噪声及水杨酸钠引起下丘及皮层的电活动改变
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
背景
     耳鸣为无相应的外界声源或电刺激,而主观存在的声音感觉。耳鸣的发生率约为3%-30%,约有l%-3%的人群因耳鸣而影响正常生活和工作。一些能导致听力损失(噪声暴露、老龄化、药物、外伤)的原因均可能引起神经性耳鸣。排除一些器质性病变而引起的耳鸣外,常见的神经性耳鸣多为主观性的。由于神经性耳鸣的客观评定方法局限,定位诊断困难,为临床治疗难题。
     耳鸣的发生机制尚不清楚,一般认为,中枢听觉系统(CAS)的抑制性神经作用减弱,引起中枢神经电活动改变是耳鸣形成的神经生理基础。中枢听觉系统神经电活动改变可能是源于耳蜗损伤,引起包括听觉皮层(AC)、下丘(IC)和耳蜗核(CN)等中枢听觉系统,某些区域的抑制功能下调。耳鸣机制的研究应建立可靠的耳鸣动物模型,采用行为学或电生理学方法,结合耳鸣的临床特征进行研究。
     本文利用噪声暴露和大剂量水杨酸钠(SS)建立动物模型,采用电生理学方法记录、分析和量化,对下丘和听觉皮层的改变进行分类和评估。
     方法与结果
     第一部分
     用C57小鼠作为噪声暴露模型,16导微电极记录噪声暴露前后下丘神经的神经电活动反应情况。放电活动结果包括频率反应域和放电频率-声音强度函数,频率反应域结果表明某些下丘神经的特征性频率(CF)在噪声暴露前后由高频区域转变到低频区域,某些神经的最小阈值在噪声暴露后升高;而某些神经的最佳频率和最小阈值有明显升高;某些神经没有发生明显改变。放电频率-声音强度函数表明某些低频神经在噪声暴露后放电频率会增加,而高频神经在噪声暴露后放电频率会降低。比较噪声暴露前后的Q10值,在噪声暴露后调谐曲线的形状变宽,所记录的下丘神经自发性放电活动比暴露前减弱。
     第二部分
     (1)用成年Sprague Dawley(SD)大鼠作为动物模型,16导微电极记录大剂量SS注射前后听觉皮层神经的放电活动变化。腹部注射大剂量SS后3小时内听觉皮层放电活动递增。
     (2)用成年SD大鼠,16导微电极记录,分别研究药物GABA类似物和钾离子通道开放剂对大剂量SS引起的听觉皮层高放电活动所产生的影响。分别测试了GABA类似物组、GABA类似物+SS组、钾离子通道开放剂组、钾离子通道开放剂+SS组。药物注射5分钟后注射水杨酸钠,GABA类似物+SS组和钾离子通道开放剂+SS组的放电率增加的幅度会低于水杨酸钠注射组。这表明GABA类似物和钾离子通道开放剂可部分抑制水杨酸钠引起的听觉皮层高放电活动。
     结论
     (1)噪声暴露可能引起下丘中枢侧抑制的损伤,这些抑制性区域一般存在于比下丘神经的特征性频率(CF)较低的频率区域,CF迁移和调谐曲线变宽主要发生在高于噪声暴露频率的神经区域,噪声暴露后下丘神经自发性放电即刻降低,这不同于噪声暴露一段时间后自发性放电的改变。上述电活动改变表明噪声暴露后耳蜗接受到的传入神经信号减少,影响正常的听觉传导通路,下丘神经的可塑性变化可能是引起耳鸣的原因,并解释了噪声引起的耳鸣频率范围与噪声的频率有关,即耳鸣的频率常低于噪声暴露频率。
     (2)大剂量水杨酸钠可以引起听觉皮层放电频率增高,GABA类似物和钾离子通道开放剂可以降低听觉皮层的放电频率,这两种药物对大剂量水杨酸钠对听觉皮层的电生理功能均有影响。GABA类似物和钾离子通道开放剂可能对耳鸣有抑制作用。
     上述研究会帮助我们进一步认识耳鸣的发生机制,对于耳鸣治疗也提供了线索。
Introduction
     Tinnitus is the subjective sound sensation without corresponding external sound source orelectrical stimulation. The incidence of tinnitus is about3%-30%, about l%-3%of the everydaylife and work are affected by tinnitus. The causes of hearing loss (noise exposure, aging, drugs,trauma) are likely to induce tinnitus. Exclusion of tinnitus caused by organic disease, most oftinnitus are subjective. Due to the limit objective evaluation method of the neurogenic tinnitus,the diagnosis of localization of tinnitus is hard, it is a difficult problem for clinical treatment.
