor RP, Proops D, et al. A surgical robot for cochleostomy. Proceedings of the 29th Annual International Conference of the IEEE EMBS[C],2007 August 23-26;Cite Internationale,Lyon,France,p1229-1232.
    10.Coulson CJ, Reid AP, Proops DW,et al. ENT challenges at the small scale. Int J Med Robotics Comput Assist Surg[J],2007,3(2):91-96.
    11. Coulson CJ, Taylor RP, Reid AP, et al. An autonomous surgical robot for drilling a cochleostomy:preliminary porcine trial. Clin Otolaryngol[J],2008,33(4):343-347.
    12.Xia T, Baird C, Jallo G,et al. An integrated system for planning, navigation and robotic assistance for skull base surgery. Int J Med Robot[J],2008,4(4):321-330.
    13.Majdani O, Rau TS, Baron S,et al. A robot-guided minimally invasive approach for cochlear implant surgery:preliminary results of a temporal bone study. Int J Comput Assist Radiol Surg[J],2009,4(5):475-486.
    14.Klenzner T, Ngan CC, Knapp FB,et al. New strategies for high precision surgery of the temporal bone using a robotic approach for cochlear implantation. Eur Arch Otorhinolaryngol[J],2009,266(7):955-960.
    15. Van Ham G, Denis K, Vander Sloten J,et al. A semi-active milling procedure in view of preparing implantation beds in robot-assisted orthopaedic surgery. Proc Inst Mech Eng H[J],2005,219(3):163-174.
    16.Kerastas J,Leah R. Same data,more value:multivariate sensor signal monitoring. Sensors[J],2004,21(3):33-36.
    17.Sahoo PP,Basu S. Use of a multi-sensor technique to monitor the mould oscillation in a continuous billet caster. ISIJ International[J],2006,46(2):219-225.
    18.Gamez Garcia J,Robertsson A, Gomez Ortega J, et al. Sensor fusion of force and acceleration for robot force control.2004 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) [C],Sendai,Japan,2004, p 3009-3014.
    19.Gamez Garcia J,Robertsson A, Gomez Ortega J, et al. Force and acceleration sensor fusion for compliant robot motion control. Proceedings of the 2005 IEEE International Conference on Robotics and Automation[C],Barcelona,Spain,2005,p2709-2714.
    20.Gamez Garcia J, Robertsson A, Gomez Ortega J, et al. Generalized contact force estimator for a robot manipulator. Proceedings-IEEE International Conference on Robotics and Automation[C],Orlando,FL,United States,2006, p4019-4024.
    21.Hui Zhang,Heping Chen,Ning Xi. Automated robot programming based on sensor fusion. Industrial Robot[J],2006,33(6):451-459.
    22.Di Xiao,Mumin Song,Bijoy K. Ghosh,et al. Real-time integration of sensing, planning and control in robotic work-cells. Control Engineering Practice[J],2004,12 (6):653-663.
    23.Sun Yan-jing, Zhang Shen, Miao Chang-xin, et al. Improved BP Neural Network for Transformer Fault Diagnosis. Journal of China University of Mining and Technology[J], 2007,17(1):138-142.
    24.Yinan Zhang,Qingwei Sun,He Quan, et al. Uncertain information fusion with robust adaptive neural networks-fuzzy reasoning. Journal of Systems Engineering and Electronics[J],2006,17(3):495-501.
    25.Zhongcheng Wu,Ming Meng,Fei Shen. Interaction force measurement of robotic manipulator based on 12DOF force sensor. Proceedings of the 2004 International Conference on Information Acquisition[C],Hefei,China,2004,p240-243.
    26.Ke-Jun Xu,Tao Mei,Qiao-Li Li,et al. Measurement of wrist force/torque using data fusion technique.2004 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) [C], Sendai,Japan,2004,p3027-3032.
    27.Ke-Jun Xu,Qiao-Li Li,Tao,Mei,et al. Estimation of wrist force/torque using data fusion of finger force sensors. Measurement[J],2004,36 (1):11-19.
