融合表达ESAT6-CFP10结核病疫苗的构建及其免疫学特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
结核病(Tuberculosis,TB)是由结核分枝杆菌(Mycobacterium tuberculosis,MTB)所致以呼吸系统感染为主的慢性传染病,据WHO估计,目前全世界约有1/3人口感染MTB,每年有1000万新发患者和300万患者死亡。贫穷、人口增加、流动人口增多、耐药MTB增多及艾滋病流行等使TB问题雪上加霜。我国是全球22个TB高负担国家之一,现有MTB感染人数已达4亿,传染性TB患者达到200万。卡介苗(BCG)虽被广泛用于预防TB,但其效果仍不够满意。研究认为BCG可预防并减轻儿童的严重TB,但对成人TB的预防作用从0到80%不等。导致此现象的原因在于BCG菌株的变异使保护性抗原丢失、人群间遗传或营养的差异及环境等因素的影响。鉴于BCG自身的不足,以及当前TB流行的严重性,研究新的疫苗用于TB的预防已成为当前国内外研究热点。
     MTB早期培养滤液蛋白(CFP)中的ESAT6和CFP10是重要的保护性抗原。本研究先后构建了融合表达ESAT6和CFP10蛋白的亚单位疫苗、基因疫苗以及重组耻垢分枝杆菌(mycobacterium smegmatis,M.S)疫苗,并比较了各自诱发的细胞免疫应答水平和对感染小鼠的保护力,
Tuberculosis(TB) is a chronic respiratory infectious disease caused by Mycobacterium tuberculosis(MTB). It is estimated that one-third of the world population are infected with MTB, causing over 10 million new TB cases and 3 million deaths annually. In China, the number of TB patients was the second in the world, approximately 400 million people infected, over 5 million got sick. BCG, the only available vaccine against TB, has been extensively evaluated and demonstrated a variable protective efficacy ranging from 0 to 80% in different field trials. Furthermore, due to following issues, such as the problem of TB multidrug-resistant (MDR) strains, co-infection with HIV, and increasing mobility of population, the word-wide situation of TB was deteriorating, which has created an urgent need for new vaccines to prevent TB .ESAT6 and CFP10 are both important protective antigen in the early culture filtrate protein(CFP) of MTB, and they were used in the diagnosis and vaccine widely of TB. In this study we had compared the levels of
    cell-mediated immune responses and protective efficacy by recombinant vaccines fused expression ESAT6 and CFP10 inducing by the subunit vaccine, gene vaccine and recombinant mycobacterium smegmatis vaccine, and in order to search for a new effective TB vaccine .1. Expression and purification of ESAT6-CFP10 fusion proteinIn this study, cfp10 gene were amplified by polymerase chain reaction(PCR) from genome of MTB H37Rv strain, and inserted into cloning vector pGEM-7zf(+) for sequencing purpose with esat6. The genetic sequence of CFP10 were identical with that of Genbank reported, then digested by restriction endonuclease and cloned into expression vector pProEX HTb. The recombinant pPRO-e6c10 were transformed into E.coli DH5 a , induced with IPTG, expressed fusion protein of ESAT6 and CFP10 with relative molecular mass (Mr) of 28 kD were confirmed by western blot analysis with mouse-specific monoclonal antibody against 6 X His. Fused expression proteins were purified by Ni-NTA purification system. BALB/c mice were inoculated subcutaneously three times at 2 week interval by the purified recombinant ESAT6-CFP10 fusion protein, and the antibody titer of the immunized mice is 1:6400 by the ELISA method.2. Establishment of the stable P815 cell line expressed ESAT6-CFP10 fusionIn order to assess the level of the cell-mediated immune responseinduced by ESAT6-CFP10 fusion protein, we establish the stable expression cell line which can express fusion protein in P815 cell. esat6 and cfp10 gene were cloned into the eukaryotic expression vector pcDNA3.1(+), this recombinant plasimd was transfected into P815 cells(H-2d) by citation lipids whose genetic was identified with BALB/c. We got 11 strains positive cell clones by G418 selection. The specific mRNA of the fused protein was detected by RT-PCR, and the fused protein was expressed in the P815 cell