     The mechanism of tinnitus is not clear. Generally, the inhibition of central auditory system(CAS) decreases, causing the electrical activity change of the CAS change is tinnitusneurophysiologic basis. Neural electrical activity change of the CAS may be due to cochleardamage, it is regarded that the cochlear damage can down regulate the inhibition of some areascentral auditory system (CAS) which include auditory cortex (AC), inferior cochlear(IC) andcochlear nucleus (CN).The study on tinnitus mechanism should depend on reliable tinnitusanimal models, behavioral or electrophysiological methods, combined with the characteristics oftinnitus clinic.
     In this paper, we establish the animal model depending on noise exposure and high doses ofsodium salicylate (SS), the use of the electrophysiological methods to record, analyze andquantify, classify and assess changes in IC and AC.
     Method and result
     The first part, we use C57mice as noise exposure animal models. We use16channelmicroelectrode to get the response of IC neurons before and after the noise exposure. Thedischarge activity results include Frequency Response Area (FRA) and Rate Level Function(RLF). FRA results indicate the Characteristic Frequency (CF) of some of the IC neurons shiftfrom the high frequency area to the low frequency area after the noise exposure, the minimal threshold (MT) of some neurons is higher after the noise exposure. The BF and MT of some ofthe neurons change significantly after the noise exposure, however, BF and MT of some of theneurons do not change obviously. The RLF results show the spiking of the firing rate of eachneuron, only some of low frequency neurons show the higher firing rate after the noise exposure,however, higher frequency neurons show the lower firing rate of higher after the noise exposure.Compare the Q10value of the neurons before and after the noise exposure, it is indicated thatthe shape of the tuning curve became wider after the noise exposure, and the spontaneousactivity of each recorded neuron seems smaller than before.
     The second part (1) We use Sprague Dawley(SD) rats as the animal models, the16channel microelectrode is used to record the electrical activity change of AC before and afterhigh doses of SS injection. The SS can induce AC response enhancement after the intraperitonealinjection in3hours.(2) We use SD rats and microelectrode is used to record, we study on theeffect of GABA analogue and potassium channel openers. We test the spiking of the firing rateof GABAB analogue group, GABA analogue+SS group, potassium channel opener group,potassium channel opener+SS group. After the drugs injection5minutes, we injected salicylate.The response of the firing rate of GABA analogue+SS group and GABA analogue+SS groupare increased less than that in salicylate injection group. It is indicated that GABA analogue andpotassium channel opener partially suppressed SS-induced hyperactivity in AC.
     Conclusion
     (1) Noise exposure may induce damage of the side-band inhibition in the IC, theseinhibition areas in lower frequency neurons than CF of IC. CF shifts and tuning curve wider ismainly found in higher frequency neurons than noise exposure frequency. The spontaneousactivity of IC neurons is decreased at once after the noise exposure, which is different from thespontaneous activity change after a period of noise exposure. The electrical activity changeabove indicates that cochlear receives afferent signals less after noise exposure, which affect theauditory pathway, The IC plasticity change may be the cause of the tinnitus, and explains thefrequency of the noise-induced tinnitus frequency range is related to the frequency of the noiseexposure, that is, the frequency of tinnitus is often lower than that of noise exposure.
     (2) High doses of SS can induce the firing rate increasing, GABA analogues andpotassium channel openers can reduce the firing rate of the AC, these two drugs on affect the electrophysiological function of high doses of SS on the auditory cortex. GABA analogues andpotassium channel openers might inhibit tinnitus.
引文
1. Norena, A., et al., Psychoacoustic characterization of the tinnitus spectrum: implicationsfor the underlying mechanisms of tinnitus. Audiol Neurootol,2002.7(6): p.358-69.
