增龄相关听力损失小鼠耳蜗和蜗神经核MeCP2、BDNF、Atoh1基因表达的初步研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:本研究在对不同月龄BALB/c小鼠听功能和耳蜗形态学研究的基础上,通过检测不同月龄小鼠耳蜗和蜗神经核中MeCP2、BDNF和Atoh1基因的表达特点,初步探讨其在年龄相关性听力损失中的作用,为进一步确定听觉老化的相关基因,探讨老年性耳聋发病的分子机制打下基础。
     方法:①通过听性脑干反应(ABR)测试、耳蜗毛细胞铺片/计数及扫描电镜等方法,对3、6、12和18月龄组小鼠8 kHz听反应阈及耳蜗毛细胞缺失和Corti器形态学变化进行对比研究。②应用免疫组化技术,检测不同月龄组小鼠耳蜗和蜗神经核组织中MeCP2蛋白的表达与分布情况。③应用Western blot技术,检测各月龄组小鼠耳蜗和蜗神经核中MeCP2的蛋白表达水平。④应用荧光定量逆转录多聚酶链反应(RT-PCR),对各月龄组小鼠耳蜗和蜗神经核中MeCP2、BDNF和Atoh1基因的mRNA表达水平进行检测。
     结果:①ABR检测显示3、6和12月龄组小鼠8 kHz听反应阂分别为(25±5.1)、(52±6.7)、(93±7.5)dB SPL,18月龄组120 dBSPL刺激声基本测不出听觉反应。耳蜗铺片毛细胞计数自6月龄组外毛细胞出现显著缺失,随月龄增加而加重,由底回逐渐向项回发展,至12月龄时耳蜗底回和中回外毛细胞几乎完全丧失,内毛细胞显著缺失。扫描电镜显示6月龄组小鼠耳蜗毛细胞静纤毛可见不同程度的缺失、转位、散乱、倒伏、融合、变短现象,随月龄增加而逐渐加重。②免疫组化染色:MeCP2蛋白在BALB/c小鼠耳蜗和蜗神经核中均有表达,主要为细胞核着色,随月龄增长,小鼠耳蜗和蜗神经核染色阳性程度变弱。③Western blot检测:四个不同月龄组小鼠耳蜗和蜗神经核组织中MeCP2蛋白表达浓度随年龄增长而减弱。④RT-PCR分析:MeCP2、BDNF和Atoh1基因的mRNA表达水平均随月龄增长逐渐下降。6、12、18月龄组mRNA及蛋白的表达的光密度比值明显低于3月龄组,各组间比较有统计学显著差异(P<0.01)。PCR产物测序及BLAST比较分析证实RT-PCR产物与目的基因mRNA序列完全一致。
     结论:①BALB/c小鼠听力损失、耳蜗毛细胞缺失和纤毛损害随年龄增长而逐渐加重。②MeCP2在小鼠耳蜗和蜗神经核组织中均有表达,主要表现为核表达,其表达水平呈增龄相关性减弱。③小鼠耳蜗和蜗神经核中MeCP2、BDNF、Atoh1基因mRNA表达水平随月龄增长而逐渐降低,三种基因的表达水平呈显著一致性。④MeCP2及其相关基因BDNF和Atoh1表现出增龄相关性表达减弱,它们可能在老年性耳聋的发病机制中起重要作用。
Objective:On the basis of auditory function measurements and cochlear morphological evaluation in BALB/c mice with different ages, in the present study,we attempt to investigate the characteristics of methyl-CpG-binding protein 2(MeCP2),brain-derived neurotrophic factor(BDNF) and atonal homolog 1(Atoh1) expressions in the cochlea and cochlear nuclei of BALB/c mice with different ages,so as to explore the possible roles of these genes on age-related hearing loss,and to lay a foundation for further analyzing the aging-related genes of auditory system and finding the molecular mechanisms of presbycusis.
     Method:①Through auditory brain stem response(ABR) measurements,cochlear surface preparation/hair cell counting and scanning electronic microscopy,the 8 kHz auditory thresholds,hair cell losses and morphological changes of organ of Corti were comparatively investigated in 3-,6-,12- and 18-month-old BALB/c mice.②The expression and distribution of MeCP2 protein in the cochlea and cochlear nuclei of BALB/c mice with different ages were detected and analyzed by means of immunohistochemical staining.③The levels of MeCP2 protein in the cochlea and cochlear nuclei of mice with different ages were detected and analyzed via Western blot assay.④Detection and analysis of the mRNA expression of MeCP2,BDNF and Atoh1 in the cochlea and cochlear nuclei were carryied out by RT-PCR on 3-,6-,12- and 18-month- old mice,respectively.
     Results:①ABR measurements demonstrated that auditory thresholds at 8 kHz in 3-,6- and 12-month-old mice were(25±5.1), (52±6.7) and(93±7.5) dB SPL,respectively.In eighteen-month-old mice, the 8 kHz auditory responses at 120 dB SPL could almost not be dectected.The outer hair cell(OHC) loss was mainly observed in the basal turn of the cochlea in 6-month-old mice and got deteriorated with increase of age.In 12-month-old mice,the whole OHCs were almost absent at basal and middle turn,and inner hair cells(IHC) were markedly missing.Scanning electronic microscopy showed that ultrastructural characteristics of the stereocilia On the outer and inner hair cells were short and disarrayed bundles,hair fusion and stereocilia bundles loss. These changes got aggravated with aging.②Immunohistochemical staining showed that MeCP2 expressed in both cochlea and cochlear nuclei of BALB/c mice,predominantly expressing in the cell nuclei.The positive staining became weaker following the age increase.③Western blot assay showed that the levels of MeCP2 protein in the cochlea and cochlear nuclei tissues of mice decreased with aging.④Results of RT-PCR demonstrated that the mRNA expression of MeCP2,BDNF and Atohl decreased as the age increasing.The optical density(OD) ratio of MeCP2,BDNF and Atoh1 was significantly lower in 6-,12- and 18-month-old mice than in 3-month-old mice.Statistics analysis showed that the mRNA expression between each two groups had a significant difference(p<0.01).Furthermore,it was verified that the gene sequence of mRNA was identical to that of RT-PCR by PCR and BLAST.
