结核分枝杆菌喹诺酮耐药基因功能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
结核病是由结核分枝杆菌引起的一种世界性传染病,近年来随着人口流动增加、HIV与结核分枝杆菌伴发感染以及结核分枝杆菌多重耐药性菌株的出现等原因,使全球结核病疫情再度回升,其中耐药菌株的出现是治疗失败的主要原因。结核分枝杆菌由于其特殊的细胞壁结构,对多种药物有天然的耐药性,耐药机制复杂。1998年,Cole等发布了结核分枝杆菌H37Rv全基因测序结果,使人们能从基因水平研究结核分枝杆菌的耐药机制。
     随着耐多药结核分枝杆菌感染的出现,人们期待更加有效的药物出现,从而把更多的目光投向了二线药物,其中喹诺酮类药物尤其受到青睐。喹诺酮类药物为一类全合成的抗菌制剂,自1962年发现了奈啶酸(Nalidixic acid)以来,已有四代喹诺酮类药物上市,但只有第三代的喹诺酮类抗菌药具有抗分枝杆菌活性。喹诺酮类药物主要作用于结核杆菌DNA促旋酶,该酶由A、B亚单位组成,药物的耐药性主要由于作用靶位的改变,A亚单位突变常常导致高耐药,B亚单位突变常常导致低耐药,而有的低水平的耐药常常缺乏喹诺酮类药物靶位的改变,有时高水平的耐药又不能单一地用靶位的改变来解释,所以还有其他的耐药机制的存在。随着喹诺酮类药物的广泛使用,耐药菌株也日渐显现,严重影响其疗效和临床应用。研究喹诺酮耐药产生机制,就具有重要意义。
     本研究利用生物信息学的方法对结核分枝杆菌全基因组进行分析发现,结核分枝杆菌基因组中大约有20种外排蛋白编码基因,其中多数与
Tuberculosis is the world's leading cause of mortality owing to an infectious bacterial agent, Mycobacterium tuberculosis. The HIV/AIDS pandemic has been attributed to the global resurgence of TB, with increased mobility owing to mass movement of population and the emergence of multidrug-resistant strains of Mycobacterium tuberculosis (MDR-TB). The emergence of MDR-TB is one of the major causes of the treatment failure. The complete genome sequence and annotation of Mycobacterium tuberculosis H37Rv was published in 1998.This has provided researchers important information to gain insight into the mechanism of the drug resistance.The emergence of multidrug-resistant strains of Mycobacterium tuberculosis has resulted in an increased interest in the second-line antituberculosis agents, and Quinolones, one class of the synthetic antibacterial agents, are being used in selected tuberculosis patients. Quinolones have possessed the activity of antituberculosis since the third generation. The DNA gyrase composed of two A and two B subunits is the only target of quinolones in mycobacteria. Mutation in the target often confers quinolones resistance. Mutation in a particular region of gyrA,
    which encodes the gyrase A subunit, has been associated with a high level of quinolone resistance. Mutations conferring low-level resistance have also been found in gyrB, which encodes the B subunit of the DNA gyrase. However, these mutations do not account for all resistant strains, indicating that other mechanisms have contributed to the resistance in mycobacteria.Notably, most quinolones are only moderately active against mycobacteria, and unfortunately, quinolone-resisitant clinical isolates of Mycobacterium tuberculosis have already appeared. If more can be learned about what determines the effectiveness of a particular quinolone against the mycobacteria and the mechanisms by which the resistance develops, new agents or strategies may be designed to prevent or circumvent this resistance.In this study, using bioinfomatics method to analyze the genome of Mycobacterium tuberculosis, we discovered that the genome of Mycobacterium tuberculosis H37Rv has 20 open reading frames encoding putative efflux proteins. Most of them associate with resistance. Furthermore, Rv2994 gene may be the efflux bump of the quinolones.First, we amplified the gene Rv2994 from the genome of Mycobacterium tuberculosis H37Rv to make an attempt to investigate the function of it. A recombinant fused expression vector pGEX-2994 was constructed. The recombinant plasmid could express the fusion protein GST-Rv2994 stably, thus provided the basis for the further study of the gene Rv2994.Then, a second recombinant plasmid bearing Rv2994 was constructed with the shuttle vector pMV261 and electroporated into avirulent Mycobacterium smegmatis me2155. The transformants were induced to