    2. Axelsson, A. and A. Sandh, Tinnitus in noise-induced hearing loss. Br J Audiol,1985.19(4): p.271-6.
    3. Kizawa, K., et al., Behavioral assessment and identification of a molecular marker in asalicylate-induced tinnitus in rats. Neuroscience,2010.165(4): p.1323-32.
    4. Lobarinas, E., et al., Salicylate-and quinine-induced tinnitus and effects of memantine.Acta Otolaryngol Suppl,2006(556): p.13-9.
    5. Jastreboff, P.J., J.F. Brennan, and C.T. Sasaki, An animal model for tinnitus.Laryngoscope,1988.98(3): p.280-6.
    6. Brozoski, T.J., C.A. Bauer, and D.M. Caspary, Elevated fusiform cell activity in thedorsal cochlear nucleus of chinchillas with psychophysical evidence of tinnitus. JNeurosci,2002.22(6): p.2383-90.
    7. Bauer, C.A., et al., Behavioral model of chronic tinnitus in rats. Otolaryngol Head NeckSurg,1999.121(4): p.457-62.
    8. Paul, A.K., et al., Metabolic imaging of rat brain during pharmacologically-inducedtinnitus. Neuroimage,2009.44(2): p.312-8.
    9. Kaltenbach, J.A., Tinnitus: Models and mechanisms. Hear Res,2011.276(1-2): p.52-60.
    10. Evans, E.F. and T.A. Borerwe, Ototoxic effects of salicylates on the responses of singlecochlear nerve fibres and on cochlear potentials. British journal of audiology,1982.16(2):p.101-8.
    11. Stypulkowski, P.H., Mechanisms of salicylate ototoxicity. Hearing research,1990.46(1-2): p.113-45.
    12. Boettcher, F.A. and R.J. Salvi, Functional changes in the ventral cochlear nucleusfollowing acute acoustic overstimulation. The Journal of the Acoustical Society ofAmerica,1993.94(4): p.2123-34.
    13. Kaltenbach, J.A. and J. Zhang, Intense sound-induced plasticity in the dorsal cochlearnucleus of rats: evidence for cholinergic receptor upregulation. Hearing research,2007.226(1-2): p.232-43.
    14. Sun, W., et al., Salicylate increases the gain of the central auditory system. Neuroscience,2009.159(1): p.325-34.
    15. Eggermont, J.J., Central tinnitus. Auris, nasus, larynx,2003.30Suppl: p. S7-12.
    16. Eggermont, J.J., Role of auditory cortex in noise-and drug-induced tinnitus. Americanjournal of audiology,2008.17(2): p. S162-9.
    17. Willott, J.F., L.M. Aitkin, and S.L. McFadden, Plasticity of auditory cortex associatedwith sensorineural hearing loss in adult C57BL/6J mice. J Comp Neurol,1993.329(3): p.402-11.
    18. Brosch, M. and C.E. Schreiner, Time course of forward masking tuning curves in catprimary auditory cortex. J Neurophysiol,1997.77(2): p.923-43.
    19. Voytenko, S.V. and A.V. Galazyuk, Suppression of spontaneous firing in inferiorcolliculus neurons during sound processing. Neuroscience,2010.165(4): p.1490-500.
    20. Casseday, J.H. and E. Covey, Frequency tuning properties of neurons in the inferiorcolliculus of an FM bat. J Comp Neurol,1992.319(1): p.34-50.
    21. Yang, L., G.D. Pollak, and C. Resler, GABAergic circuits sharpen tuning curves andmodify response properties in the mustache bat inferior colliculus. J Neurophysiol,1992.68(5): p.1760-74.
    22. Loeb, M. and R.P. Smith, Relation of induced tinnitus to physical characteristics of theinducing stimuli. J Acoust Soc Am,1967.42(2): p.453-5.
    23. Zheng, Y., et al., Acoustic trauma that can cause tinnitus impairs impulsive control butnot performance accuracy in the5-choice serial reaction time task in rats. Neuroscience,2011.180: p.75-84.
    24. Stankiewicz, C., T. Przewozny, and J. Kozlowski,[Noise from a car airbag as a cause ofacute acoustic trauma]. Otolaryngologia polska. The Polish otolaryngology,2000.54(6):p.775-81.
