前庭椭圆囊Ⅰ型毛细胞钾通道
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
第一部分光学倒置相差显微镜下前庭囊斑两型毛细胞的形态学鉴别
     目的:探索电生理实验中,光学倒置相差显微镜下较为可靠的前庭椭圆囊斑和球囊斑所分离的两型单离毛细胞的辨别标准,为合理分析所记录到的电流打下比较可靠的基础。
     方法:对于豚鼠椭圆囊斑和球囊斑分离所得的单离前庭毛细胞,分别在光学倒置相差显微镜下对细胞胞体的长度、宽度以及表皮板纤毛的长度进行显微测量,并对长和宽的比例值以及细胞体的长度和纤毛长度的比例值即胞长比进行分析。
     结果:经过极低浓度胶原酶配合轻微机械吹打得到豚鼠椭圆囊斑和球囊斑的两型单离的前庭毛细胞。这两种毛细胞经过显微测量后相比,两种细胞之间细胞的宽度和纤毛的长度统计学比较没有显著性差异。有显著统计学差别的是和囊斑II型毛细胞相比,囊斑I型毛细胞的长度明显较长,长宽比比较大,纤毛胞长比比较小。
     结论:在既往以是否具有明显狭窄的颈部来区分两型前庭毛细胞的基础上,结合分析囊斑细胞的长宽比以及纤毛胞长比进一步进行辨别,有助于更准确地区分两型毛细胞,不失为区别囊斑两型毛细胞的有效辅助方法。
     第二部分前庭椭圆囊I型毛细胞的钾电流
     目的:通过应用电生理的方法来研究豚鼠椭圆囊I型毛细胞存在的通道电流及其特性,并对所记录的电流进行初步鉴别。
     方法:利用膜片钳全细胞和单通道两种方法,在标准外液中,对单离的豚鼠椭圆囊I型毛细胞记录到的电流进行记录和分析,并应用钾通道抑制剂TEA进行鉴别。
     结果:标准细胞外液中测得的全细胞电流含有内向电流成分和外向整流成分,应用TEA阻滞后电流完全消失,提示为钾电流。单通道贴附式和内面向外两种模式下电流均为较大的外向电流,被TEA阻滞后所记录的电流特性不同,提示记录到的为大的外向钾电流,并且被TEA阻滞时贴附式和内面向外两种模片上经过不同的阻滞途径。贴附式时TEA清除后电流不再出现,内面向外情况下TEA清除后电流完全恢复。
     结论:在标准细胞外液中豚鼠椭圆囊I型毛细胞表面存在较大的钾通道电流,可以被TEA阻滞,膜片钳单通道贴附式情况下阻滞不可逆,内面向外情况下阻滞可逆。
     第三部分钙和乙酰胆碱对前庭椭圆囊I型毛细胞钾电流的调节
     目的:研究钙离子和乙酰胆碱对单离的豚鼠椭圆囊I型毛细胞所记录到的大电导的钾电流是否有调节作用,期望从电生理学方面为豚鼠椭圆囊I型毛细胞表面可能存在乙酰胆碱受体提供佐证。
     方法:将细胞外液分为三种:标准外液、高钙外液、含有乙酰胆碱的高钙外液。并把标准外液组定位对照组。分别用膜片钳单通道的方法对单离的椭圆囊I型毛细胞外向的钾电流进行记录。组间应用两两比较的方法对结果进行统计学分析。
     结果:在标准外液中引出可靠钾电流后,钙离子终浓度为2.0mM的高钙外液使原来在标准外液中记录到的钾通道电流明显增加,电流开放的幅值和开放概率均发生明显变化。但也有部分钾电流表现不同:钙离子虽然也提高了电流的幅值,却降低了通道的开放概率。钙离子联合应用乙酰胆碱除可以明显提高钾电流的幅值外,还恢复了通道的开放概率。在标准外液中应用乙酰胆碱无效。
     结论:钙离子可以通过提高钾电导而减少通道开放次数起到稳定细胞膜的作用。加用适量的乙酰胆碱可以提高钾通道的兴奋性,这个过程在离体的细胞环境下需要高浓度的钙离子参与。
PART1 Comparative morphology of two type’s hair cells from saccule and utricle under inverted phase contrast light microscope
     Objective: To explore more reliable standards of vestibular hair cells of saccule and utricle from guinea pig, prepared in studies with patch clamp technique under inverted microscope, and found a more reliable base for analyzing the currents recorded in the coming research.