    28.Manikya Kanti K, Srinivasa Rao P. Prediction of bead geometry in pulsed GMA welding using back propagation neural network. Journal of materials processing technology[J],2008,200:300-305.
    29.Panda SS, Chakraborty D, Pal SK. Flank wear prediction in drilling using back propagation neural network and radial basis function network. Applied Soft Computing[J],2008,8:858-871.
    30.张新海,雷勇.BP神经网络在机械故障诊断中的应用.噪声与振动控制[J],2008,5:95-97.
    31.唐志航,何宏,胡忠望等.改进的BP神经网络在故障诊断中的应用.微计算机信息(测控自动化)[J],2008,24(5-1):171-173.
    32.Ykhlef F,Arezki M,Guessoum A,et al. A wavelet denoising method toimprove detection with ultrasonic signal. IEEE ICIT[C],2004:1422-1425.
    33.He ZY,Cai YM. A study of wavelet entropy theory and its application in power system. IEEE International Conference on Intelligent Mechatronics and Auto-mation[C],2004,8: 847-851.
    34.Lili Zhu, Xingcheng Li, Yongshun Zhang. Transient weak signal detection in chaos based on RBF neural network. Proceedings of 2005 International Conference on Neural Networks and Brain Proceedings [C],2005,p776-780.
    35.张荣标,胡海燕,冯友兵.基于小波熵的微弱信号检测方法研究.仪器仪表学报[J],2007,6(11):2078-2084.
    36.Sungmoon C,Sang HO,Soo-Young L. Support vector machines with binary tree architecture for multi-class classification. Neural Information Processing-Letters and Reviews[J],2004,2(3):47-51.
    37.王安娜,吴洁,张丽娜等.一种基于动态剪枝二叉树SVMs的高炉故障诊断新方法.仪器仪表学报[J],2007,28(12):2147-2151.
    1. Pozzi Mucelli R, Morra A, Calgaro A, Cova M, Cioffi V. Virtual endoscopy with computed tomography of the anatomical structures of the middle ear. Radiol Med[J], 1997,94(5):440-446.
    2. Frankenthaler RP,Moharir V,Kikinis R, et al.Virtual otoscopy. Otolaryngol Clin North Am[J],1998,31(2):383-392.
    3. Neri E, Caramella D, Battolla L, et al. Virtual endoscopy of the middle and inner ear with spiral computed tomography. Am J Otol[J],2000,21(6):799-803.
    4. Neri E, Caramella D, Panconi M, et al. Virtual endoscopy of the middle ear. Eur Radiol[J],2001,11(1):41-49.
    5. Berrettini S, Neri E, Ravecca F, et al. Correlations between virtual endoscopy and otoendoscopy of the retrotympanum. Acta Otolaryngol [J],2002,122(5):474-478.
    6. Karhuketo TS, Dastidar PS,Ryymin PS,et al.Virtual endoscopy imaging of the middle ear cavity and ossices.Eur Arch otorhinlaryngol [J],2002,259(2):77-83.
    7. Nakasato T, Sasaki M, Ehara S, et al. Virtual CT endoscopy of ossicles in the middle ear. Clin Imaging[J],2001,25(3):171-177.
    8. Martin C, Michel F, Pouget JF, et al.Pathology of the ossicular chain:comparison between virtual endoscopy and 2D spiral CT-data. Otol Neurotol [J],2004,25 (3): 215-219.
    9. Rodt T, Bartling S, Schmidt AM, et al. Virtual endoscopy of the middle ear: experimental and clinical results of a standardised approach using multi-slice helical computed tomography. Eur Radiol[J],2002,12 (7):1684-1692.
    10.王东,张挽时,熊明辉等.正常听骨链的CT仿真内窥镜和三维成像.空军总医院学报[J],1999,15(3):135-137.
    11.杨晓玲,郑小华,童士平.CT中耳仿真内镜的临床应用初探.临床放射学杂志[J],2000,19(12):755-757.