     Conclusion:①Hearing loss,hair cell missing and stereocilia bundle damage in BALB/c mice gradually become heavier with aging.②MeCP2 was expressed both in mouse cochlea and cochlear nuclei,predominantly expressing in cell nuclei,and the expression levels age-relatedly decreased.③The mRNA expression of MeCP2,BDNF and Atoh1 gradually decreased as the age increasing.The expression of those three genes was highly consistent.④Expression of MeCP2 and its related genes,BDNF and Atoh1,decrease following the age increasing, indicating that they may play an immportant role in the development of age-related hearing loss.
引文
[1]孔维佳.耳鼻咽喉科学(7年制)[M].第1版.北京:人民卫生出版社,2002,502.
    [2]施新猷.医用实验动物学[M].第1版.西安:陕西科学技术出版社,1989,116.
    [3]李胜利,郑庆印,闫利英,等.增龄相关听力丧失小鼠耳蜗毛细胞表型与基因突变的关系.西安交通大学学报(医学版),2004,25(6):534-537.
    [4]Zheng Q Y,Johnson KR.Hearing loss associated with the modifier of deaf waddler(mdfw) locus corresponds with age-related hearing loss in 12 inbred strains of mice.Hearing Research,2001,54(1-2):45-53.
    [5]Johnson KR,Zheng Q Y,Erway L C.A major gene affecting Age-related hearing loss is common to at least ten inbred strains of mice.Genomice,2000,70(2):171-180.
    [6]徐绍勤,彭斌,刘佳运,等.复聪片及其拆方拮抗庆大霉素耳毒性反应的实验研究.中国中西医结合杂志,1998,6:
    [7]FDA consumer magazine,May-June 2005 Issue.
    [8]王正敏,陆书昌.现代耳鼻咽喉科学[M].第1版.北京:人民军医出版社,2001,405-407.
    [9]Welsh LW,Welsh JJ,Healy MP,et al.Central presbycusis.Laryngoscope.1985,95(2):128-136.
    [10]Schuknecht HF,Gacek MR.Cochlear pathology in presbycusis.Ann Otol Rhinol Laryngol.1993,102:1-16.
    [11]Hwquembourg S,Liberman MC.Spiral ligament pathology:A major aspect of age-related cochlear degeneration in C57BL/6 mic.JARO,2001,2:118-129.
    [12]Felder E,Schrott-Fischer A.Quantitative evaluation of myelinated nerve fibres and hair cells in cochleae of humans with age-related high-tone hearing loss.Hear Res.1995 Nov,91(1- 2):19-32.
    [13]徐绍勤,刘佳运,彭斌,等.复聪片对老年大鼠蜗神经结构影响的实验研究.中国中西医结合耳鼻咽喉杂志,2001,9(1):6-8.
    [14]Frisina RD,Waltong JP.Aging of the mouse central auditory system,In;JF Willot JF,Handbook of mouse auditory research:From behavior to molecular biology,Boca raton:CRC press.2000,339-380.
    [15]Koehnke JD,Besing JM.The effects of aging on binaural and spatial hearing Semin Hear,2001,22:241-253.
    [16]Arnesen AR.Presbycusis-loss of neurous in the human cochlear nuclei.J Laryngol Otol.1982,96:503-511.
    [17]Felix H,Pouak A,Gleeson M.Degeneration pattern of human first-order cochlear neurons.Adv otorhinolaryngol,2002,59:116-123.
    [18]Willott JF,Parham K,Hunter KP.Comparison of the auditory sensitivity of neurons in the cochlear nucleus and inferior colliculus of young and aging C57BL/6J and CBA/J mice.Hearing Res,1991,53(1):78-94.
    [19]杜波,丁大连,蒋海燕,等.C57BL/10J小鼠内耳形态学观察.听力学及言语疾病杂志,2007,15(1):57-60.
    [20]Li HS,Barg E.Age-related loss of auditory sensitivity in two mouse genotypes Acta Otolaryngol(stockh),1991,111(5):827-834.
    [21]Idrizbegovic E,Salman H,Niu X,et al.Presbyacusis and calcium-binding protein immunoreactivity in the cochlear nucleus of BALB/c mice.Hear Res.2006,216:198-206.
    [22]方耀云,杨旭春,姜泗长,等.不同年龄大鼠耳蜗核细胞的定量观察.临床耳鼻咽喉科杂志,1997,3:99-102.
    [23]George Paxinos,Charles Watson.The rat brain instereotaxic coordinates.Academic press 1998.
    [24]颜子颖、王海林译.精编分子生物学实验指南[M].北京:科学出版社,1998,329-400.
    [25]颜子颖、王海林译.精编分子生物学实验指南[M].北京:科学出版社,1998,696-795.
    [26]颜子颖、王海林译.精编分子生物学实验指南[M].北京:科学出版社,1998,120-126
    [27]MAZIN A L.Life span prediction from the rate of age-related DNA demethylation in normal and cancer cell lines.Exp Gerontol,1995,30(5):475-484.
    [28]陈培利,童坦君,张宗玉.DNA去甲基化引起人二倍体成纤维细胞端区缩短并加速衰老进程.北京大学学报·医学版,2001,33:42-45.
    [29]Ray D,Wu A,Wilkinson JE,et al.Aging in heterozygous Dnmtl-deficient mice:effects on survival,the DNA methylation genes,and the development of amyloidosis.J Gerontol A Biol Sci Med Sci.2006,61(2):115-124.
    [30]Vilain A,Apiou F,Vogt N,et al.Assignment of the gene for methyl-CpG -binding protein 2(MeCP2) to human chromosome band Xq28 by in situ hybridization.Cytogenet Cell Genet,1996,74(4):293-294.
    [31]Webb T,Latif F.Rett syndrome and the MECP2 gene.J Med Genet,2001,38(4):217-223.
    [32]Van Den Veyver IB,Zoghbi HY.Genetic basis of Rett syndrome.Mental Retard Dev Dis,2002,8(2):82-86.