     Methods: Under inverted phase contrast light microscope, two type’s hair cell’s length, width and length of cilia were measured. Ratios of length, width and length of cilia were calculated and all numbers were analyzed statistically.
     Results: We found that width and length of cilia of two type’s hair cells in saccule and utricle from guinea pig are same. Because the length of type I hair cell is longer than that of type II, against type II hair cell, the ratio between length and width is larger and the ratio of the length between cilia and cell body is smaller.
     Conclusions: Two type’s vestibular hair cells of saccule and utricle from guinea pig may be distinguished through the ratio of cell body’s length and width ,even the ratio of the length between cilia and cell body, in addition to the standards before.
     PART 2 Identification of K+ channels in utricular type I hair cells
     Objective: To study the characteristics of currents recorded in type I utricular hair cells with different patch clamp techniques, and the channels observed to be primarily identified.
     Methods: Currents were recorded with whole cell recording and single channel recording in standard external solution. Both currents with different methods were analyzed and identified with TEA.
     Results: Whole cell currents in standard external solution have both inward part and outward rectified part. All currents disappeared with TEA, which indicated that they were potassium currents. Different results were recorded under cell attached and inside out mode with TEA, which showed they played the different mechanics in different modes. After washout TEA, currents weren’t refounded in cell attached mode, while all currents recovered absolutely in inside out mode.
     Conclusions: Potassium channels are distributed in guinea pig type I utricular hair cells, with large conductance, and can be obstructed by TEA. The process can be reversed in inside out mode but not in cell attached mode.
     PART 3 Potassium currents modulated by calcium and Ach in utricular type I hair cells
     Objective: To explore whether Ach or Ca can modulate the potassium currents with large conductance recorded in type I utricular hair cells. And hope to find verifications of AchR in type I utricular hair cells with patch clamp technique.
     Methods: Single channel recording were used to record currents from type I utricular hair cells in 3 different solutions, standard external solution, high-calcium solution, and high-calcium solution with Ach. Currents recorded in standard external solution were control. Both of three were analyzed statistically.
     Results: After potassium currents were recorded in standard external solution, 2.0mMCa2+ can increase both amplitude and the probability of opening of the currents. Amplitude of single channel currents increased obviously with 2.0mMCa2+ or with both 2.0mMCa2+ and 0.5mMAch in external solution. But not always, in some cells only increasing Ca2+ without Ach decreased the probability of opening (Po), which would increase obviously after 0.5mMAch were used.
     Conclusions: Ca2+ can stabilized membrane through increasing Amplitude of single channel currents and decreasing probability of opening (Po). 0.5mMAch can enhance the excitability of potassium channels in type I utricular hair cells, but the process need high concentration of calcium under the circumstance of unitary cell in vitro.
引文
1. Zakir, M., D. Huss, and J. D. Dickman. Afferent Innervation Patterns of the Saccule in Pigeons. J. Neurophysiol. 89: 534-550, 2003.
    2. Brichta, Alan M. and Jay M. Goldberg. Morphological Identification of Physiologically Characterized Afferents Innervating the Turtle Posterior Crista. J. Neurophysiol. 83: 1202-1223, 2000.
    3. Sapan S. Desai, Catherine Zeh and Anna Lysakowski Comparative Morphology of Rodent Vestibular Periphery. I. Saccular and Utricular Maculae. J Neurophysiol 93: 251-266, 2005.
    4. Brichta, Alan M., Anne Aubert, Ruth Anne Eatock, and Jay M. Goldberg. Regional Analysis of Whole Cell Currents From Hair Cells of the Turtle Posterior Crista. J. Neurophysiol. 88: 3259-3278, 2002.
