基于半导体化合物微碟光开关研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着当今信息传输量急剧增长,全光通信网络已成为未来通信网络发展的方向。在全光网络中,光交叉连接设备(OXC)与光分叉复用设备(OADM)是重要模块,而光开关及其门阵列作为OADM模块和OXC模块中核心作用的器件,起着光信号传输和光路间交叉互联的作用,因此研制出高性能、低成本的光开关及其光开关阵列对提升光纤通信系统的工作效率具有重要作用。光子学和光逻辑器件的发展使超大规模集成光路产生希望,然而从理论到实践遇到诸如集成性、可测性和功率需求等问题。基于微碟谐振腔的光通信器件的研究和发展,使我们看到解决其中一些问题的希望。微碟谐振腔尺寸小、制作简单、易于集成、性能优良,已经成为集成光学领域的重要器件。由于微碟谐振腔的波长选择特性,它在滤波器和波长交换方面有很重要的应用。
     本论文研究了一种基于GaAs化合物半导体微碟光开关器件,利用微碟谐振腔的耳语廊模谐振特性,可实现波长选择光开关功能。设计的微碟谐振腔光开关具有高速、低损耗和高耦合效率,临界耦合处其消光比在20dB以上。
     论文首先综述光通信网络和光开关器件研究发展,介绍微谐振腔器件研究背景和应用情况。然后在理论上分析并阐述了微碟谐振腔的耳语廊模谐振机理和光开关的调制效应原理。重点研究了微碟谐振腔光开关的损耗机理和耦合机理模型,用定向耦合原理和传输矩阵方法计算分析来优化微碟谐振腔的性能参数。高Q值理论分析指导微碟谐振腔光开关的结构设计,提出多种耦合结构优化光开关性能参数,例如设计基于MMI耦合、定向耦合器、负耦合结构的微碟谐振腔光开关,并对光开关的传输特性和消光比特性进行分析。
     基于绕线形微碟谐振腔结构的光开关,顺时针和逆时针耳语廊模谐振具有不同的传输特性,我们提出了一种基于绕线形微碟谐振腔的可调谐滤波器构想,拓宽了光开关的设计结构和功能。
     最后针对p-i-n型结构半导体材料,我们设计了具体工艺制作流程,并进行版图设计和工艺流程的尝试性实验,为下一步继续深入研究做准备。
With the transmission of modern information's capacity increasing, all-optical communication networking has become the way of future communication networking development. The optical add-drop multiplexing (OADM) and optical cross connecting (OXC) modules are important in all-optical communication networking. Serving as kernel devices for OADM and OXC, the optical switch and optical switch array which have excellent performance and low cost is very important for the progress of optical fiber communication system. As a result, the research on optical switch and optical switch array which have excellent performance and low cost is very important for the progress of optical fiber communication system. Photonic or optical logic holds the promise of ultra-fast logic circuits .However, the jump from theory to practice has a high barrier set by critical issues such as integration, scalability and power requirements. Optical microdisk-resonator based schemes have the potential of addressing some of these issues. Because its compactness and excellent performance, microdisk resonator has become an important device unit in integrated optics. Due to its wavelength selectivity, it has attracted intensive attention to be used in filtering or wavelength selecting.
     This paper research relates to a novel optical microdisk switch based on GaAs compound semiconductor materials. Using the resonator's whispering gallery modes(WGMS) theory, we can realize the selective wavelength function. The optical switch owns fast speed、low loss and high couple efficiency, the extinction ratio can reach above 20dB at critical couple.
     The paper first describes the research development of optical communication networking and optical switch, then introduces resonator's background and application, it analyzes the whispering gallery mode theory of microdisk and the modulation principle of optical switch. The key of study is design and fabrication of microdisk on GaAs.The loss and coupling is described by models. According to microdisk's high Q theory, we put forward many structure to optimize the parameter and the performance of device. Such as MMI couple, direction coupler and negative gap couple and analyse the switch's extinction ratio and transmission characteristic.
     The optical switch base on spiral disk resonator has different characteristic between cw and ccw WGMS. We put forward a filter base on spiral disk to enrich our design from structure and function. Finally, we design the microdisk's fabrication process for p-i-n semiconductor material and make the mask. Also we try doing some experiments and prepare for the next study.