    [33]Nan X,Campoy FJ,Bird A.MeCP2 is a transcriptional repressor with abundant binding sites in genomic chromatin.Cell,1997,88(4):471-481.
    [34]Majumder S,Ghoshal K,Datta J,et al.Role of de novo DNA methyltransferases and methyl-CpG-binding proteins in gene silencing in a rat hepatoma.J Biol Chem,2002,277(18):16048-16058.
    [35]Kimura H,Shiota K.Methyl-CpG-binding protein,MeCP2,is a target molecule for maintenance DNA methyltransferase.Dnmt1,J Biol Chem,2003,278(7):4806-4812.
    [36]Cassel S,Carouge D,Gensburger C,et al.Fluoxetine and cocaine induce the epigenetic factors MeCP2 and MBD1 in adult rat brain.Mol Pharmacol.2006,70(2):487-492.
    [37]Weindruch R,Kayo T,Lee CK,et al.Gene expression profiling of aging using DNA microarrays.Mech Ageing Dev.2002,123:177-193.
    [38]Yung R,Ray D,Eisenbraun JK,et al.Unexpected effects of a heterozygous dnmt1 null mutation on age-dependent DNA hypomethylation and autoimmunity. J Gerontol A Biol Sci Med Sci. 2001, 56 (6) : B268 - B276.
    [39] Young JI, Hong EP, Castle JC, et al. Regulation of RNA splicing by the methylation-dependent transcriptional repressor methyl-CpG binding protein 2.Proc Natl Acad Sci USA. 2005, 102(49): 17551- 17558.
    [40] Moretti P, Zoghbi HY. MeCP2 dysfunction in Rett syndrome and related disorders. Curr Opin Genet Dev. 2006, 16(3): 276 - 281.
    [41] Chen RZ, Akbarian S, Tudor M, et al. Deficiency of methyl-CpG binding protein-2 in CNS neurons results in Rett-like phenotype in mice. Nat Genetics, 2001, 27 (3): 327-331.
    [42] Jung BP, Jugloff DG, Zhang G, et al. The expression of methyl CpG binding factor MeCP2 correlates with cellular differentiation in the developing rat brain and in cultured cells. J Neurobiol. 2003, 55(1): 86 - 96.
    [43] Shahbazian MD, Antalffy B, Armstrong DL, et al. Insight into Rett syndrome: MeCP2 levels display tissue and cell specific differences and correlate with neuronal maturation. Hum Mol Genet, 2002, 11 (2): 115 - 124.
    [44] Zhang YZ, Wang HS, Pan H, et al. Knocking down rat Mecp2 expression by RNAi. Beijing Da Xue Xue Bao. 2006, 38 (5): 529 - 532.
    [45] Couvert P, Bienvenu T, Aquaviva C, et al. MeCP2 is highly mutated in X-linked mental retardation. Hum Mol Genet, 2001,10(9): 941- 946.
    [46] Bernard D, Gil J, Dumont P, et al. The methyl-CpG-binding protein MECP2 is required for prostate cancer cell growth. Oncogene. 2006, 25(9): 1358 - 1366.
    [47] Karlawish JH, Clark CM. Diagnostic evaluation of elderly patients with mild memory problems. Ann Intern Med. 2003, 138: 411- 419.
    [48] Rosenzweig ES, Barnes CA. Impact of aging on hippocampal function: plasticity, network dynamics, and cognition. Prog Neurobiol.2003, 69: 143- 179.
    [49] Richardson B. Impact of aging on DNA methylation.Ageing Res Rev.2003, 2: 245-261.
    [50] Thoenen H. The changing scene of neurotrophic factors.Trends Neurosci, 1991, 14: 165 -170.
    [51] Persson H, Ibanez C F. Role and expression of neurotrophins and trk family of tyrosine kinase receptors neural growth and rescue after injury.Curr Opin Neur Neurosurg,1993,6:11-18.
    [52]Avila MS,Varela-NietoI,Romero G,etal.Brain-derived neurotrophic factor and neurotrophin-3 support the survival and neuritogenesis response of developing cochleovestibular ganglion neurons.Dev Biol,1993;159:266.
    [53]R(u|¨)ttiger L,Panford-Walsh R,Schimmang T,et al.BDNF mRNA expression and protein localization are changed in age-related hearing loss.Neurobiol Aging.2007,28(4):586-601.
    [54]李玉茹,刘得龙,张媛媛,等.脑衍生的神经营养因子及其受体trk B在老年性大鼠耳蜗中的表达.临床耳鼻咽喉科杂志.2006,20(19):894-895.
    [55]Martinowich K,Hattori D,Wu H.DNA methylation-related chromatin remodeling in activity-dependent BDNF gene regulation.Science,2003,302(5646):890-893.
    [56]Chen WG,Chang Q,Lin Y,et al.Derepression of BDNF transcription involves calcium-dependent phosphorylation of MeCP2.Science.2003,302(5646):885-889.
    [57]Klose RJ,Sarraf SA,Schmiedeberg L,et al.DNA Binding Selectivity of MeCP2Due to a Requirement for A/T Sequences Adjacent to Methyl-CpG.Mol Cell.2005,19(5):667-678.
    [58]Abuhatzira L,Makedonski K,Kaufman Y.MeCP2 deficiency in the brain decreases BDNF levels by REST/CoREST-mediated repression and increases TRKB production.Epigenetics.2007,2(4):214-222.
    [59]Bermingham NA,Hassan BA,Price SD,et al.Math1:An Essential Gene for the Generation of Inner Ear Hair Cells.Science(S0036-8075),1999,284:1837-1841.
    [60]Woods C,Montcouquill M,Kelley MW.Mathl Regulates Development of the Sensory Epithelium in the Mammalian Cochlea.Nature Neurosci(S1097-6256),2004,7(12):1310-1318.
    [61]Chen P,Johnson JE,Zoghbi HY,et al.The role of Mathl in inner ear development:uncoupling the establishment of the senesory prinordium from hair cell fate determination. Development(S0950 - 1991), 2002,129 : 2495 - 2505.
    [62] Bermingham NA, Hassan BA, Wang VY, et al. Proprioceptor pathway development is dependent on Mathl. Neuroscience(S0306 - 4522), 2001, 30 (2): 411-422.