    5. Jingbing Xue and E. H. Peterson Hair Bundle Heights in the Utricle: Differences Between Macular Locations and Hair Cell Types J Neurophysiol 95: 171-186, 2006.
    6. Masetto, Sergio and Manning J. Correia. Electrophysiological properties of vestibular sensory and supporting cells in the labyrinth slice before and during regeneration. J. Neurophysiol. 78: 1913-1927, 1997.
    7. Gwena?lle S. G. Géléoc, Jessica R. Risner, and Jeffrey R. Holt. Developmental Acquisition of Voltage-Dependent Conductances and Sensory Signaling in Hair Cells of the Embryonic Mouse Inner Ear. The Journal of Neuroscience, 2004, 24(49): 11148-11159
    8.沙建慧,李云义,李云阁等.豚鼠球囊毛细胞的分离及钾离子流的研究.中国应用生理学杂志,2000,3(16):279-282
    9. Anthony J. Ricci and Manning J. Correia. Electrical response properties of avian lagena type II hair cells: a model system for vestibular filtering Am J Physiol Regul Integr Comp Physiol 276: R943-R953, 1999.
    10. Ricci, A. J., K. J. Rennie, S. L. Cochran, G. A. Kevetter, and M. J. Correia. Vestibular type I and type II hair cells: I. Morphological identification in pigeon and gerbil. J. Vestib. Res. 7: 393-406, 1997
    11. W. J. Moravec and E. H. Peterson Differences Between Stereocilia Numbers on Type I and Type II Vestibular Hair Cells J Neurophysiol 92: 3153-3160, 2004.
    12. Rennie KJ and Ricci AJ. Mechanoelectrical transduction (MET) and basolateral currents in hair cells of the turtle utricle. Assoc Res Otolaryngol Abstr 27: 94, 2004.
    13. Valeria Zampini, Paolo Valli, Gianpiero Zucca, and Sergio Masetto. Single channel L-type Ca2+ currents in chicken embryo semicircular canal type I and type II hair cells J Neurophysiol (May 10, 2006). doi:10.1152/jn.01315.2005
    14. 13 ettiplace R, Ricci AJ & Hackney CM. Clues to the cochlear amplifier from the turtle ear. Trends Neurosci 24, 169–175. 2001
    15. E. Farris, C. L. LeBlanc, J. Goswami and A. J. Ricci. Probing the pore of the auditory hair cell mechanotransducer channel in turtle J Physiol 558.3 pp 769-792,2004
    16. Corey DP, Hudspeth AJ. Kinetics of the receptor current in bullfrog saccular hair cells. J Neurosci 3:962-976 . 1983
    1. Brichta AM, Aubert A, Eatock RA, and Goldberg JM. Regional analysis of whole cell currents from hair cells of the turtle posterior crista. J Neurophysiol 88: 3259–3278, 2002.
    2. Guth PS, Dunn A, Kronomer K, et al. The cholinergic pharmacology of the frog saccule. Hear Res. 1994 May;75(1-2):225-32.
    3. Luigi Catacuzzeno, Bernard Fioretti and Fabio Franciolini. Voltage-Gated Outward K Currents in Frog Saccular Hair Cells. J Neurophysiol 90: 3688-3701, 2003.
    4. Kong WJ, Guo CK, Zhang XW, etc. The coupling of acetylcholine-induced BK channel and calcium channel in guinea pig saccular type II vestibular hair cells. Brain Res. 2007 Jan 19;1129(1):110-5.
    5.苏振伦,姜泗长.牛蛙球囊毛细胞钙离子通道.中华耳鼻咽喉科杂志,1995,2(16):70-73
    6. Guo CK, Zhang S, Kong WJ, etc. Cation ions modulate the ACh-sensitive current in type II vestibular hair cells of guinea pigs. Sheng Li Xue Bao. 2006 Apr 25;58(2):157-163.
    7.康华光.膜片钳技术及其应用.北京:科学技术出版社.2003
    8.刘振伟.实用膜片钳技术.北京:军事医学科学出版社.2006
    9. Rennie KJ, Ashmore JF. Ionic currents in isolated vestibular hair cells from the guinea-pig crista ampullaris. Hear Res. 1991 Feb;51(2):279-91.