引文
[1]西原浩[日]等,集成光路[M],科学出版社,2004.
    [2]原荣,光纤通信[M],电子工业出版社,2002.
    [3]黄章勇,光电子器件和组件[M],北京邮电大学出版社,2001.
    [4]王启明,光网络中关键性光子集成器件的研究与发展[J].光纤通信,2001,23(3):8-14.
    [5]王道斌.多模干涉Mach-Zehnder半导体光开关的设计与分析.硕士学位论文,2005.
    [6]季江辉.3ns SOA高速电控光开关的研制.硕士学位论文,2006.
    [7]肖金标.GaAs/GaAlAs高速光开关/调制器研究.博士学位论文,2003.
    [8]卢山鹰.干涉型铌酸锂基集成光开关研究.博士学位论文,2004.
    [9]Miki T.Optical transport networks.Proc IEEE,1993,81(11):1594-1601.
    [10]Kaminow I P,et al.A wideband all-opticat WDM network.IEEE J select Areas Commun,1996,14(5):780-797.
    [11]Arent D J and Park A.Third-generation network near reality.LightwaveTechnol,2002,20(12):2306-2315.
    [12]Mukherjee B.WDM optical communication network:Process and challenges.IEEE J Select Areas Commum,2000,18(10):1810-1824..
    [13]Hibino Y.Passive optical devicrs for photonic networks.IEICE Trans Commun,2000,E83-B(10):2178-2190.
    [14]Lin L Y,et al.Free-space micromachined optical switches or optical networking.IEEE Quantum electron,1998,5(1),4-9.
    [15]程晓飞,顾婉仪等.光开关技术综合[J].通信世界,2001,80(7),11-16.
    [16]刘颂豪,光纤通信技术的新进展[J],光电子技术与信息2002,15(2):1-8。
    [17]Morito K,Dynamic analysis of MZI-SOA all optical switches for balance switching.23rd European Conference on Optical Communication,1997,81-84.
    [18]MEMS Based on Ⅲ-Ⅴ-compounds for sensing applications and optical communication,57th Annual Device Research Conference Digest,1999.
    [19]Modulation doped SiGe-Si MQW for low-voltage high-speed modulators at 1.3um,IEEE Quantum Electronics,1998,4(6),1011-1019.
    [20]Lin L Y.MEMS for free-space optical switching.IEEE/LEOS'99,1999,483-484.
    [21]Goh T.Low-loss and high-extinction-ratio silica-based strictly nonblocking 16×16 thermooptic matrix switch.IEEE Photon Technol,1998,10(1),810-812.
    [22] Cocorullo G,et al. A temperature all-Silicon micro-sensor based on the thermo-optical eddect. IEEE,1997,44(5),766-773.
    [23] Siebel. An improved polymer digital optical switch with cross talk of -46dB. OFC2001, Anahiem, paper WR4-1.
    [24] Schienle M.Low-loss polarization-insensitive InP-InGaAsP optical space switches for fiber optical communication".IEEE Photon.. 1996,8(5),632-634.
    [25] Riza N A and Yuan S. Low optical interchannel crosstalk, fast switching speed, polarization 2×2fiber optic switch using ferroelectric liquid crystals. Electron. 1998,34(13), 1341-1342,
    [26] Patel J S and Siberberg Y. Liquid crystal and grating-based Multiplexer-wavelength crossconnect switch. IEEE Photon. 1995,7(5), 514-516.
    [27] shuichi Nagai. InGaAsP/InP Multi-mode Interference Photonic switch.Lightwave Technol,2002,20(4),675-681.
    [28] Rohit Grover. Indium phosphide based optical micro-ring resonators, 博士学位论文, 2003
    [29] Kazuo Honda. Characteristics of an integrated optics ring resonator fabricated in glass.Lightwave Technol, 1987,5(12), 1686-1689.
    [30] Haavisto J. Resonance effects in low-loss ring waveguide.Opt.Lett, 1980,5(12), 510-512.
    [31] Chung-Yen Chao. Ploymer Microring Resonators for Biochemical sensing applications.IEEE,2006,12(1),134-142.
    [32] Xie X,Khurgin J. Ring-assisted frequency discriminator with improved linearity.IEEE Photon.2002,14,1136-1138.
    [33] Bin Liu.Passive microring-resonator-coupled lasers.Appl.phys,2001,79(22), 3561-3563.