    25. Chermak, G.D. and J.E. Dengerink, Characteristics of temporary noise-induced tinnitusin male and female subjects. Scandinavian audiology,1987.16(2): p.67-73.
    26. Temmel, A.F., et al., Hearing loss and tinnitus in acute acoustic trauma. Wiener klinischeWochenschrift,1999.111(21): p.891-3.
    27. Norena, A.J., et al., Neural changes in the auditory cortex of awake guinea pigs after twotinnitus inducers: salicylate and acoustic trauma. Neuroscience,2010.166(4): p.1194-209.
    28. Salvi, R.J., R.P. Hamernik, and D. Henderson, Discharge patterns in the cochlear nucleusof the chinchilla following noise induced asymptotic threshold shift. Exp Brain Res,1978.32(3): p.301-20.
    29. Willott, J.F. and S.M. Lu, Noise-induced hearing loss can alter neural coding andincrease excitability in the central nervous system. Science,1982.216(4552): p.1331-4.
    30. Hertel, A., et al., Quantification of IBZM dopamine receptor SPET in de novo Parkinsonpatients before and during therapy. Nucl Med Commun,1997.18(9): p.811-22.
    31. Dong, S., et al., Tonotopic changes in GABA receptor expression in guinea pig inferiorcolliculus after partial unilateral hearing loss. Brain Res,2010.1342: p.24-32.
    32. Sun, W., L. Tang, and B.L. Allman, Environmental noise affects auditory temporalprocessing development and NMDA-2B receptor expression in auditory cortex. BehavBrain Res,2011.218(1): p.15-20.
    33. Felix, R.A.,2nd and C.V. Portfors, Excitatory, inhibitory and facilitatory frequencyresponse areas in the inferior colliculus of hearing impaired mice. Hear Res,2007.228(1-2): p.212-29.
    34. Gerken, G.M., Central tinnitus and lateral inhibition: an auditory brainstem model. HearRes,1996.97(1-2): p.75-83.
    35. Qiu, C., et al., Inner hair cell loss leads to enhanced response amplitudes in auditorycortex of unanesthetized chinchillas: evidence for increased system gain. Hear Res,2000.139(1-2): p.153-71.
    36. Irvine, D.R., R. Rajan, and S. Smith, Effects of restricted cochlear lesions in adult cats onthe frequency organization of the inferior colliculus. J Comp Neurol,2003.467(3): p.354-74.
    37. Harrison, R.V., et al., Neonatal cochlear hearing loss results in developmentalabnormalities of the central auditory pathways. Acta Otolaryngol,1993.113(3): p.296-302.
    38. Liberman, M.C. and L.W. Dodds, Single-neuron labeling and chronic cochlear pathology.III. Stereocilia damage and alterations of threshold tuning curves. Hearing research,1984.16(1): p.55-74.
    39. Salvi, R.J., et al., Enhanced evoked response amplitudes in the inferior colliculus of thechinchilla following acoustic trauma. Hearing research,1990.50(1-2): p.245-57.
    40. Scholl, B. and M. Wehr, Disruption of balanced cortical excitation and inhibition byacoustic trauma. J Neurophysiol,2008.100(2): p.646-56.
    41. Schreiner, C.E. and G. Langner, Laminar fine structure of frequency organization inauditory midbrain. Nature,1997.388(6640): p.383-6.
    42. Jen, P.H. and J.P. Zhang, corticofugal regulation of excitatory and inhibitory frequencytuning curves of bat inferior collicular neurons. Brain Res,1999.841(1-2): p.184-8.
    43. Scholl, B. and M. Wehr, Disruption of balanced cortical excitation and inhibition byacoustic trauma. J Neurophysiol,2008.100(2): p.646-56.
    44. Nowotny, M., et al., Characterization of the perceived sound of trauma-induced tinnitusin gerbils. J Acoust Soc Am,2011.130(5): p.2827-34.
    45. Mulders, W.H. and D. Robertson, Hyperactivity in the auditory midbrain after acoustictrauma: dependence on cochlear activity. Neuroscience,2009.164(2): p.733-46.
    46. Wang, J., R.J. Salvi, and N. Powers, Plasticity of response properties of inferiorcolliculus neurons following acute cochlear damage. J Neurophysiol,1996.75(1): p.171-83.