    [63] Xiang M, Gan L, Li D, et al. Essential role of POU-domain factor Brn-3c in auditory and vestibular hair cell development. Proc Natl Acad Sci USA ( S0027 -8424)1997,94:9445-9450.
    [64]Erkman L, McEvilly RJ, Luo L, et al. Role of transcription factors Brn-3.1 and Brn-3. 2 in auditory and visual system development. Nature (S0028 - 0836), 1996, 381 : 603 - 606.
    [65] Zheng JL, Gao WQ. Overexpression of Mathl induces robust production of extra hair cells in postnatal rat inner ears. Nature Neurosci (S1097 - 6256) , 2000, 3: 580-586.
    [66] Kawamoto K, Ishimoto SI, Minoda R, et al. Mathl gene transfer generates new cochlear hair cells in mature guinea pigs in vivo. J Neurosci ( S0270 - 6474), 2003,23:4395-4400.
    [67] Izumikawa M, Minoda R, Kawamoto K, et al. Auditory hair cell replacement and hearing improvement by Atohl gene therapy in deaf mammals. Nature Medicine (S1078 - 8956), 2005,11 (3): 271 - 276.
    [1] Wang K-R, Xue S-B, Liu H-T. Cell biology [M ]. Beijing: High Education Press, 1998. 216-235.
    [2] Nan X, Meehan RR, Bird A. Dissection of the methyl-CpG binding domain from the chromosomal protein MeCP2. Nucleic Acids Res, 1993, 21(21): 4886- 4892.
    [3] Vilain A, Apiou F, Vogt N, et al. Assignment of the gene for methyl- CpG- binding protein 2 (MeCP2) to human chromosome band Xq28 by in situ hybridization. Cytogenet Cell Genet, 1996, 74(4): 293-294.
    [4] Webb T, Latif F. Rett syndrome and the MECP2 gene. J Med Genet, 2001, 38 (4): 217-223.
    [5] Van Den Veyver IB, Zoghbi HY. Genetic basis of Rett syndrome. Mental Retard DevDis, 2002, 8 (2): 82-86.
    [6] Free A, Wakefield RI, Smith BO. DNA recognition by the methyl-CpG binding domain of MeCP2. J Biol Chem, 2001, 276(5): 3353-3360.
    [7] Jung BP, Jugloff DG, Zhang G, et al. The expression of methyl CpG binding factor MeCP2 correlates with cellular differentiation in the developing rat brain and in cultured cells. J Neurobiol, 2003, 55(1): 86-96.
    [8] Shahbazian MD, AntalffyB, Armstrong DL, et al. Insight into Rett syndrome: MeCP2 levels display tissue- and cell- specific differences and correlate with neuronal maturation. Hum Mol Genet, 2002, 11 (2): 115-124.
    [9] Zhang YZ, Wang HS, Pan H, et al. Knocking down rat Mecp2 expression by RNAi[J]. Beijing Da Xue Xue Bao, 2006, 38(5): 529-532.
    [10] Mullaney BC, Johnston MV,Blue ME.Developmental expression of methyl-CpG binding protein 2 is dynamically regulated in the rodent brain. Neuroscience,2004,123(4): 939-949.
    [11] Luikenhuis S, Giacometti E, Beard CF, et al.Expression of MeCP2 in postmitotic neurons rescues Rett syndrome in mice. Proc Natl Acad Sci USA, 2004,101(16): 6033-6038.
    [12] Nan X, Campoy FJ, Bird A. MeCP2 is a transcriptional repressor with abundant binding sites in genomicchromatin.Cell, 1997, 88(4): 471-481.
    [13] Martinowich K, Hattori D, Wu H. DNA methylation-related chromatin remodeling in activity- dependent BDNF gene regulation. Science, 2003, 02(5646): 890-893.
    [14] Kimura H, Shiota K. Methyl-CpG-binding protein, MeCP2, is a target molecule for maintenance DNA methyltransferase. J Biol Chem, 2003, 278(7): 4806-4812.
    [15] Majumder S, Ghoshal K, Datta J, et al. Role of de novo DNA methyltransferases and methy1-CpG-binding proteins in gene silencing in a rat hepatoma. J Biol Chem, 2002, 277(18): 16048-16058.
    [16] Cassel S, Carouge D, Gensburger C, et al. Fluoxetine and cocaine induce the epigenetic factors MeCP2 and MBD1 in adult rat brain. Mol Pharmacol, 2006, 70(2): 487-492.
    [17] Young JI, Hong EP, Castle JC, et al. Regulation of RNA splicing by the methylation-dependent transcriptional repressor methy1-CpG binding protein 2. Proc Natl Acad Sci USA, 2005, 102(49): 17551-17558.
    [18] Moretti P, Zoghbi HY. MeCP2 dysfunction in Rett syndrome and related disorders. Curr Opin Genet Dev, 2006, 16(3): 276-281.
    [19] Chen RZ, Akbarian S, Tudor M, et al. Deficiency of methy1-CpG binding protein-2 in CNS neurons results in Rett-like phenotype in mice. Nat Genetics,2001, 27 (3): 327-331.
    [20] Amir RE, Van den Veyver IB, Wan M, et al. Rett syndrome is caused by mutations on X-linked MECP2, encoding methyl-CpG-binding protein 2. Nat Genet, 1999, 23(2): 185-188.
    [21] Huppke P, Held M, Laccone F, et al. The spectrum of phenotypes in females with Rett Syndrome.Brain Dev, 2003, 25(3): 346-351.
    [22] Kriaucionis S, Bird A. DNA methylation and Rett syndrome. Hum Mol Genet, 2003, 12(2): R221-227.
    [23] Lee SS, Wan M, Francke U. Spectrum of MeCP2 mutations in Rett syndrome. Brain Dev, 2001, (Suppl 1): S138-143.
    [24] Cheadle JP, Gill H, Fleming N, et al. Long-read sequence analysis of the MeCP2 gene in Rett Syndrome patients : correlation of disease severity with mutation type and location. Hum Mol Genet, 2000, 9 (7): 1119-1129.