    12.李龙,池晓宇,黄新才等.CT仿真内镜对中耳解剖结构的观察.实用放射学杂志[J],2002,18(9):751-753.
    13.邱明国,张绍祥,刘正津.耳三维重建及虚拟内窥镜.第三军医大学学报[J],2003,25(7):572-574.
    14.陈合新,许庚,虞春堂等.正常中耳腔的CT仿真内窥镜技术.中国临床解剖学杂志[J],2004,22(3):261-265.
    15.陈东野,陈晓巍,王轶等.中耳结构及中耳病变的虚拟耳镜表现.中华耳鼻咽喉头颈外科杂志[J],2005,40(1):18-21.
    16.刘春玲,杨智云,周旭辉等.正常中耳64排螺旋CT仿真内窥镜和听骨链三维重建.中国临床解剖学杂志[J],2007,25(4):376-379.
    17.蒋立新,史长征,李恒国等.慢性中耳炎听骨链病变虚拟耳镜观察.中华耳科学杂志[J],2007,5(1):31-33.
    18.蒋立新,李恒国,史长征等.虚拟耳镜对鼓室成形术前后鼓室结构的观察.中国耳鼻咽喉头颈外科[J],2007,14(4):207-210.
    19.徐志华,王继群,王丽华等.虚拟耳镜对慢性中耳炎听骨链病变的诊断价值.中国中西医结合耳鼻咽喉科杂志[J],2008,16(4):256-258.
    20.李龙,池晓宇,黄新才.CTVE对胆脂瘤型中耳炎听骨链病变的诊断价值.放射学实践[J],2002,17(6):514-515.
    21.徐志华,王继群,张涛等.虚拟耳镜对胆脂瘤型中耳炎听骨链病变的诊断价值.广东医学[J],2008,29(5):805-806.
    22.WANG Dong王东,ZHANG Wanshi张挽时,XIONG Minghui熊明辉等.CT virtual endoscopy of the auditory ossicular chain:clinical applications. Chin Med J[J], 2001,114(10):1015-1018.
    23.Pandey AK, Bapuraj JR, Gupta AK,et al. Is there a role for virtual otoscopy in the preoperative assessment of the ossicular chain in chronic suppurative otitis media? Comparison of HRCT and virtual otoscopy with surgical findings. Eur Radiol[J],2009, 19(6):1408-1416.
    24.Briggs RD, Vrabec JT, Cavey ML,et al. Virtual endoscopic evaluation of labyrinthine fistulae resulting from cholesteatoma. Laryngoscope[J],2001,111 (10):1828-1833.
    25.Bensimon JL, Grayeli AB, Toupet M,et al. Detection of labyrinthine fistulas in human temporal bone by virtual endoscopy and density threshold variation on computed tomographic scan. Arch Otolaryngol Head Neck Surg[J],2005,131 (8):681-685.
    26.蒋立新,马玉坤,罗冬等.虚拟耳镜对外伤性听骨链中断手术前后的评估作用.中华耳鼻咽喉头颈外科杂志[J],2008,43(4):272-276.
    27.De la Cruz A, Teufert KB. Congenital aural atresia surgery:long-term results. Otolaryngol Head Neck Surg[J],2003,129(1):121-127.
    28.李龙,池晓宇,黄新才.CT仿真内镜对先天性听骨链畸形的诊断价值.临床放射学[J],2001,20(8):582-584.
    29.李占堂,江志勇,王希昌等.螺旋CT仿真内镜和后处理在中耳病变中的应用.山东大学基础医学院学报[J],2004,18(4):204-205.
    30.蒋立新,马玉坤.先天性外耳道闭锁听骨链的虚拟耳镜观察.临床耳鼻咽喉头颈外科杂志[J],2007,21(7):301-303.
    31.鲍诗平,张秋航,郭继周.螺旋CT三维重建技术在中耳病变诊断中的应用.中 国耳鼻咽喉头颈外科[J],2005,12(8):491-493.