    [34] Chao C Y.Biochemical Sensors using high-Q Polymer Microring.Appl.phys, 2003,83(8),1527-1529
    [35] Qianfan xu,Bradley Schmidt.Micrometre-scale silicon electro-opticmodulator. Narure,2005,435,325-327.
    [36] Brent .Little.Advances in microring resonators. Integrated Photonics Research Conference 2003,Invited Talk.
    [37] Seung J. An eight-channel demultiplexing switch array using vertically coupled active semiconductor microdisk resonator.IEEE,photonics,2004,16(11), 2517-2519
    [38] Djordjev k. Novel active switching component based on semiconductor Microdisk Resonators.IEEE,2002,1,1-2.
    [39] Linjie zhou and Andrew W.PoOn. Silicon electro-optic modulators using p-i-n diodes embedded 10-micron-diameter microdisk resonators. Optics Express, 2006,14(15),6851-6857.
    [40] Kuldeep A, Active microring and microdisk optical resonators on indium Phosphide. Doctor of Philosophy,2006.
    [41] Little B E. Wavelength-seletive switch using thermally tunable microring resonators .IEEE Photon, 1998,10(6),816-818.
    [42] High-speed and low-voltage ring resonator optical switch using electro- and magneto-optical materials.IEEE,2005,International conference.
    [43] Chistopher J. critically coupled ring resonators for add-drop filtering. Opti.comm.2004,237:357-362.
    
    [44] Tom B.High-Q ring resonators in thin silicon-on-insulator.Appl.Phys. 2004,85(16):3345-3347.
    
    [45] Michal L.Switching light on a siliconchip.[J].Optical Materials,2005:731-739.
    [46] Rowland D R.Evanescent wave coupling of a dielectric cylinder[J]. IEEE, 1993,140(3);
    [47] Liao L. High speed silicon Mach-Zehnder modulator[J].Opt.Epress,2005,13: 3129-3135
    [48] Notomi M. Optical bistable swiching action of Si high-Q photonic-crystal nanocavities[J].Opt.Express,2005,13(7),2678-2687.
    [49] Srinivasan K. Cavity Q,mode volume,and lasing threshold in small diameter AlGaAs microdisk with embedded quantum[J].Opt.Express,2006,14(3), 1094-1105.
    [50] Xie X.Linearized Mach-Zehnder intensity modulator.IEEE photon.2003,15:1136-1138.
    [51] Choi S L.A high-Q wavelength filter based on buried heterostructure ring resonators integrated with a semiconductor optical amplifier[J].IEEE Photonics Tech.Lett,2004,17,2101-2103.
    [52] Joyce K. Wavelength-Selective Reflector Based on a circular Array of coupled Microring Resonators[J].IEEE,Photon.2004,16(5): 1136-1333.
    [1] Little B E, et al. Microring resonator channel dropping filters. Lightwave Technology,1997,15(6):998-1005.
    
    [2] Little B E, et al. vertically coupled glass microring resonator channel dropping Filters.IEEE Quantum Electronics, 1999,35(9): 1322-1331.
    [3] Djordjev K et al. vertically coupled InP microdisk switching devices with Electroabsorptive active regions.IEEE Photonics,2002,14(8): 1115-1117.
    [4] Laine J P et al. Etch-eroded fiber coupler for whispering-gallery-mode excitation in high-Q silica microspheres.IEEE Photonics, 1999,11(11): 1429-1430.
    [5] Rsfizadeh D, et al. Waveguide-coupled AlGaAs/GaAs microcavity ring and disk resonators with high finesse and 21.6nm free spectral range. Optics Letters, 1997, 22(16):1244-1246.
    [6] Knight J C. et al. Phase-matched excttation of whispering-gallery-mode Resonance by a fiber taper,.Optical Letters,1997,22(15):1129-1131.
    [7] Rabus D G, et al. MMI-coupled ring resonator in GaInAsP-InP. IEEE Photonics, 2001,13(8):812-814.
    [8] Kippenberg T J.et al. Fabrication and coupling to plannar high-Q silica disk Microcavities.Applied Physics Letters,2003,83(4):797-799.
    [9] Grover R. Laterally coupled InP-based single-mode microracetrack noth filter. IEEE Photonics Technology Letters,2003,15(8): 1082-1084.