    express a 47KDa protein of Rv2994. The MIC and accumulation of ofloxacin for the strains of mc2155, mc2155-261 and mc2155-2994 are determined with and without the membrane deenergizer carbonyl cyanide m-chlorophenylhydrazone (CCCP) to clarify the Rv2994 gene function.Finally, the study of quinolone-resistant genes in Sichuan Province confirmed a strong correlation between the quinolone-resistance and the mutation of gyrA gene, which might be a major molecular mechanism of quinolone-resistance in Mycobacterium tuberculosis .In summary, the majority of the results in this study support our hypothesis that the protein encoded by Rv2994 gene is a drug efflux bump, conferring resistance to ofloxacin. The fact that the Rv2994 protein could export drugs and confer multidrug-resistance extends a promising field for future works on Mycobacterium tuberculosis.
引文
1 Choudhuri BS, Bhakta S, Batik R, et al. Overexpression and functional characterization of an ABC (ATP-binding cassette) transporter encoded by the genes drrA and drrB of Mycobacterium tuberculosis. J Biochem. 2002; 367:279-285
    2 Rodriguez JC, Cebrian L, Ruiz M, et al. Mutant Prevention Concentration of Isoniazid, Rifampicin and Rifabutin against Mycobacterium tuberculosis Chemotherapy. 2005 May 4; 51(2-3):76-79
    3 Sharma SK, Mohan A, Kadhiravan T. HIV-TB co-infection: Epidemiology, diagnosis & management. Indian J Med Res. 2005 Apr; 121(4):550-67
    4 Pereira M, Tripathy S, Inamdar V, et al. Drug resistance pattern of Mycobacterium tuberculosis in seropositive and seronegative HIV-TB patients in Pune, India. Indian J Med Res. 2005 Apr;121(4):235-9
    5 Frieden TR, Sterling TR, Munsiff SS, et al. Tuberculosis. Lancet. 2003 Sep 13; 362(9387):887-99
    6 http://w3.whosea.org/tb/publichealth.htm
    7 端木宏谨。第四次全国结核病流行病学抽样调查报告。中华结核呼吸杂志,2002:25(1):3-7
    8 Cole ST, Brosch R, Parkhill J, et al. Deciphering the biology of Mycobacterium tuberculosis from the complete genome sequence. Nature 1998, 393(6685):537-544
    9 Camus JC, Pryor MJ, Medigue C, et al. Re-annotation of the genome sequence of Mycobacterium tuberculosis H37Rv. Microbiology, 2002, 148: 2967-2973
    10 Beeching NJ. Tuberculosis into the next century. February 4, 1995, Liverpool School of Tropical Medicine, U.K. [Congresses] Journal of Infection. 1996 Jan, 32(1):67-8
    11 Reichman L B. Multidrug resistance in the world:the present situation [J]. J Chemotherapy, 1996, 42 (Suppl 2):2
    12 Lesher GY, Froelich EJ, Gruett MD, et al. 1, 8-Naphthyridine derivatives, a new class of chemotherapeutic agents. J Med Pharm Chem. 1962; 91:1063-5
    13 安慧茹,王巍。基因突变与结核分枝杆菌对喹诺酮类药物耐药性的研究进展。中国防痨杂志,2004;26(1):53-56