    32.Seemann MD, Seemann O, Bonel H,et al. Evaluation of the middle and inner ear structures:comparison of hybrid rendering, virtual endoscopy and axial 2D source images. Eur Radiol[J],1999,9(9):1851-1858.
    33.Klingebiel R, Bauknecht HC, Kaschke O, et al. Virtual endoscopy of the tympanic cavity based on high-resolution multislice computed tomographic data. Otol Neurotol[J], 2001,22(6):803-7.
    34.Trojanowska A, Czekajska-Chehab E, Trojanowski P,et al. Comparison of multidetector row CT cross-sectional source images with multiplanar 2D-,3D-reconstructions and virtual endoscopy in assessment of the middle ear. J Neuroradiol[J], 2006,33(4):277-278.
    35.Diamantopoulos II, Ludman CN, Martel AL,et al. Magnetic resonance imaging virtual endoscopy of the labyrinth. Am J Otol[J],1999,20 (6):748-751.
    36.Tomandl BF, Hastreiter P, Eberhardt KE,et al. Virtual labyrinthoscopy:visualization of the inner ear with interactive direct volume rendering. Radiographics[J],2000,20 (2): 547-558.
    37.Boor S, Maurer J, Mann W,et al. Virtual endoscopy of the inner ear and the auditory canal. Neuroradiology[J],2000,42(7):543-547.
    38.Vrabec JT, Briggs RD, Rodriguez SC,et al. Evaluation of the internal auditory canal with virtual endoscopy. Otolaryngol Head Neck Surg[J],2002,127(3):145-152.
    39.孙珊珊,巩武贤,巩若箴.内耳道底神经管孔发育不全的CT仿真内镜观察.临床耳鼻咽喉头颈外科杂志[J],2007,21(22):1011-1014.
    40.邱明国,张绍祥,刘正津.耳三维重建及虚拟内窥镜.第三军医大学学报[J],2003,25(7):572-574.
    41.Naganawa S,Iwayama E,Koshikawa T,et al. Virtual endoscopy of the labyrinth,using a 3D-FastASE sequence. J Magn Reson Imaging[J],2001,13(5):792-796.
    42.Schreyer AG, Seitz J, Strutz J,et al. Magnetic resonance imaging-based virtual endoscopy of inner ear pathology. Otol Neurotol[J],2002,23 (2):136-140.
    43.Martin C, Tringali S, Bertholon P,et al. Isolated congenital round window absence. Ann Otol Rhinol Laryngol[J],2002,111(9):799-801.
    44.巩武贤,巩若茂.耳蜗发育畸形HRCT及蜗神经孔CTVE观察.放射学实践[J],2008,23(7):719-721.
    45.Crane BT, Minor LB, Carey JP. Three-dimensional computed tomography of superior canal dehiscence syndrome. Otol Neurotol[J],2008,29 (5):699-705.
    46.Wang WH, Lin YC, Weng HH,et al. Detection of superior semicircular canal dehiscence by virtual endoscopy:a pilot study. Otolaryngol Head Neck Surg[J],2008, 139(5):624-629.
    47.Crane BT, Minor LB, Carey JP. Virtual endoscopy has a limited role in the diagnosis of superior semicircular canal dehiscence. Otolaryngol Head Neck Surg[J],2009,140 (5): 771.
    48.Wang WH, Lin YC, Weng HH,et al. The additional role of virtual endoscopy in the diagnosis of superior semicircular canal dehiscence. Otolaryngol Head Neck Surg [J], 2009,140(5):771-772.
    49.Himi T, Sakata M, Shintani T, et al. Middle ear imaging using virtual endoscopy and its application in patients with ossicular chain anomaly. ORL J Otorhinolaryngol Relat Spec[J],2000,62(6):316-320.
    50.Seemann MD, Luboldt W, Haferkamp C,et al. Hybrid 3D visualization and virtual endoscopy in cochlear implants. Rofo[J],2000,172(3):238-243.