    [10] Chin M K.et al. GaAs microcavity channel-dropping filter based on a racetrack resonator.IEEE Photonics, 1999,11 (12): 1620-1622.
    
    [11] Lohmeyer M,et al. Mode expansion modeling of rectangular integrated optical Microresonators.Optical and Quantum Eledtronics,2002,34(5):541-557.
    
    [12] John M.control of critical coupling in a ring resonator-fiber configuration: application to wavelength-selective switching,modulation,amplification and Oscillation.optics letters,2001,26(16), 1236-1238.
    [13] Yariv A. critical coupling and its control in optical waveguide ringresonator Systems.IEEE Photonics Technology,2002,14(4),483-485.
    [14] Matthew B. High-Q Microresonators as Lasing Elements for SiliconPhotonics. Docter of Philosophy ,2006,California Institute of Technology
    [15] LRayleigh. The problem of the Whispering gallery.Philosophical Magazine, 1910,20,1001-1004
    [16] Yariv A and Yeh P. Optical Electronics in Modern Communication ,6th ed,Oxford University Press,New York,2007.
    [17] Vladimir S.Ilchenko, X.Steve Yao, Lute Maleki, Pigtailing the high-Q microsphere cavity: a simple fiber coupler for optical whispering-gallary modes. optics letters, 1999,24(11).
    [18] Rowland J D. Evanescent wave coupling of whispering gallery modes of a dielectric cylinder.IEEE Proceeding 1993,140(3).
    [19] Gorodetsky M L,et al. Ultimate Q of Optical Microsphere Resonators. Opt.Lett., 1996,21:453.
    [20] Gorodetsky M L,et al.High-Resolution Spectroscopy of whispering Gallery Modes in large Dielectric Spheres.Opt.Soc.Am.1991,16:1138.
    [21] Yasuo K. Wavelength-Selective Switch using Thermally Tunable Microring Resonators. JPAP,Book2,2005:303-316.
    [22] Yuichiro T. High-speed and low-voltage ring resonator optical switches using electro- and magneto-optical materials. IEEE International Conference,2005.
    [23] Hiremath K R.Modeling of circular integrated optical microresonators by 2-D frequency domain coupled mode theory.OPti.Comm,2006,257:2777-297.
    [24] Chen W Y. Benzocyclobutene Negative-Gap Micro-Ring Notch Filters[J]. OSA,2005.
    [1]刘恩科,朱秉升,罗晋生等.半导体物理学[M].国防科技大学出版社,1997.
    [2]Brain R.Cartier-Induced Change in Refractive Index of InP,GaAs and InGaAsE [J]IEEE Quantum Electronics,1990,26(1):113-122.
    [3]Wollf P A.Theory of the band structure of very degenerate semiconductor[J].Phys,1962,126:405-412
    [4]Bennett H S.Models for heavy doping effects in gallium arsenide.Appp[J].1987,41,312-320
    [5]Tarucha S.Carrier-induced energy-gap shrinkage in current injection GaAs/AlGaAs MQW heterostructures[J].Appl.Phys,1984,23,874-878.
    [6]Bugajski M.Concentration-dependent absorbtion and photoluminescence of n-type InP[J].Appl.Phys,1985,57,521-530.
    [7]Brian R.Carrier-induced change in Refractiv index of InP,GaAs and InGaAsP[J].IEEE,Quantum Electronics,1990,26(1):113-122.
    [8]Henry C H.Spectral dependence of the change in refractive index due to carrier Injection in GaAs lasers[J].Appl.1981,52,4457-4461.
    [9]庄婉如,林雯华.载流子注入全内反射型GaAs/GaAlAs光波导开关[J].半导体学报.1993,14(1):1-5.
    [10]Ishikawa T.Quantum confined Stark effect in graded-gap quantum wells[J].Appl.Phy.1987,62:3360-3365.
    [11]黄旭涛,GaAs/GaAlAs 材料双异质结 BOA 型光开关研究.浙江大学博士学位论文,2001.
    [12]Soref R.A,Sclunidthen.J,et,al.large single-mode rib waveguide in GeSi and Si- on -Si 02[J].I EEE,Quantum Electronics,1991,27,1971-1974.