    plasim by indirect immunofluorescence technique (IFT).3. Study of immune characterization of the recombinant vaccineTo construct the recombinant mycobacterium smegmatis, esat6 and cfplO were cloned into shuttle plasmid pDE22 by electroporation by hygromycin resistance screening and PCR, recombinant mycobacterium smegmatis positive strains were identified. The fusion protein ESAT6-CFP10 could be secreted into supernatants of recombinant mycobacterium smegmatis by SDS-PAGE and Western-blot analysis.In order to assess the immune characterization of the recombinant vaccine, ESAT6-CFP10 fusion protein subunit vaccine, gene vaccine and recombinant vaccine were inoculated the BALB/c mice. The SI and the level of IFN- y and IL-2 stimulated by antigen-specific were detected by MTT method and indirect ELISA. Furthermore, the CTL specific lysis effect was measured by LDH method. The SI of the subunit vaccine group is 1.9, the gene vaccine group is 2.4, and the recombinant M.S is 2.8, the SI of these recombinant is lower than BCG(3.4) . IFN- Y concentration in cultured supernatant of spleen lymphocytes from mice immunized with subunit vaccine was 1721±19pg/mL, and the recombinant M.S is 2230+llpg/mL, the level of IFN- y of two recombinant vaccine is lower than BCG immunized group(2531±16pg/mL), but the gene vaccine was 2446 + 13pg/mL, which was the same as BCG immunized group. IL-2 concentration in cultured supernatant of spleen lymphocytes from mice immunized with recombinant vaccine were 211±llpg/mL, 196±16pg/mL and 221 ± 17pg/mL, respectively, significant greater than that of control group, but lower than that of BCG immunized group(295 ± 17pg/mL). The specific lysis
引文
1.端木宏谨。掌握结核病流行趋势,指导结核病防治工作.中华结核和呼吸杂志。2002:25(1):1-2.
    2.全国结核病流行病学抽样调查技术指导组。第四次全国结核病流行病学抽样调查报告。中华结核和呼吸杂志,2002:25(1):3-7.
    3. Fine PE.Variation in protection by BCG: implications of and for heterologous immunity. Lancet. 1995; 346(8986): 1339-1345.
    4. Brusasca PN, Colangeli R, Lyashchenko KP, Zhao X, Vogelstein M, Spencer JS, McMurray DN, Gennaro ML. Immunological characterization of antigens encoded by the RD1 region of the Mycobacterium tuberculosis genome. Scand. J. Immunol. 2001; 54(5): 448-452.
    5. Kaufmann S. How can Immunology contribute to the control of tuberculosis. Nat Rev Immunoi. 2001; 1(1): 20-30.
    6. Neyroiles O, Gould K, Gares MP, Brett S, Janssen R, O'Gaora P, Herrmann JL, Prevost MC, Perret E, Thole JE, Young D. Neyrolles O, Gould K, Gares MP, Brett S, Janssen R, O'Gaora P, Herrmann JL, Prevost MC, Perret E, Thole JE, Young D. Lipoprotein access to MHC Class Ⅰ presentation during infection of routine macrophages with live Mycobacteria. J Immun. 2001; 166(1): 447-457
    7. Gatfield J, Pieters J. Essential role for cholesterol in entry of Mycobacteria into macrophages. Science. 2000; 288(5471): 1647-1650.
    8. Braunstein M, Espinosa BJ, Chan J, Belisle JT, Jacobs WR Jr. Braunstein M, Espinosa BJ, Chart J, Belisle .IT, Jacobs WR Jr. SecA2 functions in the secretion of superoxide dismutase A and in the virulence of Mycobacterium tuberculosis. Mol Microbiol. 2003; 48(2): 453-464.
    9. Orme IM, Anderseli P, Boom WH. T cell response to mycobacterium tuberculosis. J Infect Dis.1993; 167(6): 1481-1497.
    10. Walker L, Lowrie B. Killing of Mycobacterium microti by immunologically activated macrophages. Nature. 1981; 293(5827): 69-71.
    11. Ding AH, Nathan C, Stuehr D. Release of reactive nitrogen intermediates and reactive oxygen intermediates from mouse peritoneal macrophages. J Immun. 1988; 141(7): 2407-2412.
    12. Boom WH, Chervenak KA, Mincek MA, Ellner JJ. Role of the monuclear phagocyte as an antigen presenting cell for human cells activated by live mycobacterium tuberculosis. Infect Immun. 1992; 60(9): 3480-3488.
    13. Haanen JB, de Waal Malefijt R, Res PC, Kraakman EM, Ottenhoff TH, de Vries RR, Spits H. Selection of human T helper type 1-like T cell subsets by mycobacteria. J Exp Med. 1991; 174(3): 583-592.
    14. Boom WH, Wallis RS, Chervenak KA. Human mycobacterium tuberculosis reactive CD4~+T cell clones: heterogeneity in antigen recognition, cytokine production and cytotoxicity for mononuclear phagocytes. Infect Immun. 1991; 59(8): 2737-2743.