    14 T akiff HE, Salazar L, Guerrero C, et al. Cloning and nucleotide sequence of Mycobacterium tuberculosis gyrA and gyrB genes and detection of quinolone resistance mutations. Antimicrobial Agents and Chemotherapy. 1994; 38(4): 773~780
    15 Lounis N, Ji B, Truffot-Pernot C, Grosset J. Which aminoglycoside or fluoroquinolone is more active against Mycobacterium tuberculosis in mice? Antimicrob Agents Chemother. 1997 Mar; 41(3):607-10
    16 Guillemin I, Sougakoff W, Cambau E, et al. Purification and inhibition by quinolones of DNA gyrases from Mycobacterium avium, Mycobacterium smegmatis and Mycobacterium fortuitum bv. peregrinum. Microbiology. 1999 Sep;145 (Pt 9):2527-32
    17 Chang FY, Chang SC, Chen YS, et al. Guidelines for chemotherapy of tuberculosis in Taiwan. J Microbiol Immunol Infect. 2004; 37:382-384
    18 Veziris N, Truffot-Pernot C, Aubry A, et al. Fluoroquinolone-containing third-line regimen against Mycobacterium tuberculosis in vivo. Antimicrob Agents Chemother. 2003 Oct;47(10):3117-22
    19 Tomioka H, Sato K, Shimizu T, Sano C. Anti-Mycobacterium tuberculosis activities of new fluoroquinolones in combination with other antituberculous drugs. J Infect. 2002 Apr;44(3):160-5
    20 中国防痨协会。耐多药结核病化学治疗的意见。中国防痨杂志,2003;25(1):4-9
    21 Ahmed N, Hasnain SE. Genomics of Mycobacterium tuberculosis: old threats & new trends. Indian J Med Res. 2004 Oct;120(4):207-12
    22 Dye C, Espinal MA. Will tuberculosis become resistant to all antibiotics? Proc Biol Sci. 2001 Jan 7;268(1462):45-52
    23 Raviglione MC, Gupta R, Dye CM, et al. The burden of drug-resistant tuberculosis and mechanisms for its control. Ann N Y Acad Sci. 2001 Dec; 953:88-97.
    24 Siddiqi N, Shamim M, Hussain S. et al. Molecular characterization of multidrug-resistant isolates of Mycobacterium tuberculosis from patients in North India. Antimicrob Agents Chemother. 2002 Feb;46 (2):443-50
    25 张敦熔主编。现代结核病学。第1版。北京:人民军医出版社,2000,19:14-15
    26 Sambrook J,Russell DW,著.黄培堂,王嘉玺,朱厚础,等译.分子克隆实验指南.第3版.北京:科学出版社,2002,27-30,96-99,,1595-1597,1713-1721
    27 WhippleDL, Febvre RB, Andrews RE, et al. Isolation and analysis of restriction endonuclease digestive patterns of chromosomal DNA from mycobacterium paratuberculosis and other mycobacterium species. J Clin Microbiol, 1987, 25:1511-1515
    28 Husson RN, James BE, Young RA. Gene replacement and expression of foreign DNA in Mycobacterium. J Bacteriol 1990, 172(2):519-524
    29 Nakata Y, Tang X, Yokoyama KK. Preparation of competent cells for high-efficiency plasmid transformation of Echerichia coli. Methods Mol Biol, 1997, 69:129-137
    30 Laemmli UK, Amos LA, Klug A. Correlation between structural transformation and cleavage of the major head protein of T4 bacteriophage. Cell 1976, 7(2):191-203
    31 Keane J, Remold HG, and Kornfeld H. Virulent Mycobacterium tuberculosis strains evade apoptosis of infected alveolar macrophages. J Immunol, 2000, 164:2016-2020
    32 Frieden TR, Munsiff SS. The DOTS Strategy for Controlling the Global Tuberculosis Epidemic. Clin Chest Med. 2005 Jun; 26(2):197-205
    33 Dye C, Watt CJ, Bleed DM, et al. What is the limit to case detection under the DOTS strategy for tuberculosis control?