    [13]Souren P,et al.The single-mode condition for semiconductor rib waveguide with large cross section[J].IEEE,lightwaveTechnol,1998,16(10):1851-1853.
    [14]Wei Hong-zhen,et al.Geometric structure and modes of SOI and GeSi/Si rib optical waveguide[J].Acta Optical Sinica,2001,21(5):556-558.
    [15]Lousteau J,et al.The single-mode condition for silicon-on-insulator optical rib waveguide with large cross section[J].IEEE,lightwave Technol,2004,22(8):1923-1929.
    [16]Olly Powell.Single-Mode condition for Silicon Rib Waveguides[J].IEEE,lightwave,Technol,2002,20(10):1851-1855
    [1]Frederic.Propagation Loss in single-mode ultrasmall square silicon on insulator optical waveguide[J].IEEE,Lightwave Technology,2006,24(2):891-895.
    [2]Rene M.The effects of surface roughness on optical losses in conventional dielectric waveguide and photonic crystals[J].cost P11 research proposal.
    [3]Lee K K.Effect of size and roughness on light transmission in a Si/SiO_2Waveguide:Experiments and model[J].Appl.Phy.Lett.2000,77:1617-1619.
    [4]Little B E.Estimating surface-roughness loss and output coupling in microdisk Resonator[J].Opt.Lett.1996,21:1390-1392.
    [5]Payne F P.A theoretical analysis of scattering loss from plannar optical wguide[J].Optical and Quantum Electronics,1994,26:977-986.
    [6]Schmidten J.Low loss single-mode optical waveguides with large cross-section in SOI.Electron.Lett,1991,27(16):1486-1488.
    [7]Boagart W.scattering at sidewall roughness in photonic crystal slabs.Opt.Lett,2003.28(9):689-691.
    [8]李洪波 何对燕 陈轩.弯曲波导损耗的一种分析方法[J].激光与光电子学进展,2004,41(6):32-37.
    [9]张小康,廖常俊等.波导弯曲半径与弯曲损耗的关系.光子学报,2004,33(2):147-150.
    [10]马春生 刘式墉.光波导模式理论[M]。吉林大学出版社2006。
    [11]张志涌等。精通Mmlab6.5版[M]。北京航空航天大学出版社。2007。
    [12]Mohammad S.Ultra-high Q Plannar silicon microdisk resonators for chip-scal silicon photonics[J].OSA,optics express,2007,15(8):46944704.
    [13]Kostadin D.Study of the effect of the Geometry on the performance of vertically coupled InP microdisk resonators[J].Lightwave Technology,2002,20(8):1485-1491
    [14]Little B E.Microring resonator channel dropping filters[J].IEEE,lightwave technol.lett,1997,15:998-1005。
    [15]Andrew W.Spiral microdisk resonator-based channel filters on a silicon chip:Probing the out-of-plane scattering spectra[J].IEEE,2006,
    [16]Ben T,Unidirectional laser emission from polymer-based spiral microdisk[J].App12005,86:241110-241112.
    [17]Lee Y J.Sprial-shaped microdisk resonator-based channel drop filters on a silicon nitride chip.IEEE 3~(rd)International conference on Group ⅣPhotonics.2006:19-21.
    [18]Kneissl M.current-injection spiral-shaped microcavity disk laser diodes with unidirectional cmission[J].Appl.2003,83:1710-1712.
    [19]xianshu L.coupled spiral-shaped microdisk resonators with non-evanescent asymmetric inter-cavity coupling[J].OSA,2007,15(25):17313:17322.
    [20]Lee Y.Sprial-shaped microdisk channel drop/add filters:asymmetry in modal distributions.conference on lasers and electro-optics,2007.
    [21]佘守宪.导波光学物理基础[M].北方交通大学出版社.2002.
    [22]曹庄琪.导波光学中的转移矩阵方法[M].上海交通大学.2000.
    [23]Chin M K.design and Modeling of waveguide-coupled single mode microring resonators[J].IEEE,lightwave technology.1998,16(8):1433-1444.
    [1]Williams.Modem GaAs Processing methods.Boston:Artech House,1990.
    [2]吴志武.Ⅲ-Ⅴ族半导体行波调制器的研究.浙江大学博士学位论文,1995.
    [3]Quirk M,韩郑生译.半导体制造技术,电子工业出版社,2004。

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700