    15. Orme IM, Furney SK, Skinner PS, Roberts AD, Brennan P J, Russell DG, Shiratsuchi H, Ellner JJ, Weiser WY. Inhibition of growth of mycobacteritum avium in murine and human mononuclear phagocytes by migration inhibitory factor. Infect Immun. 1993; 67(1): 324-338.
    16. Flynn JL, Goldstein MM, Triebold KJ, Koller B, Bloom BR. Major histocompatibility complex class Ⅰ restricted T cells are required for resistance mycobacterium tuberculosis infection. Proc Nalt Acad Sci USA. 1992; 89(24): 12013-12017.
    17. Stenger S, Rosat JP, Bloom BR, Krensky AM, Modlin RL. Granulysin: A lethal weapon of cytolytic T cell. Immunol Today. 1999; 20(9): 390-394.
    18. Havlir DV, Eliner JJ, Chervenak KA, Boom WH. Selective expansion of human γ δ T cells by monocytes infected by live mycobacterium tuberculosis. J Clin Invest. 1991; 87(2): 729-733.
    19. Shen Y, Zhou D, Qiu L, Lai X, Simon M, Shen L, Kou Z, Wang Q, Jiang L, Estep J, Hunt R, Clagett M, Sehgal PK, Li Y, Zeng X, Morita CT, Brenner MB, Letvin NL, Chen ZW. Adaptive immune response of V γ 2V δ 2~+ T cells during mycobacterial infections. Science. 2002; 295(5563): 2255-2258.
    20.陈勇,吕合作,胡建国,候彦强,张海峰,李柏青,何海辉.刺激人γδT细胞增殖的结核杆菌多肽抗原的生物学特性分析.细胞与分子免疫学杂志.2003; 19 (2): 121 —123.
    21.Moody DB, Sugita M, Peters PJ, Brenner MB, Porcelli SA. The CD1 restricted T cell response to mycobacteria. Res Immunol. 1996; 147(8-9): 550-559.
    22.Chan J, Kaufmann S. Immune mechanisms of protection in tuberculosis pathogenesis, protection and control. Bloom, B.R. Ed. American Society of Microbiology. 1994. Washington, D.C. 9389-9415.
    23.Indian council of medical research (1CMR) bulletin 26,1,1996. Fifteen year follow-up trial of BCG vaccines in south-India for TB prevention 1999; 110(1): 56-69.
    24.Bellamy R, Hill A. Genetic susceptibility to mycobacteria and other infection pathogens in humans. Curr Opon Immun. 1998; 10(4): 483-487.
    25.Brooks JV, Frank AA, Keen MA, Bellisle JT, Orme IM. Boosting vaccine for tuberculosis. Infect Immun. 2001; 69(4): 2714-2417.
    26.Black GF, Dockrell HM, Crampin AC, Floyd S, Weir RE, Bliss L, Sichali L, Mwaungulu L, Kanyongoloka H, Ngwira B, Warndorff DK, Fine PE. Patterns and implications of naturally acquired immune responses to environmental and tuberculosis mycobacterial antigens in northern Malawi. J Infect Dis. 2001; 184(3): 322-329.
    27.Brandt L, Orme I. Prospects for new vaccines against tuberculosis. Biotechniques. 2002; 33(5): 1098, 1100, 1102.
    28.Mostowy S, Tsolaki AG, Small PM, Behr MA. Mostowy S, Tsolaki AG, Small PM, Behr MA. The in vitro evolution of BCG vaccines. Vaccine. 2003; 21(27-30): 4270-4274.
    29. Young DB. Building a better tuberculosis vaccine. Nat Med. 2003; 9(5):503-504.
    30. Palmer CE, Long MW. Effects of infection with atypical mycobacteria on BCG vaccination and tuberculosis. Am. Rev. Respir. Dis. 1966; 94(4): 553-568.
    31.Bange FC, Brown AM, Jacobs WR. Leucine auxotrophy restricts growth of mycobacterium bovis BCG in macrophages. Infect Immun. 1996; 64(5): 1794-1799.
    32.Smith DA, Parish T, Stoker NG, Bancroft GJ. Characterization of auxotrophic mutants of mycobacterium tuberculosis and their potential as vaccine candidates. Infect Immun. 2001; 69(2): 1142-1150.
    33. Jackson M, Phalen SW, Lagranderie M, Ensergueix D, Chavarot P, Marchal G, McMurray DN, Gicquel B, Guilhot C. Persistence and protective efficacy of mycobacterium tuberculosis auxotroph vaccine. Infect Immun. 1999; 67(6): 2867-2873.