    51.Vrionis FD, Foley KT, Robertson JH,et al. Use of cranial surface anatomic fiducials for interactive image-guided navigation in the temporal bone:a cadaveric study. Neurosurgery[J],1997,40(4):755-63.
    52.邱明国,张绍祥,吴兰等.侧颅底区导航手术的实验研究.中华外科杂志[J],2003,41(8):636-637.
    53.Miller RS, Hashisaki GT, Kesser BW. Image-guided localization of the internal auditory canal via the middle cranial fossa approach. Otolaryngol Head Neck Surg[J], 2006,134(5):778-782.
    54.林爱龙,秦尚振,龚杰.神经导航下内听道及面神经管的解剖研究.中国临床神经外科杂志,2006,11(1):23-25.
    55.Samii A, Brinker T, Kaminsky J,et al. Navigation-guided opening of the internal auditory canal via the retrosigmoid route for acoustic neuroma surgery:cadaveric, radiological, and preliminary clinical study. Neurosurgery[J],2000,47(2):382-387.
    56.Pillai P, Sammet S, Ammirati M. Application accuracy of computed tomography-based, image-guided navigation of temporal bone. Neurosurgery [J],2008, 63(4 Suppl 2):326-332.
    57.Pillai P, Sammet S, Ammirati M. Image-guided, endoscopic-assisted drilling and exposure of the whole length of the internal auditory canal and its fundus with preservation of the integrity of the labyrinth using a retrosigmoid approach:a laboratory investigation. Neurosurgery[J],2009,65(6 Suppl):53-59.
    58.王晓军,兰青.神经导航在颅底显微解剖学研究中的应用.临床神经外科杂志[J],2008,5(2):88-90.
    59.Labadie RF, Shah RJ, Harris SS, et al. Submillimetric target-registration error using a novel, non-invasive fiducial system for image-guided otologic surgery.Comp Aid Surg[J], 2004,9(4):145-153.
    60.Labadie RF, Shah RJ, Harris SS,et al. In-vitro assessment of image-guided otologic surgery:submillimeter accuracy within the region of the temporal bone. Otolaryngol Head Neck Surg[J],2005,132(3):435-442.
    61.Labadie RF, Chodhury P, Cetinkaya E,et al. Minimally invasive, image-guided, facial-recess approach to the middle ear:demonstration of the concept of percutaneous cochlear access in vitro. Otol Neurotol[J],2005,26(4):557-562.
    62.Labadie RF, Noble JH, Dawant BM,et al. Clinical validation of percutaneous cochlear implant surgery:initial report. Laryngoscope[J],2008,118 (6):1031-1039.
    63.Labadie RF, Balachandran R, Mitchell JE,et al. Clinical validation study of percutaneous cochlear access using patient-customized microstereotactic frames. Otol Neurotol[J],2010,31(1):94-99.
    64.Balachandran R, Mitchell JE, Blachon Qet al. Percutaneous cochlear implant drilling via customized frames:an in vitro study. Otolaryngol Head Neck Surg[J],2010,142(3): 421-426.
    65.Warren FM, Balachandran R, Fitzpatrick JM,et al. Percutaneous cochlear access using bone-mounted, customized drill guides:demonstration of concept in vitro. Otol Neurotol[J],2007,28(3):325-329.
    66.Majdani O, Bartling SH, Leinung M,et al. A true minimally invasive approach for cochlear implantation:high accuracy in cranial base navigation through flat-panel-based volume computed tomography. Otol Neurotol[J],2008,29(2):120-123.
    67.Noble JH, Warren FM, Labadie RF,et al. Automatic segmentation of the facial nerve and chorda tympani in CT images using spatially dependent feature values. Med Phys[J], 2008,35(12):5375-5384.
    68.Marmulla R, Eggers G, Miihling J. Laser surface registration for lateral skull base surgery. Minim Invasive Neurosurg[J],2005,48 (3):181-185.
    69.Eggers G, Kress B, Muhling J. Automated registration of intraoperative CT image data for navigated skull base surgery. Minim Invasive Neurosurg[J],2008,51(1):15-20.