    34 Espinal MA, Dye C. Can DOTS control multidrug-resistant tuberculosis? Lancet. 2005 Apr;365(9466):1206-9
    35 Butt T, Ahmad RN, Kazmi SY, et al. Multi-drug resistant tuberculosis in Northern Pakistan. J Pak Med Assoc. 2004 Sep;54(9):469-72
    36 Trakada G, Tsiamita M, Spiropoulos K. Drug-resistance of Mycobacterium tuberculosis in Patras, Greece. Monaldi Arch Chest Dis. 2004 Jan-Mar;61(1):65-70
    37 Dam T, Isa M, Bose M. Drug-sensitivity profile of clinical Mycobacterium tuberculosis isolates—a retrospective study from a chest-disease institute in India. J Med Microbiol. 2005 Mar; 54 (Pt 3): 269-71
    38 Pasca MR, Guglierame P, Arcesi F, et al. Rv2686c-Rv2687c-Rv2688c, an ABC fluoroquinolone efflux pump in Mycobacterium tuberculosis. Antimicrob Agents Chemother. 2004 Aug;48(8):3175-8
    39 Kantardjieff KA, Vasquez C, Castro P, et al. Structure of pyrR (Rvl379) from Mycobacterium tuberculosis: a persistence gene and protein drug target. Acta Crystallogr D Biol Crystallogr. 2005 Apr;61(Pt 4):355-64
    40 Domenech P, Reed MB, Barry CE . Contribution of the Mycobacterium tuberculosis MmpL Protein Family to Virulence and
     Drug Resistance. Infect Immun. 2005 Jun;73(6):3492-501
    41 Reece ST, Stride N, Ovendale P, et al. Skin Test Performed with Highly Purified Mycobacterium tuberculosis Recombinant Protein Triggers Tuberculin Shock in Infected Guinea Pigs. Infect Immun. 2005 Jun;73(6):3301-6
    42 Jacobs MR. Fluoroquinolones as chemotherapeutics against mycobacterial infections.Curr Pharm Des. 2004;10(26):3213~20
    43 Ward HA, Marciniuk DD, Hoeppner VH, et al. Treatment outcome of multidrug-resistant tuberculosis among Vietnamese immigrants. Int J Tuberc Lung Dis. 2005 Feb;9(2):164-9
    44 Ginsburg AS, Hooper N, Parrish N, et al. Fluoroquinolone resistance in patients with newly diagnosed tuberculosis. Clin Infect Dis. 2003 Dec 1;37(11):1448-52
    45 Ginsburg AS, Woolwine SC, Hooper N, et al. The rapid development of fluoroquinolone resistance in M. tuberculosis. N Engl J Med. 2003 Nov 13;349(20):1977-8
    46 Nicholas V. Coleman and Jim C. Spain, et al. Epoxyalkane:Coenzyme M Transferase in the Ethene and Vinyl Chloride Biodegradation Pathways of MycobacteriumStrain JS60. Journal of Bacteriology, 2003, 185(18):5536-5545
    47 Roche PW, Winter N, Triccas JA, et al. Expression of Mycobacterium tuberculosis MPT64 in recombinant Mycobacterium smegmatis: purification, immunogenicity and application to skin tests for tuberculosis. Clin Exp Immunol. 1996; 103:226-232
    48 Al-Zarouni M, Dale JW. Expression of foreign genes in Mycobacterium bovis BCG strains using different promoters reveals instability of the hsp60 promoter for expression of foreign genes in Mycobacterium bovis BCG strains. Tuberculosis (Edinb). 2002;82(6):283-91
    49 Lee SH, Cheung M, Irani V, et al. Optimization of electroporation conditions for Mycobacterium avium. Tuberculosis (Edinb). 2002;82(4-5):167-74
    50 Stover CK, de la Cruz VF, Fuerst TR , et al. New use of BCG for recombinant vaccines. Nature, 1991, 351(6):456-460