    34. Horwitz MA, Harth G, Dillon BJ, Maslesa-Galic'S. Recombinant bacillus Calmette-Guerin(BCG) vaccined expressing the major secretory protein induce greater protective immunity against tuberculosis than conventional BCG vaccines in a highly susceptible animal model. Proc Natl Acad Sci USA. 2000; 97(25): 13853-13858.
    35. Bao L, Chen W, Zhang H, Wang X Bao L, Chen W, Zhang H, Wang X. Virulence, immunogenicity, and protective efficacy of two recombinant Mycobacterium bovis Bacillus Calmette-Guerin strains expressing the antigen ESAT6 from Mycobacterium tuberculosis. Infect Immun. 2003; 71(4): 1656-1661.
    36. Hess J, Miko D, Catic A, Lehmensiek V, Russell DG, Kaufmann SH. Mycobacterium bovis Bacille Calmette Guerin strains secreting listeriolysin of Listeria monocytogenes. Proc Natl Acad Sci USA. 1998; 95(9): 5299-5304.
    37. Falcone V, Bassey E, Jacobs W Jr, Collins F. The immunogenicity of recombinant mycobacterium smegmatis bearing BCG genes. Microbiology.1995; 141(pt5): 1239-1245.
    38. Batoni G, Bottai D, Maisetta G, Pardini M, Boschi A, Florio W, Esin S, Campa M. Involvement of the mycobacterium tuberculosis secreted antigen SA-5K in intracellular survival of recombinant mycobacterium smegmatis. FEMS Microbiol Lett. 2001; 205(1): 125-129.
    39.胡佳杰,文学明,肖爱清,黄海浪.重组BCG-hsp70疫苗有关毒性实验研究.广西预防医学.2002;8(4):233-235.
    40.胡佳杰,文学明,肖爱清,黄海浪.重组M.S—Sj26GST疫苗有关毒性实验研究。华南预防医学.2002:28(5):44-45.
    41. Coler RN, Campos-Neto A, Ovendale P, Day FH, Fling SP, Zhu L, Serbina N, Flynn JL, Reed SG, Alderson MR. Vaccination with the T cell antigen Mtb 8.4 protects against challenge with mycobacterium tuberculosis. J Immunol. 2001; 166(10): 6227-6235.
    42.Skeiky YA, Ovendale PJ, Jen S, Alderson MR, Dillon DC, Smith S, Wilson CB, Orme IM, Reed SG, Campos-Neto A. T cell expression cloning of a mycobacterium tuberculosis gene encoding a protective antigen associated with the early control of infection. J Immunol. 2000; 165(12): 7140-7149.
    43.Belisle JT, Vissa VD, Sievert T, Takayama K, Brennan PJ, Besra GS Belisle JT, Vissa VD, Sievert T, Takayama K, Brennan PJ, Besra GS. Role of the major antigen of mycobacterium tuberculosis in cell biogenesis. Science. 1997; 276(5317): 1420-1422.
    44.Andersen P. TB vaccines: progress and problems. Trends Immun. 2001; 22(3): 160- 168.
    45.Alderson MR, Bement T, Day CH, Zhu L, Molesh D, Skeiky YA, Coler R, Lewinsohn DM, Reed SG, Dillon DC. Expression cloning of an immunodominant family of mycobacterium tuberculosis antigens using human CD4~+T cells. J Exp Med 2000; 191(3): 551-560.
    46.Brandt L, Elhay M, Rosenkrands I, Lindblad EB, Andersen P. ESAT6 subunit vaccination against mycobacterium tuberculosis. Infect Immun. 2000; 68(2): 791-795
    47.Derrick SC, Yang AL, Morris SL. A polyvalent DNA vaccine expressing an ESAT6-Ag85B fusion protein protects mice against a primary infection with Mycobacterium tuberculosis and boosts BCG-induced protective immunity. Vaccine. 2004; 23(6): 780-788.
    48.Stenger S. An antimicrobial activity of cytolytic T cells mediated by granulysin. Science. 1998; 282(5386): 121-125.
    49.Dougls B, Celio I. Enhancement of immunocompetence in tuberculosis by DNA vaccination. Vaccine. 2000; (18): 1712-1716.
    50.Lowerie DB, Jason RE, Silva CL. Vaccination against tuberculosis. Int Arch Allerg Immunol. 1995; 108(4): 309-312.
    51.Tascon RE, Colston MJ, Ragno S, Stavropoulos E, Gregory D, Lowrie DB. Vaccination against tuberculosis by DNA injection. Nat Med. 1996; 2(2): 888-892.