    10. Li GQ, Kevetter GA, Leonard RB, Prusak DJ, Wood TG, Correia MJ. Muscarinic acetylcholine receptor subtype expression in avian vestibular hair cells, nerve terminals and ganglion cells. Neuroscience. 2007 Apr 27;146(1):384-402.
    11. Manning J. Correia, Thomas G. Wood, Deborah Prusak, Tianxiang Weng, Katherine J. Rennie and Hui-Qun Wang. Molecular characterization of an inward rectifier channel(IKir) found in avian vestibular hair cells: cloning and expression of pKir2.1. Physiol. Genomics. 19: 155-169, 2004.
    12. Goldberg JM, Brichta AM. Functional analysis of whole cell currents from hair cells of the turtle posterior crista. J Neurophysiol. 2002 Dec;88(6):3279-92.
    1. Yoshida N, Shigemoto T, Sugai T, et al. The role of inositol trisphosphate on ACh-induced outward currents in bullfrog saccular hair cells. Brain Res. 1994 Apr 25;644(1):90-100.
    2. Kong WJ, Guo CK, Zhang S, et al. The properties of ACh-induced BK currents in guinea pig type II vestibular hair cells. Hear Res. 2005 Nov;209(1-2):1-9. Epub 2005 Jul 7.
    3. Brichta AM, Aubert A, Eatock RA, and Goldberg JM. Regional analysis of whole cell currents from hair cells of the turtle posterior crista. J Neurophysiol 88: 3259–3278, 2002.
    4.康华光.膜片钳技术及其应用.北京:科学技术出版社.2003
    5.刘振伟.实用膜片钳技术.北京:军事医学科学出版社.2006
    6. Duwel P, Haasler T, Jungling E, et al. Effects of cinnarizine on calcium and pressure-dependent potassium currents in guinea pig vestibular hair cells. Naunyn Schmiedebergs Arch Pharmacol. 2005 Jun;371(6):441-8. Epub 2005 Jul 23.
    7. Duwel P, Jungling E, Westhofen M,et al. Potassium currents in vestibular type II hair cells activated by hydrostatic pressure. Neuroscience. 2003;116(4):963-72.
    8. Chen JW, Eatock RA Major potassium conductance in type I hair cells from rat semicircular canals: characterization and modulation by nitric oxide. J Neurophysiol. 2000 Jul;84(1):139-51.
    9. Zakir M, D. Huss, J. D. Dickman. Afferent Innervation Patterns of the Saccule in Pigeons. J Neurophysiol 89,2003: 534-550.
    10. Christophe Blanchet, Carlos Eróstegui, Masashi Sugasawa et al. Gentamicin blocks ACh-evoked K+ current in guinea-pig outer hair cells by impairing Ca2+ entry at the cholinergic receptor. The Journal of Physiology (2000), 525.3, pp. 641-654
    11. Holt JC, Lioudyno M, Athas G, et al. The effect of proteolytic enzymes on the alpha9-nicotinic receptor-mediated response in isolated frog vestibular hair cells. Hear Res. 2001 Feb;152(1-2):25-42.
    1. Kharkovets T;Dedek K;Maier H;Schweizer M,et al. Mice with altered KCNQ4 K+ channels implicate sensory outer hair cells in human progressive deafness. EMBO J. 2006 Feb 8;25(3):642-52. Epub 2006 Jan 26.
    2. Rennie KJ, Weng T, Correia MJ Effects of KCNQ channel blockers on K(+) currents in vestibular hair cells. Am J Physiol Cell Physiol. 2001 Mar;280(3):C473-80.
    3. Correia MJ, Wood TG, Prusak D, et al. Molecular characterization of an inward rectifier channel (IKir) found in avian vestibular hair cells: cloning and expression of pKir2.1. Physiol Genomics. 2004 Oct 4;19(2):155-69. Epub 2004 Aug 17.