    70.Balachandran R, Fitzpatrick JM, Labadie RF. Accuracy of image-guided surgical systems at the lateral skull base as clinically assessed using bone-anchored hearing aid posts as surgical targets. Otol Neurotol[J],2008,29(8):1050-5.
    71.Matsumoto N, Hong J, Hashizume M,et al. A minimally invasive registration method using surface template-assisted marker positioning (STAMP) for image-guided otologic surgery. Otolaryngol Head Neck Surg[J],2009,140 (1):96-102.
    72.Grayeli AB, Esquia-Medina G, Nguyen Y,et al. Use of anatomic or invasive markers in association with skin surface registration in image-guided surgery of the temporal bone. Acta Otolaryngol[J],2009,129 (4):405-410.
    73.Strauss G, Koulechov K, Hofer M,et al.The Navigation-Controlled Drill in Temporal Bone Surgery:A Feasibility Study. The Laryngoscope[J],2007,117 (3):434-441.
    74.麦艾,肖立智,邓宇等.多层螺旋CT结合影像导航系统在耳科手术中应用的初步研究.医学信息内·外科版[J],2009,22(7):579-580,586.
    75.Carney AS, Patel N, Baldwin DL,et al. Intra-operative image guidance in otolaryngology--the use of the ISG viewing wand. J Laryngol Otol[J],1996,110 (4): 322-327.
    76.Gunkel AR, Vogele M, Martin A,et al. Computer-aided surgery in the petrous bone. Laryngoscope[J],1999,109(11):1793-1799.
    77.Staecker H, O'malley BW, Eisenberg H,et al. Use of the LandmarXtrade mark Surgical Navigation System in Lateral Skull Base and Temporal Bone Surgery. Skull Base[J],2001,11 (4):245-255.
    78.章翔,付洛安,费舟等.神经导航显微手术切除颅底部肿瘤.中国耳鼻咽喉颅底外科杂志[J],2003,9(1):1-3.
    79.Wiltfang J, Rupprecht S, Ganslandt O,et al. Intraoperative Image-Guided Surgery of the Lateral and Anterior Skull Base in Patients with Tumors or Trauma. Skull Base[J],2003,13(1):21-29.
    80.徐国政,秦尚振,龚杰.神经导航辅助颅底肿瘤显微外科切除.临床外科杂志[J],2004,12(7):440-441.
    81.Kurtsoy A, Menku A, Tucer B,et al. Neuronavigation in skull base tumors. Minim Invasive Neurosurg[J],2005,48(1):7-12.
    82.张琦辉,杨应明.镜下导航在颅底肿瘤手术中的应用.实用医学杂志[J],2005,21(4):417-418.
    83.Caversaccio M, Langlotz F, Nolte LP,et al. Impact of a self-developed planning and self-constructed navigation system on skull base surgery:10 years experience. Acta Otolaryngol[J],2007,127(4):403-407.
    84.Edamatsu H, Aoki F, Misu T, et al. Navigation-aided surgery for congenital cholesteatoma at the petrous apex. Nippon Jibiinkoka Gakkai Kaiho[J],2002,105 (12): 1212-1215.
    85.Van Havenbergh T, Koekelkoren E, De Ridder D,et al. Image guided surgery for petrous apex lesions. Acta Neurochir (Wien) [J],2003,145 (9):737-742.
    86.Caversaccio M, Panosetti E, Ziglinas P,et al. Cholesterol granuloma of the petrous apex:benefit of computer-aided surgery. Eur Arch Otorhinolaryngol[J],2009,266 (1): 47-50.
    87.戴海江,韩德民,葛文彤等.影像导航系统在先天性骨性耳道闭锁手术中的应用.耳鼻咽喉-头颈外科[J],2002,9(2):67-69.
    88.舒畅,沈佳,彭志林.计算机智能导航系统在鼻科和耳科手术中的应用.临床耳鼻咽喉科杂志[J],2003,17(1):9-11.