    [25] Huppke P, Held M, Hanefeld F, et al. Influence of mutation type and locaton on phenotype in 123 patients with Rett syndrome . Neuropediatrics, 2002, 33(2) : 63-68.
    [26] Shahbazian M, Young J, Yuve-Paylor L, et al. Mice with truncated MeCP2 recapitulate many Rett syndrome features and display hyperacetylation of histone H3. Neuron, 2002, 35 (2): 243-254.
    [27] Moretti P, Levenson JM, Battaglia F, et al. Learning and memory and synaptic plasticity are impaired in a mouse model of Rett syndrome. J Neurosci, 2006, 26(1): 319-327.
    [28] Alvarez-Saavedra M, S(?)ez MA, Kang D, Cell-specific expression of wild-type MeCP2 in mouse models of Rett syndrome yields insight about pathogenesis.Hum Mol Genet, 2007,16(19): 2315-2325.
    [29] Pillion JP, Rawool VW, Bibat G, et al. Prevalence of hearing loss in Rett syndrome. Dev Med Child Neurol, 2003, 45(5): 338-343.
    [30] Couvert P, Bienvenu T, Aquaviva C, et al. MeCP2 is highly mutated in X-linked mental retardation. Hum Mol Genet, 2001,10(9): 941-946.
    [31] Samaco RC, Fryer JD, Ren J, et al. A partial loss of function allele of methyl-CpG-binding protein 2 predicts a human neurodevelopmental syndrome. Hum Mol Genet, 2008, 17(12): 1718-1727.
    [32] Samaco RC, Nagarajan RP, Braunschweig D, et al. Multiple pathways regulate MeCP2 expression in normal brain development and exhibit defects in autism-spectrum disorders. Hum Mol Genet, 2004, 13(6): 629-639.
    [33] Zoghbi HY. MeCP2 dysfunction in humans and mice. J Child Neurol, 2005, 20(9): 736-740
    [34] Nagarajan RP, Hogart AR, Gwye Y, et al. Reduced MeCP2 expression is frequent in autism frontal cortex and correlates with aberrant MECP2 promoter methylation.Epigenetics,2006,1(4):e1-11.
    [35]Zhao X,Pak C,Smrt RD,et al.Epigenetics and Neural developmental disorders.Epigenetics,2007,2(2):126-134.
    [36]Giacometti E,Luikenhuis S,Beard C,et al.Partial rescue of MeCP2 deficiency by postnatal activation of MeCP2.Proc Natl Acad Sci USA,2007,104(6):1931-1936.
    [37]Yung R,Ray D,Eisenbraun JK,et al.Unexpected effects of a heterozygous dnmt1 null mutation on age-dependent DNA hypomethylation and autoimmunity.J GerontolA Biol Sci Med Sci,2001,56(6):B268-B276.
    [38]Mazin AL.Life span prediction from the rate of age-related DNA demethylation in normal and cancer cell lines.Exp Gerontol,1995,30(5):475-484.
    [39]陈培利,童坦君,张宗玉.DNA去甲基化引起人二倍体成纤维细胞端区缩短并加速衰老进程.北京大学学报·医学版,2001,33:42-45.
    [40]Weindruch R,Kayo T,Lee CK,et al.Gene expression profiling of aging using DNA microarrays.Mech Ageing Dev,2002,123:177-193.
    [41]Bernard D,Gil J,Dumont P,et al.The methyl-CpG-binding protein MECP2 is required for prostate cancer cell growth.Oncogene,2006,25(9):1358-1366.
    [42]Karlawish JH,Clark CM.Diagnostic evaluation of elderly patients with mild memory problems.Ann Intern Med,2003,138:411-419.
    [43]Rosenzweig ES,Barnes CA.Impact of aging on hippocampal function:plasticity,network dynamics,and cognition.Prog Neurobiol,2003,69:143-179.
    [44]Richardson B.Impact of aging on DNA methylation.Ageing Res Rev,2003,2:245-261.
    [45]Ray D,Wu A,Wilkinson JE,et al.Aging in heterozygous Dnmt1-deficient mice:effects on survival,the DNA methylation genes,and the development of amyloidosis.J GerontolA Biol Sci Med Sci,2006,61(2):115-124.
    [46]Chen WG,Chang Q,Lin Y,et al.Derepressionof BDNF transcription involves calcium-dependent phosphorylation of MeCP2.Science,2003,302(5646):885-889.
    [47]Zhou Z,Hong EJ,Cohen S,Brain-specific phosphorylation of MeCP2 regulates activity-dependent Bdnf transcription,dendritic growth,and spine maturation.Neuron,2006,52(2):255-269
    [48]Klose RJ,Sarraf SA,Schmiedeberg L,et al.DNA binding selectivity of MeCP2due to a eequirement for A/T sequences adjacent to methyl-CpG.Mol Cell,2005,19(5):667-678.
    [49]Chang Q,Khare G,Dani V,et al.The disease progression of Mecp2 mutant mice is affected by the level of BDNF expression.Neuron,2006,49(3):341-348
    [50]Wang H,Chan SA,Ogier M.Dysregulation of brain-derived neurotrophic factor expression and neurosecretory function in Mecp2 null mice.J Neurosci,2006;26(42):10911-10915.
    [51]Ogier M,Wang H,Hong E,et al.Brain-derived neurotrophic factor expression and respiratory function improve after ampakine treatment in a mouse model of Rett syndrome.J Neurosci.2007,27(40):10912-10917
    [52]Abuhatzira L,Makedonski K,Kaufman Y.MeCP2 deficiency in the brain decreases BDNF levels by REST/CoREST-mediated repression and increases TRKB production.Epigenetics,2007,2(4):214-222.
    [53]R(u|¨)ttiger L,Panford-Walsh R,Schimmang T,et al.BDNF mRNA expression and protein localization are changed in age-related hearing loss.Neurobiol Aging,2007,28(4):586-601.
    [54]李玉茹,刘得龙,张媛媛,等.脑衍生的神经营养因子及其受体trk B在老年性大鼠耳蜗中的表达.临床耳鼻咽喉科杂志,2006,20(19):894-895.