    47. Mulders, W.H., K. Seluakumaran, and D. Robertson, Efferent pathways modulatehyperactivity in inferior colliculus. J Neurosci,2010.30(28): p.9578-87.
    48. Manzoor, N.F., et al., Noise-induced hyperactivity in the inferior colliculus: itsrelationship with hyperactivity in the dorsal cochlear nucleus. J Neurophysiol,2012.108(4): p.976-88.
    49Bauer, C.A., et al., Effects of chronic salicylate on GABAergic activity in rat inferiorcolliculus. Hear Res,2000.147(1-2): p.175-82.
    50Mulheran, M., The effects of quinine on cochlear nerve fibre activity in the guinea pig.Hear Res,1999.134(1-2): p.145-52.
    51Kiang, N.Y., E.C. Moxon, and R.A. Levine, Auditory-nerve activity in cats with normaland abnormal cochleas. In: Sensorineural hearing loss. Ciba Found Symp,1970: p.241-73.
    52Liberman, M.C. and N.Y. Kiang, Acoustic trauma in cats. Cochlear pathology andauditory-nerve activity. Acta Otolaryngol Suppl,1978.358: p.1-63
    53. Chang, E.F. and M.M. Merzenich, Environmental noise retards auditory corticaldevelopment. Science,2003.300(5618): p.498-502.
    54. Eggermont, J.J. and H. Komiya, Moderate noise trauma in juvenile cats results inprofound cortical topographic map changes in adulthood. Hear Res,2000.142(1-2): p.89-101.
    55. Harrison, R.V., D. Ibrahim, and R.J. Mount, Plasticity of tonotopic maps in auditorymidbrain following partial cochlear damage in the developing chinchilla. Exp Brain Res,1998.123(4): p.449-60.
    56. Izquierdo, M.A., et al., Non-plastic reorganization of frequency coding in the inferiorcolliculus of the rat following noise-induced hearing loss. Neuroscience,2008.154(1): p.355-69.
    57. Salvi, R.J., J. Wang, and D. Ding, Auditory plasticity and hyperactivity followingcochlear damage. Hearing research,2000.147(1-2): p.261-74.58Robertson, D. and D.R. Irvine, Plasticity of frequency organization in auditory cortex ofguinea pigs with partial unilateral deafness. J Comp Neurol,1989.282(3): p.456-71.
    59. Grigor, R.R., P.W. Spitz, and D.E. Furst, Salicylate toxicity in elderly patients withrheumatoid arthritis. J Rheumatol,1987.14(1): p.60-6.
    60. Halla, J.T. and J.G. Hardin, Salicylate ototoxicity in patients with rheumatoid arthritis: acontrolled study. Ann Rheum Dis,1988.47(2): p.134-7.61Sutter, M.L. and C.E. Schreiner, Physiology and topography of neurons with multipeakedtuning curves in cat primary auditory cortex. J Neurophysiol,1991.65(5): p.1207-26.
    62. Jastreboff, P.J., et al., Phantom auditory sensation in rats: an animal model for tinnitus.Behav Neurosci,1988.102(6): p.811-22.
    63. Eggermont, J.J. and L.E. Roberts, The neuroscience of tinnitus. Trends Neurosci,2004.27(11): p.676-82.
    64. Illing, R.B., et al., Auditory brainstem: development and plasticity of GAP-43mRNAexpression in the rat. J Comp Neurol,1999.412(2): p.353-72.
    65. Garraghty, P.E., et al., Receptor autoradiographic correlates of deafferentation-inducedreorganization in adult primate somatosensory cortex. J Comp Neurol,2006.497(4): p.636-45.
    66. Gong, N., et al., The aspirin metabolite salicylate enhances neuronal excitation in rathippocampal CA1area through reducing GABAergic inhibition. Neuropharmacology,2008.54(2): p.454-63.
    67. Guitton, M.J. and Y. Dudai, Blockade of cochlear NMDA receptors prevents long-termtinnitus during a brief consolidation window after acoustic trauma. Neural Plast,2007.2007: p.80904.
    68. Jastreboff, P.J. and C.T. Sasaki, An animal model of tinnitus: a decade of development.Am J Otol,1994.15(1): p.19-27.