    52.Velaz-Faircloth M, Cobb AJ, Horstman AL, Henry SC, Frothingham R. Protection against mycobacterium avium by DNA vaccines expressing mycobacterial antigens as fusion proteins with green fluorescent protein. Infect Immun. 1999; 67(8): 4243-4250.
    53.Fonseca DP, Benaissa-Trouw B, van Engelen M, Kraaijeveld CA, Snippe H, Verheul AF. Induction of cell mediated immunity against mycobacterium tuberculosis using DNA vaccines encoding cytotoxic and helper T-cell epitopes of 38 kilodalton protein. Infect Immun. 2001; 69(8): 4839- 4845.
    54.Kamath AT, Feng CG, Macdonald M, Briscoe H, Britton WJ. Differential protection efficacy of DNA vaccines expressing secreted protein of mycobacterium tuberculosis. Infect Immun. 1999; 67(4): 1702-1707.
    55.Palendira U, Kamath AT, Feng GC. Coexpression of IL-12 chains by a self-splicing vector increases the protective cellular immune response of DNA and mycobacterium bovis BCG vaccines against mycobacterium tuberculosis. Infect Immun. 2002; 70(4): 1949-1956.
    56.Tanghe A, D'Souza S, Rosseels V, Denis O, Ottenhoff TH, Dalemans W, Wheeler C, Huygen K. Improved immunogenicity and protective efficacy of a tuberculosis DNA vaccines encoding Ag85 by protein boosting. Infect Immun. 2001; 69(5): 3041-3047.
    57.Wang QM, Sun SH, Hu ZL, Yin M, Xiao CJ, Zhang JC. Improved immunogenicity of a tuberculosis DNA vaccine encoding ESAT6 by DNA priming and protein boosting. Vaccine. 2004; 22(27-28): 3622-3627
    58.Feng CG, Palendira U, Demangel C, Spratt JM, Malin AS, Britton WJ. Feng CG, Palendira U, Demangel C, Spratt JM, Malin AS, Britton WJ. Priming by DNA immunization augments protective efficacy of Mycobacterium bovis Bacille Calmette-Guerin against tuberculosis. Infect Immun. 2001; 69(6): 4174-4176.
    59.Skinner MA, Buddie BM, Wedlock DN, Keen D, de Lisle GW, Tascon RE, Ferraz JC, Lowrie DB, Cockle PJ, Vordermeier HM, Hewinson RG A DNA prime-Mycobacterium bovis BCG boost vaccination strategy for cattle induces protection against bovine tuberculosis. Infect Immun. 2003; 71 (9): 4901 -4907.
    60. Bordin P, Rosenkrands I, Andersen P, Cole ST, Brosch R. ESAT6 proteins: protective antigens and virulence factors? Trends in Microbiol. 2004; 12(11): 500-508.
    61. Park SH, Bendelac A. CD1-restricted T-cell responses and microbial infection. Nature. 2000; 406(6798): 788-792.
    62. Stenger S, Mazzaccaro R J, Uyemura K, Cho S, Barnes PF, Rosat JP, Sette A, Brenner MB, Porcelli SA, Bloom BR, Modlin RL. Differential effects of cytolytic T-cell subsets on intracellular infection. Science. 1997; 276(5319): 1684-1687.
    63.乐军,王洪海,胡宏.结核杆菌的后基因组研究进展.国外医学临床生物化学与检验学分册.2003:24(2):72—73.
    64. Cole ST, Brosch R, Parkhill J, Gamier T, Churcher C, Harris D, Gordon SV, Eiglmeier K. Deciphering the biology of Mycobacterium tuberculosis from the complete genome sequence. Nature.1998; 393(6685): 537-544.
    65. Mahairas GG, Sabo PJ, Hickey MJ, Singh DC, Stover CK. Molecular analysis of genetic differences between Mycobacteritim bovis BCG and virulent M. bovis. J Bacteriol. 1996; 178(5): 1274-1282.
    66. Behr MA, Wilson MA, Gill WP, Salamon H, Schoolnik GK, Rane S, Small PM. Comparative genomics of BCG vaccines by whole-genome DNA microarray. Science. 1999; 284(5419): 1520-1523.
    67. Renshaw PS, Panagiotidou P, Whelan A et al. Conclusive evidence that the major T cell antigens of the mycobacterium tuberculosis complex ESAT6 and CFP10 form a tight, 1:1 complex and characterization of the structural properties of ESAT6, CFP10 and the ESAT6-CFP10 complex: implication for pathogenesis and virulence. J Biol Chem. 2002; 277(24): 21598-21603.