    4. Cristobal R, Wackym PA, Cioffi JA,et al. Assessment of differential gene expression in vestibular epithelial cell types using microarray analysis. Brain Res Mol Brain Res. 2005 Jan 5;133(1):19-36.
    5. Drescher DG, Ramakrishnan NA, Drescher MJ,et al. Cloning and characterization of alpha9 subunits of the nicotinic acetylcholine receptor expressed by saccular hair cells of the rainbow trout (Oncorhynchus mykiss). Neuroscience. 2004;127(3):737-52.
    6. Chen JW, Eatock RA Major potassium conductance in type I hair cells from rat semicircular canals: characterization and modulation by nitric oxide. J Neurophysiol. 2000 Jul;84(1):139-51.
    7. Soto E, Vega R, Budelli R.. The receptor potential in type I and type II vestibular system hair cells: a model analysis. Hear Res. 2002 Mar;165(1-2):35-47.
    8. Duwel P, Haasler T, Jungling E, et al. Effects of cinnarizine on calcium and pressure-dependent potassium currents in guinea pig vestibular hair cells. Naunyn Schmiedebergs Arch Pharmacol. 2005 Jun;371(6):441-8. Epub 2005 Jul 23.
    9. Duwel P, Jungling E, Westhofen M,et al. Potassium currents in vestibular type II hair cells activated by hydrostatic pressure. Neuroscience. 2003;116(4):963-72.
    10. Martini M, Rossi ML, Farinelli F,et al. No evidence for calcium electrogenic exchangerin frog semicircular canal hair cells. Eur J Neurosci. 2002 Nov;16(9):1647-53.
    11. Rennie KJ, Streeter MA. Voltage-dependent currents in isolated vestibular afferent calyx terminals. J Neurophysiol. 2006 Jan;95(1):26-32. Epub 2005 Sep 14.
    12. Chabbert C, Mechaly I, Sieso V, et al. Voltage-gated Na+ channel activation induces both action potentials in utricular hair cells and brain-derived neurotrophic factor release in the rat utricle during a restricted period of development. J Physiol. 2003 Nov 15;553(Pt 1):113-23. Epub 2003 Sep 8.
    13. Christophe Blanchet, Carlos Eróstegui, Masashi Sugasawa et al. Gentamicin blocks ACh-evoked K+ current in guinea-pig outer hair cells by impairing Ca2+ entry at the cholinergic receptor. The Journal of Physiology (2000), 525.3, pp. 641-654
    14. Yoshida N, Shigemoto T, Sugai T, et al. The role of inositol trisphosphate on ACh-induced outward currents in bullfrog saccular hair cells. Brain Res. 1994 Apr 25;644(1):90-100.
    15. Kong WJ, Guo CK, Zhang S, et al. The properties of ACh-induced BK currents in guinea pig type II vestibular hair cells. Hear Res. 2005 Nov;209(1-2):1-9. Epub 2005 Jul 7.
    16. Holt JC, Pantoja AM, Athas GB, et al. A role for chloride in the hyperpolarizing effect of acetylcholine in isolated frog vestibular hair cells. Hear Res. 2000 Aug;146(1-2):17-27.
    17. Elgoyhen AB, Vetter DE, Katz E, et al. alpha10: a determinant of nicotinic cholinergic receptor function in mammalian vestibular and cochlear mechanosensory hair cells. Proc Natl Acad Sci U S A. 2001 Mar 13;98(6):3501-6. Epub 2001 Mar 6.
    18. Holt JC, Lioudyno M, Athas G, et al. The effect of proteolytic enzymes on the alpha9-nicotinic receptor-mediated response in isolated frog vestibular hair cells. Hear Res. 2001 Feb;152(1-2):25-42.
    19. Popper P, Ishiyama A, Lopez I, et al. Calcitonin gene-related Peptide and choline acetyltransferase colocalization in the human vestibular periphery. Audiol Neurootol.2002 Sep-Oct;7(5):298-302.
    20. Holt JC, Lioudyno M, Guth PS. A pharmacologically distinct nicotinic ACh receptor is found in a subset of frog semicircular canal hair cells. J Neurophysiol. 2003 Sep;90(3):1526-36.