    89,龙海珊,韩德民,戴海江.影像导航在骨性外耳道闭锁手术的应用.中国耳鼻咽喉头颈外科[J],2007,14(2):91-94.
    90.Schuknecht HF. Congenital aural atresia. Laryngoscope[J],1989,99 (9):908-917.
    91.Caversaccio M,Romualdez J,Baechler R, et al. Valuable use of computeraided surgery in congenital bony aural atresia. J Laryngol Otol [J],2003,117(4):241-248.
    92.Sure U,Benes L,Riegel T,et al. Image fusion for skull base neuronavigation. Technical note. Neurol Med Chir (Tokyo) [J],2002,42 (10):458-461.
    93.谭峰,高金玲,曹守明等.CT与MR融合的神经外科导航系统治疗颅底肿瘤.江西医学院学报[J],2003,43(6):72-73.
    94.邵君飞,张岩松,吴劲松等.神经导航融合技术在颅底肿瘤中的应用.临床神经外科杂志[J],2005,2(3):113-116.
    95.Nemec SF, Donat MA, Mehrain S,et al. CT-MR image data fusion for computer assisted navigated neurosurgery of temporal bone tumors. Eur J Radiol[J],2007,62 (2): 192-198.
    96.田增民,杜吉祥,赵全军等.脑外科手术中机器人的应用.海军医学杂志[J],2000,21 (1): 52-53.
    97.赵春鹏,王军强,王豫等.双平面骨科机器人系统辅助股骨颈骨折空心螺钉内固定术的实验研究.中华创伤骨科杂志[J],2006,8(1):50-55.
    98.王树新,丁杰男,贠今天等.显微外科手术机器人—“妙手”系统的研究.机器人[J],2006,28(2):130-135.
    99.Brett PN, Baker DA, Reyes L,et al. An automatic technique for micro-drilling a stapedotomy in the flexible stapes footplate. Proc Inst Mech Eng H[J],1995,209(4): 255-262.
    100.Rothbaum DL, Roy J, Stoianovici D,et al. Robot-assisted stapedotomy:micropick fenestration of the stapes footplate. Otolaryngol Head Neck Surg[J],2002,127 (5): 417-426.
    101.Federspil PA,Geisthoff UW,Henrich D,et al. Development of the first force-controlled robot for otoneurosurgery. Laryngoscope[J],2003,113 (3):465-471.
    102.Federspil PA,Plinkert PK. Robotic surgery in otorhinolaryngology. Otolaryngol Pol[J],2004,58(1):237-242.
    103.Brett PN, Taylor RP, Proops D, et al. A surgical robot for cochleostomy. Proceedings of the 29th Annual International Conference of the IEEE EMBS[C],2007 August 23-26;Cite Internationale, Lyon, France, p1229-1232.
    104.Coulson CJ, Reid AP, Proops DW,et al. ENT challenges at the small scale. Int J Med Robotics Comput Assist Surg[J],2007,3(2):91-96.
    105.Coulson CJ, Taylor RP, Reid AP, et al. An autonomous surgical robot for drilling a cochleostomy:preliminary porcine trial. Clin Otolaryngol[J],2008,33(4):343-347.
    106.Majdani O, Rau TS, Baron S,et al. A robot-guided minimally invasive approach for cochlear implant surgery:preliminary results of a temporal bone study. Int J Comput Assist Radiol Surg[J],2009,4(5):475-486.
    107.Klenzner T, Ngan CC, Knapp FB,et al. New strategies for high precision surgery of the temporal bone using a robotic approach for cochlear implantation. Eur Arch Otorhinolaryngol[J],2009,266(7):955-960.
    108.Xia T, Baird C, Jallo G,et al. An integrated system for planning, navigation and robotic assistance for skull base surgery. Int J Med Robot[J],2008,4(4):321-330.
    109.O'Malley BW Jr, Weinstein GS. Robotic skull base surgery:preclinical investigations to human clinical application. Arch Otolaryngol Head Neck Surg[J],2007, 133(12):1215-1219.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700