    69. Nakagawa, T., et al., Ionic properties of IK,n in outer hair cells of guinea pig cochlea.Brain Res,1994.661(1-2): p.293-7.
    70. Jastreboff, P.J. and C.T. Sasaki, An animal model of tinnitus: a decade of development.Am J Otol,1994.15(1): p.19-27.71Morel, A., et al., Tonotopic organization in the medial geniculate body (MGB) of lightlyanesthetized cats. Exp Brain Res,1987.69(1): p.24-42.72Gaese, B.H. and J. Ostwald, Anesthesia changes frequency tuning of neurons in the ratprimary auditory cortex. J Neurophysiol,2001.86(2): p.1062-6.
    73. Chen, G.D. and P.J. Jastreboff, Salicylate-induced abnormal activity in the inferiorcolliculus of rats. Hear Res,1995.82(2): p.158-78.
    74. Yang, G., et al., Salicylate induced tinnitus: behavioral measures and neural activity inauditory cortex of awake rats. Hear Res,2007.226(1-2): p.244-53.
    75. Ochi, K. and J.J. Eggermont, Effects of salicylate on neural activity in cat primaryauditory cortex. Hear Res,1996.95(1-2): p.63-76.
    76. Wang, Z. and R.B. Silverman, Syntheses and evaluation of fluorinated conformationallyrestricted analogues of GABA as potential inhibitors of GABA aminotransferase. BioorgMed Chem,2006.14(7): p.2242-52.
    77. Sivaramakrishnan, S., et al., GABA(A) synapses shape neuronal responses to soundintensity in the inferior colliculus. J Neurosci,2004.24(21): p.5031-43.
    78. Wang, J., D. Ding, and R.J. Salvi, Functional reorganization in chinchilla inferiorcolliculus associated with chronic and acute cochlear damage. Hear Res,2002.168(1-2):p.238-49.
    79. Grant, S.M. and R.C. Heel, Vigabatrin. A review of its pharmacodynamic andpharmacokinetic properties, and therapeutic potential in epilepsy and disorders of motorcontrol. Drugs,1991.41(6): p.889-926.
    80. Sills, G.J., et al., Visual field constriction: accumulation of vigabatrin but not tiagabine inthe retina. Neurology,2001.57(2): p.196-200.
    81. Sills, G.J., et al., Vigabatrin, but not gabapentin or topiramate, produces concentration-related effects on enzymes and intermediates of the GABA shunt in rat brain and retina.Epilepsia,2003.44(7): p.886-92.
    82. Heim, M.K. and B.E. Gidal, Vigabatrin-associated retinal damage: potential biochemicalmechanisms. Acta Neurol Scand,2012.126(4): p.219-28.
    83. Eke, T., J.F. Talbot, and M.C. Lawden, Severe persistent visual field constrictionassociated with vigabatrin. BMJ,1997.314(7075): p.180-1.
    84. Jentsch, T.J., et al., Pathophysiology of KCNQ channels: neonatal epilepsy andprogressive deafness. Epilepsia,2000.41(8): p.1068-9.
    85. Gribkoff, V.K., The therapeutic potential of neuronal KCNQ channel modulators. ExpertOpin Ther Targets,2003.7(6): p.737-48.
    86.刘砚星,水杨酸钠对大鼠颞皮层神经元延迟整流钾通道的抑制作用.中国药理学通报,2011.27(4).
    87. Liu, Y. and X. Li, Effects of salicylate on transient outward and delayed rectifierpotassium channels in rat inferior colliculus neurons. Neurosci Lett,2004.369(2): p.115-20.
    88.王拥军,脑卒中神经保护剂治疗的研究进展.中国医疗前沿(上半月),2007(5).
    89. Salvi, R., E. Lobarinas, and W. Sun, Pharmacological Treatments for Tinnitus: New andOld. Drugs Future,2009.34(5): p.381-400.
    1. Fox, G.N. and M.T. Baer, Palatal myoclonus and tinnitus in children. West J Med,1991.154(1): p.98-102.
    2. Blasing, L., et al., Hypersensitivity to sound in tinnitus patients: an analysis of a constructbased on questionnaire and audiological data. Int J Audiol,2010.49(7): p.518-26.