    51 Vilcheze C, Weisbrod TR, Chen B, et al. Altered NADH/NAD+ratio mediates coresistance to isoniazid and ethionamide in mycobacteria. Antimicrob Agents Chemother. 2005 Feb;49(2):708-20
    52 Coleman NV and Spain JC, et al. Epoxyalkane:Coenzyme M Transferase in the Ethene and Vinyl Chloride Biodegradation Pathways of MycobacteriumStrain JS60[J]. Journal of Bacteriology, 2003, 185(18):5536-5545
    53 Bao L, Chen W, Zhang H D, et al. Virulence, immunogenicity, and protective efficacy of two recombinant Mycobacterium bovis Bacillus Calmette-Guerin strains expressing the antigen ESAT-6 from Mycobacterium tuberculosis[J]. Infect Immun, 2003, 71(4):1656-1661
    54 Medeiros MA, Dellagostin 0A, Geraldo R.G. ArmOa, et al. Comparative evaluation of Mycobacterium vaccae as a surrogate
     cloning host for use in the study of mycobacterial genetics[J]. Microbiology, 2002, 148(7):1999-2009
    55 Shi CH, Fan XL, Shi JR, et al. Constructing shuttle plasmid fusion expressing Ag85B~ESAT-6 on the surface of Mycobacterium Zhonghua Jie He He Hu Xi Za Zhi. 2004 Apr;27(4):249-52
    56 Wards BJ, Collins DM. Electroporation at elevated temperatures substantially improves transformation efficiency of slow-growing mycobacteria[J]. FEMS Microbiolgy Letters. 1996, 145(1):101-105
    57 Chatterji M, Unniraman S, Mahadevan S, et al. Effect of different classes of inhibitors on DNA gyrase from Mycobacterium smegmatis. J Antimicrob Chemother. 2001 Oct;48(4):479-85
    58 Ruiz-Serrano MJ, Alcala L, Martinez L, et al. In vitro activities of six fluoroquinolones against 250 clinical isolates of Mycobacterium tuberculosis susceptible or resistant to first-line antituberculosis drugs. Antimicrob Agents Chemother. 2000 Sep;44(9):2567-8
    59 Piddock, L. J. V., Williams, K. J. & Ricci, V.. Accumulation of rifampicin by Mycobacterium aurum, Mycobacterium smegmatis and Mycobacterium tuberculosis. Journal of Antimicrobial Chemotherapy 2002; 45, 159-65
    60 Piddock, L. J. V. & Ricci, V.. Accumulation of KRM-1648 by Mycobacterium aurum and Mycobacterium tuberculosis. Journal of Antimicrobial Chemotherapy . 2000; 45, 681-4
    61 Williams, K. J. & Piddock, L. J. V.. Accumulation of norfloxacin
     byMycobacterium aurum and Mycobacterium smegmatis Antimicrobial Agents and Chemotherapy. 1998; 42, 795-800
    62 Alangaden, G. J. & Lerner, S. A.. The clinical use of fluoroquinolones for the treatment of myeobacterial diseases. Clinical Infectious Diseases. 1997; 25, 1213-21
    63 Jacobs, M. R.. Activity of quinolones against mycobacteria. Drugs 1999; 58 , Suppl. 2, 19-22
    64 Montero C, Mateu G, Rodriguez R, et al. Intrinsic resistance of Mycobacterium smegmatis to fluoroquinolones may be influenced by new pentapeptide protein MfpA. Antimicrob Agents Chemother. 2001 Dec; 45(12):3387-92
    65 Guillemin I, Jarlier V, Cambau E. Correlation between quinolone susceptibility patterns and sequences in the A and B subunits of DNA gyrase in mycobacteria. Antimicrobial Agents and Chemotherapy. 1998; 42: 2084~2088
    66 Takiff HE, Cimino M, Musso MC, et al. Efflux pump of the proton antiporter family confers low-level fluoroquinolone resistance in Mycobacterium smegmatis. Pro. Natl. Acad. Sci. USA, 1996; 93:362~366