    68. Pym AS, Brodin P, Brosch R, Huerre M, Cole ST. Loss of RD1 contributed to the attenuation of the live tuberculosis vaccines Myeobacterium bovis BCG and Mycobacterium microti. Molecular Microbiology. 2002; 46(3): 709-717.
    69. Glickman MS, Cox JS, Jacobs WR. A novel mycolie acid cyclopropane synthetase is required for coding, persistence, and virulence of Mycobacterium tuberculosis. Mol Cell.2000; 5(4): 717-727.
    70. Lewis KN, Liao R, Guinn KM, Hickey MJ, Smith S, Behr MA, Sherman DR. Deletion of RDI from Mycobacterium tuberculosis Mimics Bacille Calmette-Guerin Attenuation. J Infect Dis. 2003; 187(1): 117-123.
    71.Sherman DR, Guinn KM, Hickey MJ, Mathur SK, Zakel KL, Smith S. Mycobacterium tuberculosis H37Rv: Delta RD1 is more virulent than M. bovis bacille Calmette-Guerin in long-term murine infection. J Infect Dis. 2004; 190(1): 123-126.
    72.Majlessi L, Brodin P, Brosch R, Rojas MJ, Khun H, Huerre M, Cole ST, Leclerc C. Influence of ESAT-6 secretion system 1 (RD1) of Mycobacterium tuberculosis on the interaction between mycobacteria and the host immune system. J Immunol. 2005; 174(6): 3570-3579.
    73.Guinn KM, Hickey MJ, Mathur SK, Zakel KL, Grotzke JE, Lewinsohn DM, Smith S, Sherman DR. Individual RD1-region genes are required for export of ESAT-6/CFP-10 and for virulence of Mycobacterium tuberculosis. Mol Microbiol. 2004; 51(2): 359-370.
    74.Flint JL, Kowalski JC, Karnati PK, Derbyshire KM. The RD1 virulence locus of Mycobacterium tuberculosis regulates DNA transfer in Mycobacterium smegmatis. Proc Natl Acad Sci U S A. 2004; 101(34): 12598-12603.
    75.Daugelat S, Kowall J, Mattow J, Bumann D, Winter R, Hurwitz R, Kaufmann SH. The RD1 proteins of mycobacterium tuberculosis: expression in mycobacterium smegmatis and biochemical characteriz- ation. Mirco Infect. 2003; 5(12): 1082-1095.
    76.Christie, PJ. Type IV secretion: intercellular transfer of macromolecules by systems ancestrally related to conjugationmachines. Mol Microbiol. 2001; 40(2): 294-305.
    77.Gey Van Pittius NC, Gamieldien J, Hide W, Brown GD, Siezen RJ, Beyers AD. The ESAT6 gene cluster of Mycobacterium tuberculosis and other high G+C gram-positive bacteria. Genome Biology. 2001; 2(10): 1-18.
    78.Okkels LM. CFP10 discriminates between non-acylated and acetylatged ESAT6 of mycobacterium tuberculosis by differential interaction. (in press)
    79.Trajkovic V, Natarajan K, Sharma P. Immunomodulatory action of mycobacterial secretory proteins. Microbes Infect. 2004; 6(5): 513-519.
    80.Singh B, Singh G, Trajkovic V, Sharma P. Intracellular expression of Mycobacterium tuberculosis-specific 10-kDa antigen down-regulates macrophage B7·1 expression and nitric oxide release. Clin Exp Immunol. 2003; 134(1): 70-77.
    81. Brandt L, Oettinger T, Holm A, Andersen AB, Andersen P. Key epitopes on ESAT6 antigen recognized in mice during the recall of protective immunity to mycobacterium tuberculosis. J Immunol. 1996; 157(8): 3527-3533.
    82. Elhay M J, Oettinger T, Andersen P. Delayed-type hypersensitivity responses to ESAT6 and MPT64 from mycobacterium tuberculosis in guinea pig. Infect Immun. 1998; 66(7): 3454-3456.
    83. Ravn P, Demissie A, Eguale T, Wondwosson H, Lein D, Amoudy HA, Mustafa AS, Jensen AK, Holm A, Rosenkrands 1, Oftung F, Olobo J, von Reyn F, Andersen P. Ravn P, Demissie A, Eguale T, Wondwosson H, Lein D, Amoudy HA, Mustafa AS, Jensen AK, Holm A, Rosenkrands 1, Oftung F, Olobo J, von Reyn F, Andersen P. Human T cell responses to ESAT6 antigen from mycobacterium tuberculosis. J Infect Dis. 1999; 179(3): 637-645.