    3. Viani, L.G., Tinnitus in children with hearing loss. J Laryngol Otol,1989.103(12): p.1142-5.
    4. Shetye, A. and V. Kennedy, Tinnitus in children: an uncommon symptom? Arch DisChild,2010.95(8): p.645-8.
    5. Hillier, L.W., Fulton, R.S., Fulton, L.A., et al.2003. The DNA sequence of humanchromosome7. Nature424,157-64.
    6. Burn, J., Williams syndrome. J Med Genet,1986.23(5): p.389-95.
    7. Martin, N.D., G.J. Snodgrass, and R.D. Cohen, Idiopathic infantile hypercalcaemia--acontinuing enigma. Arch Dis Child,1984.59(7): p.605-13.
    8. John, A.E. and C.B. Mervis, Sensory modulation impairments in children with Williamssyndrome. Am J Med Genet C Semin Med Genet,2010.154C(2): p.266-76.
    9. Gothelf, D., et al., Hyperacusis in Williams syndrome: characteristics and associatedneuroaudiologic abnormalities. Neurology,2006.66(3): p.390-5.
    10. Miani, C., et al., Treatment of hyperacusis in Williams syndrome with bilateralconductive hearing loss. Eur Arch Otorhinolaryngol,2001.258(7): p.341-4.
    11. Klein, A.J., et al., Hyperacusis and otitis media in individuals with Williams syndrome. JSpeech Hear Disord,1990.55(2): p.339-44.
    12. Rosenhall, U., et al., Autism and hearing loss. J Autism Dev Disord,1999.29(5): p.349-57.
    13. Orekhova, E.V., et al., Sensory gating in young children with autism: relation to age, IQ,and EEG gamma oscillations. Neurosci Lett,2008.434(2): p.218-23.
    14. Rubenstein, J.L. and M.M. Merzenich, Model of autism: increased ratio ofexcitation/inhibition in key neural systems. Genes Brain Behav,2003.2(5): p.255-67.
    15. Gomot, M., et al., Hypersensitivity to acoustic change in children with autism:electrophysiological evidence of left frontal cortex dysfunctioning. Psychophysiology,2002.39(5): p.577-84.
    16. Juul, J., M.L. Barrenas, and K.M. Holgers, Tinnitus and hearing in7-year-old children.Arch Dis Child,2012.97(1): p.28-30.
    17. Dawes, P.J. and D. Welch, Childhood hearing and its relationship with tinnitus at thirty-two years of age. Ann Otol Rhinol Laryngol,2010.119(10): p.672-6.
    18. Whelan, K., et al., Auditory complications in childhood cancer survivors: a report fromthe childhood cancer survivor study. Pediatric blood&cancer,2011.57(1): p.126-34.
    19. Keilmann, A., D. Hajioff, and U. Ramaswami, Ear symptoms in children with Fabrydisease: data from the Fabry Outcome Survey. Journal of inherited metabolic disease,2009.32(6): p.739-44.
    20. Toglia, J.U., P.E. Rosenberg, and M.L. Ronis, Vestibular and audiological aspects ofwhiplash injury and head trauma. Journal of forensic sciences,1969.14(2): p.219-26.
    21. Lee, G.S., et al., Clinical experience in diagnosis and management of superiorsemicircular canal dehiscence in children. The Laryngoscope,2011.121(10): p.2256-61.
    22. Savastano, M., G. Marioni, and C. de Filippis, Tinnitus in children without hearingimpairment. International journal of pediatric otorhinolaryngology,2009.73: p. S13-S15.
    23. Salvi, R.J., J. Wang, and D. Ding, Auditory plasticity and hyperactivity followingcochlear damage. Hear Res,2000.147(1-2): p.261-74.
    24. Jastreboff, P.J. and J.W. Hazell, A neurophysiological approach to tinnitus: clinicalimplications. Br J Audiol,1993.27(1): p.7-17.
    25. Eggermont, J.J. and L.E. Roberts, The neuroscience of tinnitus. Trends Neurosci,2004.27(11): p.676-82.
    26. Lockwood, A.H., et al., The functional neuroanatomy of tinnitus: evidence for limbicsystem links and neural plasticity. Neurology,1998.50(1): p.114-20.