    67 Liu J, Takiff HE, Nikaido H. Active efflux of fluoroquinolone in Mycobacterium smegmatis mediated by LfrA, a multidrug efflux pump. J Bacteriology, 1996; 178(13): 3791~3795
    68 Doran JL, Pang Y, Mdluli KE, et al. Mycobacterium tubrculosis efpA encodes an efflux protein of the Qaci transporter family. Clinical and Diagnostic Laboratory Immunology. 1997; 4(1): 23~32
    69 Silva PEA, Bigi F, Santaangelo M, et al. Characterization of P55, a multidrug efflux pump in Mycobacterium tuberculosis. Antimicrobial Agents and Chemotherapy. 2001;45(3):800~8004
    70 Ainsa JA, Blokpoel MC, Oral I, et al. Molecular cloning and characterization of Tap, aputative multidrug efflux pump present in Mycobacterium fortuitum and Mycobacterium tuberculosis. J Bacteriol. 1998 Nov;180(22):5836-43
    71 Piddock LJ, Ricci V. Accumulation of five fluoroquinolones by Mycobacterium tuberculosis H37Rv. J Antimicrob Chemother. 2001 Dec; 48(6):787-91
    72 杨藻宸主编.药理学和药物治疗学.第2版.北京:人民卫生出版社,2000:1595
    73 T akiff HE, Salazar L, Guerrero C, et al. Cloning and nucleotide sequence of Mycobacterium tuberculosis gyrA and gyrB genes and detection of quinolone resistance mutations. Antimicrobial Agents and Chemotherapy. 1994; 38(4): 773~780
    74 中国防痨协会.结核病诊断细菌学检验规程.中国防痨杂志,1996;18(1):28
    75 Tesic J, Lepsanovic Z, Mirovic V. Evaluation of usefulness of single-strand conformation polymorphism method for rapid detection of rifampicin-resistant Mycobacterium tuberculosis. Vojnosanit Pregl. 2004 Mar-Apr; 61(2):169-72
    76 Gellert MK, Mizuuchi MH, O' Dea, ea al. DNA gyrase: an enzyme that introduces superhelical turns into DNA. Pro. Natl. Acad. Sci. USA 1976; 73:3872~3876
    77 Kim BJ, Lee KH, Park BN, et al. Detection of rifampin-resistant Mycobacterium tuberculosis in sputa by nested PCR-linked single-stranded conformation polymorphism and DNA sequencing. Journal of clinical Microbiology. 2001; 39(7):2610-2617
    78 Arnold C, Westland L, Mowat G, et al. Gharbia Single-nucleotide polymorphism-based differentiation and drug resistance detection in Mycobacterium tuberculosis from isolates or directly from sputum. Clin Microbiol Infect. 2005 Feb; 11(2):122-30
    79 Tracevska T, Jansone I, Nodieva A, et al. Characterisation of rpsL, rrs and embB mutations associated with streptomycin and ethambutol resistance in Mycobacterium tuberculosis. Res Microbiol. 2004 Dec:155(10):830-4
    80 张敦熔主编.现代结核病学.第1版.北京:人民军医出版社,2000:136~137
    81 刘书林,顾德林,王枫等.结核分枝杆菌临床株环丙沙星最低抑菌浓度和GyrA序列测定.中华结核和呼吸杂志,2003:26(1):62
    82 Cambau E, Sougakoff W, Jarlier V. Amplification and nucleotide sequence of the quinolone resistance-determining region in the gyrA gene of mycobacteria. FEMS Microbiol Lett. 1994 Feb 1; 116(1):49-54
    83 Cheng AF, Yew WW, Chan EW, et al. Multiplex PCR amplimer
    ?conformation analysis for rapid detection of gyrA mutations in fluoroquinolone-resistant Mycobacterium tuberculosis clinical isolates. Antimicrob Agents Chemother. 2004 Feb; 48(2):596-601

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700