    [55]Deng V,Matagne V,Banine F,et al.FXYD1 is an MeCP2 target gene overexpressed in the brains of Rett syndrome patients and Mecp2-null mice.Human Molecular Genetics,2007,16(6):640-650.
    [56]Jordan C,Li HH,Kwan HC,et al.Cerebellar gene expression profiles of mouse models for Rett syndrome reveal novel MeCP2 targets.BMC Med Genet.2007,8:36
    [57]Itoh M,Ide S,Takashima S,et al.Methyl CpG-binding protein 2(a mutation of which causes Rett syndrome) directly regulates insulin-like growth factor binding protein 3 in mouse and human brains. J Neuropathol Exp Neurol, 2007, 66(2): 117-123.
    [58] Peddada S, Yasui DH, LaSalle JM. Inhibitors of differentiation (ID1, ID2, ID3 and ID4) genes are neuronal targets of MeCP2 that are elevated in Rett syndrome. Hum Mol Genet, 2006,15(12): 2003-2014.
    [59] Samaco RC, Hogart A, LaSalle JM. Epigenetic overlap in autism-spectrum neurodevelopmental disorders: MECP2 deficiency causes reduced expression of UBE3A and GABRB3. Hum Mol Genet. 2005,14(4): 483-492.
    [60] Lawson-Yuen A, Liu D, Han L, et al. Ube3a mRNA and protein expression are not decreased in Mecp2R168X mutant mice. Brain Res, 2007,1180:1-6.
    [61] Nuber UA, Kriaucionis S, Roloff TC, et al. Up-regulation of glucocorticoid- regulated genes in a mouse model of Rett syndrome. Hum Mol Genet, 2005, 14(15): 2247-2256.
    [62] Lin C, Franco B, Rosner MR. CDKL5/Stk9 kinase inactivation is associated with neuronal developmental disorders. Hum Mol Genet. 2005,14(24): 3775-3786.
    [63] Mari F, Azimonti S, Bertani I, et al. CDKL5 belongs to the same molecular pathway of MeCP2 and it is responsible for the early-onset seizure variant of Rett syndrome. Hum Mol Genet. 2005,14(14): 1935-1946.
    [64] Rosas-Vargas H, Bahi-Buisson N, Philippe C, et al. Impairment of CDKL5 nuclear localization as a cause for severe infantile encephalopathy. J Med Genet, 2008, 45(3): 172-178.
    [1]孔维佳.耳鼻咽喉科学(7年制)[M].第1版.北京:人民卫生出版社,2002.502
    [2]FDA consumer magazine,May-June 2005 Issue.
    [3]王正敏,陆书昌.现代耳鼻咽喉科学[M].第1版.北京:人民军医出版社,2001.405-407.
    [4]Schuknecht HF,Gacek MR.Cochlear pathology in presbyacusis.Ann Otol Rhinol Laryngol,1993,102:1-16.
    [5]Gates GA,Feeney MP,Higdon RJ.Word recognition and the articulation index in older listeners with probable age-related auditory neuropathy.J Am Acad Audiol,2003,14(10):574-581.
    [6]张守知,等.老年前期与老年期听觉脑干反应的观察.中华医学杂志,1986,66:614.
    [7]Dai P,Yang W,Jiang S et al.The effects of aging and hearing loss on distortion product otoacoustic emissions.Acta otolaryngol,2004,124(2):130-136.
    [8]Namyslowski G,Morawski K,Urbaniec P et al.The 2f1-f2 DPOAE amplitudes and latencies in the groups of older people with presbyacusis and young people with normal hearing.Otolaryngol Pol,2000,54(4):423-429.
    [9]Chandler JR.Partial occlusion of the external auditory meatus:its effect upon air and bone conduction hearing acuity.Laryngoscope,1964,74:22-45.
    [10]Rosenwasser H.Otic problems in the aged.Geriatrics,1964,19:11-17
    [11]Feeney MP,Sanford CA.Age effects in the human middle ear:wideband acoustical measures.J Acoust Soc Am,2004,116(6):3546-3558.
    [12]Guimaraes P,Zhu X,Cannon T,et al.Sex differences in distortion product otoacoustic emissions as a function of age in CBA mice.Hear Res,2004,192(1-2):83-89
    [13]Spongr VP,Flood DG,Frisina RD,et al.Quantitative measures of hair cell loss in CBA and C57BL/6 mice throughout their life spans.J Acoust Soc Am,1997,101:3546.
    [14]Willott JF,Parham K,Hunter KP.Comparison of the auditory sensitivity of neurons in the cochlear nucleus and inferior colliculus of young and aging C57BL/6J and CBA/J mice.Hearing Res,1991,53:78.
    [15]Li HS,Barg E.Age-related loss of auditory sensitivity in two mouse genotypes.Acta Otolaryngol(stockh),1991,111:827-834.
    [16]Wenngren BI,Anniko M.Aber rant frequency tuning and early stereociliary derangement in genetic inner ear disease.Acta Otolaryngo,1990,109:202-212.
    [17]李胜利,郑庆印,闫利英,等.增龄相关听力丧失小鼠耳蜗毛细胞表型与基因突变的关系.西安交通大学学报(医学版),2004,25(6):534-537.
    [18]杜波,丁大连,蒋海燕,等.C57BL/10J小鼠内耳形态学观察.听力学及言语疾病杂志,2007,15(1):57-60.
    [19]Hwquembourg S,Liberman MC,Spiral ligament pathology:A major aspect of age-related cochlear degeneration in C57BL/6 mic.JARO,2001,2:118-129.
    [20]Welsh LW,Welsh JJ,Healy MP,et al.Central presbycusis.Laryngoscope,1985,95(2):128-136.
    [21]Chisolm TH,Willott JF,Lister JL.The aging auditory system:anatomic and physiologic changes and implications for rehabilitation.Int J Audiol 2003,42:2S3-10.
    [22]Kazee AM,Han LY,SpongrVP.et al.Synaptic loss in the central nucleus of the inferior colliculus correlates with sensor ineural hearing loss in the C57BL/6mouse model of presbycusis.Hear Res.1995,89(1-2):109-120.