    84. Dillon DC, Alderson MR, Day CH, Bement T, Campos-Neto A, Skeiky YA, Vedvick T, Badaro R, Reed SG, Houghton R. Molecular and Immunological characterization of mycobacterium tuberculosis CFP10, an immunodiagnostic antigen missing in mycobacterium bovis BCG. J Clin Microbiol. 2000; 38(9): 3285-3290.
    85. Skjot RL, Oettinger T, Rosenkrands I, Ravn P, Brock I, Jacobsen S, Andersen P. Comparative evaluation of Low-molecular-mass proteins from mycobacterium tuberculosis identifies members of the ESAT6 family as immunodominant T cell antigens. Infect Immun. 2000; 68(1): 214-220.
    86. Colangeli R, Spencer JS, Bifani P, Williams A, Lyashchenko K, Keen MA, Hill PJ, Belisle J, Gennaro ML. MTSA10, the product of the Rv3874 gene of mycobacterium tuberculosis, elicits tuberculosis-specific, delayed-type hyper-sensitivity in guinea pigs. Infect Immun. 2000; 68(2): 990-993.
    87. Li Z, Howard A, Kelley C, Delogu G, Collins F, Morris S. Immunogenicity of DNA vaccines expressing tuberculosis proteins fused to tissue plasminogen activator signal sequences. Infect Immun. 1999; 67(9): 1702-1707.
    88. Olsen AW, Hansen PR, Holm A, Andersen P. Efficient protection against mycobacterium tuberculosis by vaccination with a single subdominant epitope from the ESAT6 antigen. Eur J Immunol. 2000; 30(6): 1724-1732.
    89. Bordin P, Majlessi L, Brosch R. Enhanced protection against extrapulmonary tuberculosis with an attenuated live mycobacterium microti vaccine inducing T cell immunity against RD1 antigens. J Infect Dis. 2004; 190(1): 115-122.
    90. Olsen AW, Williams A, Okkels LM, Hatch G, Andersen P. Protection effect of mice with a tuberculosis subunit vaccine based on a fusion protein of antigen 85B and ESAT6. Infect Immun.2001; 69(10): 2773-2778.
    91. Olsen AW, Williams A, Okkels LM, Hatch G, Andersen P. Protective effect of a tuberculosis subunit vaccine based on a fusion protein of antigen 85B and ESAT6 in the aerosol guinea pig model. Infect Immun. 2004; 72(10): 6148-50.
    92. Pym AS, Brodin P, Majlessi L, Brosch R, Demangel C, Williams A, Griffiths KE, Marchal G, Leclerc C, Cole ST. Recombinant BCG exporting ESAT6 confers enhanced protection against tuberculosis. Nat Med. 2003; 9(5): 533-539.
    93. Demissie A, Ravn P, Olobo J, Doherty TM, Eguale T, Geletu M, Hailu W, Andersen P, Britton S. T-Cell recognition of mycobacterium tuberculosis culture filtrate fractions in fuberculosis patients and their household contacts. Infect lmmun. 1999; 67(11): 5967-5971.
    94. Arend SM, Andersen P, van Meijgaarden KE, Skjot RL, Subronto YW, van Dissel JT, Ottenhoff TH. Detection of active tuberculosis infection by T cell responses to early-secreted antigenic target 6-kDa protein and culture filtrate protein 10. J Infect Dis. 2000; 181(3): 1850-1854.
    95. van Pinxteren LA, Ravn P, Agger EM, Pollock J, Andersen P. Diagnosis of tuberculosis based on the two specific antigens ESAT6 and CFP10. CLin. Diagn. Lab. Immunol. 2000; 7(2): 155-160.
    96. Brusasca PN, Peters RL, Motzel SL, Klein HJ, Gennaro ML. Brusasca PN, Peters RL, Motzel SL, Klein HJ, Gennaro ML. Antigen recognition by serum antibodies in non-human primates experimentally infected with mycobacterium tuberculosis. Comp Med. 2003; 53(2): 165-172.
    97. Agger EM, Brock I, Okkels LM, Arend SM, Aagaard CS, Weldingh KN, Andersen P. Human T cell response to the RD1-encoded protein TB27.4(Rv3878) from mycobacterium tuberculosis. Immunology. 2003; 110(4): 507-512.
    98. Cockle P J, Gordon SV, Lalvani A, Buddle BM, Hewinson RG, Vordermeier HM. Identification of novel Mycobacterium tuberculosis antigens with potential as diagnostic reagents or subunit vaccine candidates by comparative genomics. Infect Immun. 2002; 70(12): 6996-7003.
    99. Liu XQ, Dosanjh D, Varia H, Ewer K, Cockle P, Pasvol G, Lalvani A. Evaluation of T cell responses to novel RD1-and RD2-Encoded mycobacterium tuberculosis gene products for specific detection of human Tuberculosis infection. Infect Immun. 2004; 72(5): 2574-2581.