    27. Wallhausser-Franke, E., et al., Expression of c-fos in auditory and non-auditory brainregions of the gerbil after manipulations that induce tinnitus. Exp Brain Res,2003.153(4):p.649-54.
    28. Mahlke, C. and E. Wallhausser-Franke, Evidence for tinnitus-related plasticity in theauditory and limbic system, demonstrated by arg3.1and c-fos immunocytochemistry.Hear Res,2004.195(1-2): p.17-34.
    29. Bast, T., W.N. Zhang, and J. Feldon, The ventral hippocampus and fear conditioning inrats. Different anterograde amnesias of fear after tetrodotoxin inactivation and infusion ofthe GABA(A) agonist muscimol. Exp Brain Res,2001.139(1): p.39-52.
    30. Buchel, C. and R.J. Dolan, Classical fear conditioning in functional neuroimaging. CurrOpin Neurobiol,2000.10(2): p.219-23.
    31. Davis, M. and P.J. Whalen, The amygdala: vigilance and emotion. Mol Psychiatry,2001.6(1): p.13-34.
    32. Moller, A.R., J.K. Kern, and B. Grannemann, Are the non-classical auditory pathwaysinvolved in autism and PDD? Neurological research,2005.27(6): p.625-9.
    33. Coelho, C.B., T.G. Sanchez, and R.S. Tyler, Tinnitus in children and associated riskfactors. Prog Brain Res,2007.166: p.179-91.
    34. Zheng, Y., et al., The Effects of Chronic Tinnitus Caused by Acoustic Trauma on SocialBehaviour and Anxiety in Rats. Neuroscience,2011.193: p.143-153.
    35. Cazals, Y., Auditory sensori-neural alterations induced by salicylate. Progress inneurobiology,2000.62(6): p.583-631.
    36. Sun, W., et al., Salicylate increases the gain of the central auditory system. Neuroscience,2009.159: p.325-334.
    37. Sun, W., et al., Salicylate increases the gain of the central auditory system. Neuroscience,2009.159(1): p.325-34.
    38. Gong, N., et al., The aspirin metabolite salicylate enhances neuronal excitation in rathippocampal CA1area through reducing GABAergic inhibition. Neuropharmacology,2008.54(2): p.454-63.
    39. Wang, H.T., et al., Sodium salicylate reduces inhibitory postsynaptic currents in neuronsof rat auditory cortex. Hearing research,2006.215(1-2): p.77-83.
    40. Wang, H.T., et al., Sodium salicylate suppresses serotonin-induced enhancement ofGABAergic spontaneous inhibitory postsynaptic currents in rat inferior colliculus in vitro.Hearing research,2008.236(1-2): p.42-51.
    41. Lu, J., et al., GABAergic neural activity involved in salicylate-induced auditory cortexgain enhancement. Neuroscience,2011.189: p.187-98.
    42. Syka, J. and N. Rybalko, Threshold shifts and enhancement of cortical evoked responsesafter noise exposure in rats. Hear Res,2000.139(1-2): p.59-68.
    43. Wang, J., R.J. Salvi, and N. Powers, Plasticity of response properties of inferiorcolliculus neurons following acute cochlear damage. J Neurophysiol,1996.75(1): p.171-83.
    44. Scholl, B. and M. Wehr, Disruption of balanced cortical excitation and inhibition byacoustic trauma. J Neurophysiol,2008.100(2): p.646-56.
    45. Sun, W., et al., Noise Exposure Enhances Auditory Cortex Response and SoundLoudness Perception. Brain Res,2012accepted.
    46. Chen, C.S., Acoustic trauma-induced developmental change in the acoustic startleresponse and audiogenic seizures in mice. Experimental neurology,1978.60(2): p.400-3.
    47. Henry, K.R., Unilateral Increase of Auditory Sensitivity following Early AuditoryExposure. Science,1972.176(4035): p.689-90.
    48. Sun, W., et al., Early age conductive hearing loss causes audiogenic seizure andhyperacusis behavior. Hear Res,2011.282(1-2): p.178-83.
    49. Robertson, D. and D.R. Irvine, Plasticity of frequency organization in auditory cortex ofguinea pigs with partial unilateral deafness. J Comp Neurol,1989.282(3): p.456-71.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700