    21. Gopen Q, Lopez I, Ishiyama G, et al. Unbiased stereologic type I and type II hair cell counts in human utricular macula. Laryngoscope. 2003 Jul;113(7):1132-8.
    22. Brichta AM, Aubert A, Eatock RA, et al. Regional analysis of whole cell currents from hair cells of the turtle posterior crista. J Neurophysiol. 2002 Dec;88(6):3259-78.
    23. Guth PS, Dunn A, Kronomer K, et al. The cholinergic pharmacology of the frog saccule. Hear Res. 1994 May;75(1-2):225-32.
    24. Avall Severinsen S, Morup Jorgensen J, Randel Nyengaard J. Structure and growth of the utricular macula in the inner ear of the slider turtle Trachemys scripta. J Assoc Res Otolaryngol. 2003 Dec;4(4):505-20. Epub 2003 Jul 10.
    1. Brownell, W. E., A. A. Spector, R. M. Raphael, and A. S. Popel. 2001. Micro- and nanomechanics of the cochlear outer hair cell. Annu. Rev. Biomed. Eng. 3:169–194.
    2. Wada, H., H. Usukura, M. Sugawara, Y. Katori, S. Kakehata, K. Ikeda, and T. Kobayashi. 2003. Relationship between the local stiffness of the outer hair cell along the cell axis and its ultrastructure observed by atomic force microscopy. Hear. Res. 177:61–70.
    3. Housley GD, Norris CH, Guth PS.Electrophysiological properties and morphology of hair cells isolated from the semicircular canal of the frog. Hear Res.1989 Apr;38(3):259-76
    4. Nordmann AS, Bohne BA, Harding GW. Histopathological differences between temporary and permanent threshold shift. Hear Res. 2000 Jan;139(1-2):13-30
    5. Zajic G, Schacht J. Comparison of isolated outer hair cells from five mammalian species. Hear Res. 1987;26(3):249-56.
    6.孙建和,杨伟炎,方耀文,等.人Corti’s器扫描电镜观察.中华耳科学杂志.2003,1(2):19-21
    7. Zelenskaya A, de Monvel JB, Pesen D,et al. Evidence for a highly elastic shell-core organization of cochlear outer hair cells by local membrane indentation. Biophys J. 2005 Apr;88(4):2982-93. Epub 2005 Jan 14
    1. Ramanathan K, Fuchs PA. Modeling hair cell tuning by expression gradients of potassium channel beta subunits. Biophys J. 2002 Jan;82(1 Pt 1):64-75.
    2. Nikolic P,Housley GD,Luo L, et al. Transient expression of P2X(1) receptor subunits of ATP-gated ion channels in the developing rat cochlea. Brain Res Dev Brain Res. 2001 Feb 28;126(2):173-182.
    3. Oliver D, Klocker N, Schuck J, et al. Gating of Ca2+-activated K+ channels controls fast inhibitory synaptic transmission at auditory outer hair cells. Neuron. 2000 Jun;26(3):595-601.
    4.苏振伦,姜泗长,顾瑞,等.豚鼠耳蜗毛细胞分离法.中华耳鼻咽喉科杂志.1992.27(3):133-135
    5.杨军,汪吉宝.豚鼠耳蜗单离外毛细胞的外向整流钾电流.临床耳鼻咽喉科杂志. 2002,1(16):27-30
    6.陈雷,姜泗长,杨伟炎,等.巯基氧化剂硫汞撒对豚鼠耳蜗外毛细胞胞内钙离子流的影响.中华耳鼻咽喉科杂志.2000.35(3):192-195
    7. Thierry A, Jacques T, Patrice T. Two types of voltage-dependent potassium channels in outer hair cells from the guinea pig cochlea. Am J Physiol.1999,277:913-925
    8. Anderson CT, Zheng J. Isolation of outer hair cells from the cochlear sensory epithelium in whole-mount preparation using laser capture microdissection. J Neurosci Methods. 2007 May 15;162(1-2):229-36.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700