    [23]Arnesen AR.Presbycusis-loss of neurous in the human cochlear nuclei.J Laryngol Otol,1982,96:503-511
    [24]方耀云,杨旭春,姜泗长,等.不同年龄大鼠耳蜗核细胞的定量观察.临床耳鼻咽喉科杂志,1997,11(3):99-102.
    [25]Frisina RD,Waltong JP.Aging of the mouse central auditory system,In:JF Willot JF,Handbook of mouse auditory research:From behavior to molecular biology,Boca raton:CRC press.2000,339-380.
    [26]McFadden SL,Ding D,Salvi R.Anatomical metabolic and genetic aspects of age-related hearing loss in mice.Audiology,2001,40(6):313-321.
    [27]Thoenen H.The changing scene of neurotrophic factors.Trends Neurosci,1991,14:165-170.
    [28]Persson H,Ibanez CF.Role and expression of neurotrophins and trk family of tyrosine kinase receptors neural growth and rescue after injury.Curr Opin Neur Neurosurg,1993,6:11-18.
    [29]Avila MS,Varela-NietoI,Romero G,etal.Brain-derived neurotrophic factor and neurotrophin-3 support the survival and neuritogenesis response of developing cochleovestibular ganglion neurons.DevBiol,1993,159:266.
    [30]孙建军.神经生长因子家族与外周听觉神经系统.中华耳鼻咽喉科杂志,1997,32(5):311-314
    [31]李玉茹,刘得龙,张媛媛,等.脑衍生的神经营养因子及其受体trk B在老年性大鼠耳蜗中的表达.临床耳鼻咽喉科杂志,2006,20(19):894-895.
    [32]R(u|¨)ttiger L,Panford-Walsh R,Schimmang T,et al.BDNF mRNA expression and protein localization are changed in age-related hearing loss.Neurobiol Aging,2007,28(4):586-601.
    [33]Bermingham NA,Hassan BA,Price SD,et al.Mathl:an essential gene for the generation of inner ear hair cells.Science(S0036-8075),1999,284:1837- 1841.
    [34]Woods C,Montcouquioll M,Kelley MW.Math1 regulates development of the sensory epithelium in the mammalian cochlea.Nature.Neuroscience(S1097-6256),2004,7(12):1310-1318.
    [35]Chen P,Johnson JE,Zoghbi HY,et al.The role of Mathl in inner ear development:uncoupling the establishment of the senesory prinordium from hair cell fate determination.Development(S0950 - 1991),2002,129:2495-2505.
    [36]Bermingham NA,Hsaasa BA,Wang VY,et al.Proprioceptor pathway development is dependent on Math1.Neuro(S0306-4522),2001,30(2):411-422.
    [37]Xiang M,Gan L,Li D,et al.Essential role of POU-domain factor Brn-3c in auditory and vestibular hair cell development.Proc Natl Acad Sci USA(S0027-8424),1997,94:9445-9450.
    [38] Erkman L, McEvilly RJ, Luo L, et al. Role of transcription factors Brn-3.1 and Brn-3.2 in auditory and visual system development. Nature (S0028-0836), 1996, 381: 603-606.
    [39] Vahava 0, Morell R, Lynch, ED, et al. Mutation in transcription factor POU4F3 associated with inherited progressive hearing loss in humans. Science (S0036 - 8075), 1998, 279:1950-1954.
    [40] Zheng JL, Gao WQ. Overexpression of Mathl induces robust production of extra hair cells in postnatal rat inner ears. Nat ure Neurosci (S1097-6256), 2000, 3: 580-586.
    [41] Kawamoto K, Ishimoto SI, Minoda R, et al. Mathl gene transfer generates new cochlear hair cells in mature guinea pigs in vivo. J Neurosci (S0270-6474), 2003, 23: 4395-4400.
    [42] Izumikawa M, Minoda R, Kawamoto K, et al. Brough Yehoash Raphael auditory hair cell replacement and hearing improvement by Atoh 1 gene therapy in deaf mammals. Nature Medicine (S1078-8956), 2005, 11 (3): 271-276
    [43] Kurima K, Peters LM, Yang Y, et al. Dominant and recessive deafness caused by mutations of a novel gene, TMC1, required for cochlear hair-cell function. Nat Genet, 2002, 30: 277-284.
    [44] Vreugde S, Erven A, Kros CJ, et al. Beethoven, a mouse model for dominant, progressive hearing loss DFNA36. Nat Genet, 2002, 30: 257-258.
    [45]Verpy E, Leibovici M, Zwaenepoel I, et al. A defect in harmonin, a PDZ domain-containing protein expressed in the inner ear sensory hair cells, underlies Usher syndrome type 1C. Nat Genet, 2000, 26: 51-55.
    [46] Johnson KR, Gagnon LH, Lisa S, et al. Mouse models of USH1C and DFNB18: phenotypic and molecular analyses of two new spontaneous mutations of the Ushlc gene. Human Molecular Genetics, 2003,12(23): 3075-3086
    [47] Johnson KR, Erway LC, Cook SA, et al. A major gene affecting age-related hearing loss in C57BL/6J mice. Hear Res, 1997,114(1-2): 83-92.
    [48] Johnson KR, Zheng QY, Erway LC. A major gene affecting age-related hearing loss is common to at least ten inbred stains of mice. Genomics, 2000, 70(2): 171-180.
    [49] Zheng QY, Johnson KR. Hearing loss associated with the modifier of deaf waddle(mdfw) locus corresponds with age-related hearing loss in 12 inbred strains of mice. Hear Res, 2001, 15 4(1-2): 45-53.
    [50] Noben-Trauth K, Zheng QY, Johnson KR. Association of cadherin 23 with polygenic inheritance and genetic modification of sensorineural hearing loss. Nat Genet, 2003, 35(1): 21-23.
    [51] Di Palma F, Holme RH, Bryds EC, et al. Mutations in Cdh23,encoding a new type of cadherin, cause stereocilia disorganization in waltzer, the mouse model for Usher syndrome type ID. Nat Genet, 2001, 27(1): 103-107.
    [52] Davia RR, Kozel P, Erway LC. Genetic influences in individual susceptibility to noise:a review. Noise Health, 2003, 5(20): 19-28.