    100.师长宏,范雄林,徐志凯,柏银兰,薛莹.结核分枝杆菌分泌蛋白Ag85B-ESAT6的融合表达及纯化.中华结核和呼吸杂志.2004:27(2):89—92。
    101. Doherty TM, Demissie A, Olobo J, Wolday D, Britton S, Eguale T, Ravn P, Andersen P. Immune response to the mycobacterium tuberculosis specific antigen ESAT6 signal subclinical infection among contacts of tuberculosis patients. J Clin Microbiol. 2002; 40(4): 704-706.
    102. Pittius NC, Warren RM, Helden PD. ESAT-6 and CFP-10: What Is the Diagnosis? Infect Immun. 2002; 70(11): 6509-6511.
    103. Berthet FX, Rasmussen PB, Rosenkrands I, Andersen P, Gicquel B. A mycobacterium tuberculosis operon encoding ESAT6 and a novel low-molecular-mass culture filtrate protein(CFP10). Microbilogy. 1998; 144(pt11): 3195-3203.
    104. Morris S, Kelley C, Howard A, Li Z, Collins F. The immunogenicity of single and combination DNA vaccines against tuberculosis. Vaccine. 2000; 18(20): 2155-2163.
    105.师长宏,范雄林,柏银兰,薛莹,张海,徐志凯.结核分枝杆菌Ag85B-ESAT6融合蛋白在小鼠体内诱导的免疫应答及其保护力.第四军医大学学报。2004:25(18):1633-1636。
    106. Yang J, Mitsuyama M. An essential role for endogenous IFN-γ in the genernation of protective T cells against mycobacterium bovis BCG in mice. Imnmnology. 1997; 91(4): 529-535
    107. Johnson BJ, Ress SR, Willcox P, Pati BP, Lorgat F, Stead P, Saha R, Lukey P, Laochumroonvorapong P, Corral L. Clinical and immune response of tuberculosis patients treated with low dose IL-2 and multidrug therapy. Cytokines Mol Ther. 1995; 1(3): 185-196.
    108. D'Souza S, Rosseels V, Denis O, Tanghe A, De Smet N, Jurion F, Palfliet K, Castiglioni N, Vanonckelen A, Wheeler C, Huygen K. Improved tuberculosis DNA vaccines by formulation in cationic lipids. Infect Immun. 2002; 70(7): 3681-3688.
    109.潘怡,蔡宏,李淑霞,田霞,李唐,朱玉贤.结核分枝杆菌组合DNA疫苗的免疫效果.生物化学与生物物理学报.2003;35(1):71~76。
    110. Orme IM, Miller ES, Roberts AD, Furney SK, Griffin JP, Dobos KM, Chi D, Rivoire B, Brennan PJ. T lymphocytes mediating protection and cellular cytolysis during the course of Mycobacterium tuberculosis infection. Evidence for different kinetics and recognition of a wide spectrum of protein antigens. J.Immunol. 1992; 148(1): 189-196.
    111. Cooper AM, Dalton DK, Stewart TA, Griffin JP, Russell DG, Orme IM. Disseminated tuberculosis in IFN-γ gene-disrupted mice.J.Exp.Med. 1993; 178(6): 2243-2248.
    112. Aldovini A, Young RA. Humoral and cell-mediated immune response to live recombinant BCG-HIV vaccine. Nature. 1992; 351(4): 479-482.
    113. Eremeev VV, Maiorov KB, Avdienko VG, Kondrashov SIu, Apt AS. An experimental analysis of Mycobacterium smegmatis as a possible vector for the design of a new tuberculosis vaccine. Probl Tuberk. 1996; (1): 49-51.
    114. Harth G, Lee BY, Horwitz MA. High-level heterologous expression and secretion in rapidly growing nonpathogenic mycobacteria of four major mycobacterium tuberculosis extracellular proteins considered to be leading vaccine candidates and drug targets. Infect Immun. 1997; 65(6): 2321-2328.
    115. Averill LE, Cavallo U, Wallis RS, Boom WH, Bona M, Mincek M, Pascopella L, Jacobs WR Jr, Ellner JJ. Screening of a cosmid library of mycobacterium boris BCG in mycobacterium smegmatis for novel T-cell stimulatory antigens. Res Microbiol. 1993; 144(5): 349-362.
    116. Herodin F, Dormont D. Comparative kinetics of spleen cell-mediated antibodydependent cytotoxic activity in mice treated with BCG or Mycobacterium

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700