    [53] Sliwiniska-Kowalska M, Pawelczyk M, Kowalski TJ. Genetic factors in susceptibility to age- and noise-related hearing loss. Pol Merkur Lekarski. 2006, 21(124): 384-388.
    [54] Johnson KR, Zheng QY. Ahl2, a second locus affecting age-related hearing loss in mice. Genomics, 2002, 80(5): 461-464. ]
    [55] Nemoto M, Morita Y, Mishima Y, et al. Ahl3, a third locus on mouse chromosome 17 affecting age-related hearing loss. Biochem Bilphys Res Commun, 2004, 324(4): 1283-1288.
    [56] Morita Y, Hirokawa S, Kikkawa Y,et al. Fine mapping of Ahl3 affecting both age-related and noise-induced hearing loss. Biochem Biophys Res Commun. 2007, 355(1): 117-121.
    [57] Kikuchi T, Adams JC, Miyabe Y, et al. Potassium ion recycling pathway via gap junction systems in the mammalian cochlea and its interruption in heredity nonsyndromic deafenss. Med Electorn Micorsc, 2000, 33: 51-56.
    [58] Kelsell DP, Dunlop J, Stevens HP, et al. Connexin 26 mutations in hereditary non-syndormic sensorineural deafness. Nature, 1997, 387: 80-83.
    [59] Gasparini P, Rabionet R, Barbujani G, et al.Genetic analysis consortium of GJB2 35delG high carrier frequency of the 35delG deafness mutation in european populations.Eur J Hum Genet,2000,8:19-23.
    [60]Van Eyken E,Van Laer L,Fransen E,et al.KCNQ4:a gene for age-related hearing impairment? Hum Mutat.2006,27(10):1007-1016
    [61]Tadros SF,D'Souza M,Zettel ML,et al.Glutamate-related gene expression changes with age in the mouse auditory midbrain.Brain Res.2007,1127(1):1-9.
    [62]Lopez IA,Acuna D,Galbraith G,et al.Time course of auditory impairment in mice lacking the electroneutral sodium bicarbonate cotransporter NBC3(slc4a7).Brain Res Dev Brain Res,2005 Nov 7,160(1):63-77.
    [63]Unal M,Tamer L,Dogruer ZN,et al.N-acetyltransferase 2 gene polymorphism and presbycusis.Laryngoscope,2005,115(12):2238-2241.
    [64]Holt AG,Asako M,Lomax CA,et al.Deafness-related plasticity in the inferior colliculus:gene expression profiling following removal of peripheral activity.J Neurochem,2005,93(5):1069-1086.
    [65]Nevado J,Sanz R,Casqueiro JC,et al.Ageing evokes an intrinsic pro-apoptotic signalling pathway in rat cochlea.Acta Otolaryngol,2006,126(11):1134-1139.
    [66]Bai U,Seidman M.D,Hinojosa R,et al.Mitochondrial DNA deletions associated with aging and possibly presbycusis.a human archival temporal bone study.Am J Oto,1997,18:449-453.
    [67]韩维举,韩东一,姜泗长,等.人听觉器官线粒体DNA~(4977)缺失与老年性聋的关系.中华耳鼻咽喉科杂志,2000,35:416-419.
    [68]韩维举,韩东一,杨伟炎,等.听觉器官线粒体DNA缺失在老年聋发病中的意义.Chinese Journal Of tology,2003,1:14-18.
    [69]Schroder R,Vielhaber S,Wiedemann FR,et al.New insights into the metabolic consequences of large-scale mtDNA deletions:a quantitative analysis of biochemical,morphological,and genetic findings in human skeletal muscle.J Neuropathol Exper Neurol,2000,59:353-360.
    [70]Keithley EM,Harris B,Desai K,et al.Mitochondrial cytochrome oxidase immunolabeling in aged human temporal bones.Hear Res,2001,157(1-2):93-99.
    [71]Seidman MD,Bai U,Khan MJ,et al.Association of mitochondrial DNA deletions and cochlear pathology:a molecular biologic tool.Laryngoscope,1996,106(6):777-783.
    [72]戴朴,姜泗长,顾瑞,等.内耳缺血及线粒体DNA缺失与老年性耳聋发病的关系.中华医学杂志.2000,80:897-900.
    [73]Kong WJ,Hu YJ,Wang Q,et al.The effect of the mtDNA4834 deletion on hearing.Biochem Biophys Res Commun,2006;344(1):425-430.
    [74]Yamasoba T,Someya S,Yamada C,et al.Role of mitochondrial dysfunction and mitochondrial DNA mutations in age-related hearing loss.Hear Res,2007;226(1-2):185-93.
    [75]Someya S,Yamasoba T,Kujoth GC,et al.The role of mtDNA mutations in the pathogenesis of age-related hearing loss in mice carrying a mutator DNA polymerase gamma.Neurobiol Aging,2008,29(7):1080-1092.
    [76]Seidman MD,Khan MJ,Dolan DF,et al.Age-related difference in cochlear microcirculation and auditory brainstem response.Arch otolaryngol Head Neck Surg,1996,122:1221-1226.
    [77]Toru Suzuki.Age-related changes in cochlear blood flow response to occlusion of anterior inferior cerebellar artery in mice.Ann otol rhinol laryngol,1998,107:648-653.
    [78]Lautermann J,Crann SA,Mclaren J,et al.Glutathione-dependent antioxidant systems in the mammalian inner ear:effects of aging,ototoxic drugs and noise.Hear Res,1997,114(1-2):75-82.
    [79]张向阳,钱欣梅.自由基代谢与老年性聋关系研究.中国老年学杂志,1998,18:366-367.
    [80]Seidman MD.Effects of dietary restriction and antioxidants on presbyacusis.Laryngoscope,2000,110:727-738.
    [81]Seidman MD,Khan MJ,Bai U,et al.Biologica activity of mitochon-drial metabolites on aging and age-related hearing loss.Am J Otol,2000,21:161-167.
    [82]Le T,Keithley EM.Effects of antioxidants on the aging inner ear.Hear Res,2007,226(1-2):194-202.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700