耻垢分枝杆菌(Mycobacterium smegmatis)EmbC蛋白C端的功能探讨
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
结核分枝杆菌(Mycobacterium tuberculosis)是引起结核病(tuberculosis,TB)的病原体。近年来,由于多耐药性(muti-drug resistant,MDR)结核分枝杆菌突变株的出现,使得结核病卷土重来。结核分枝杆菌能够在机体免疫系统功能正常的情况下生存于感染宿主的巨噬细胞内,不但未被消灭,反而受其保护,这关键在于分枝杆菌具有独特的细胞壁结构。
     由D-呋喃型阿拉伯糖(D-Araf)构成的聚阿拉伯糖(Arabinan)是分枝杆菌细胞壁中聚阿拉伯糖半乳糖(arabinogalactan,AG)和聚阿拉伯糖甘露糖脂(lipoarabinomannan,LAM)的主要组成成分。AG和LAM中的聚阿拉伯糖的还原端均由α-(1→5)连接的阿拉伯糖残基构成,但聚阿拉伯糖非还原末端的模序(motif)结构不同,AG中只含有分支的阿拉伯六糖(Ara_6),[β-D-Araf-(1→2)-α-D-Araf-(1→)]_2→(3,5)-α-D-Araf-(1→5)-α-D-Araf;而LAM中既含有与AG相同的分支Ara_6,又含有线性的阿拉伯四糖(Ara_4),β-D-Araf-(1→2)-α-D-Araf-(1→5)-α-D-Araf-(1→5)-α-D-Araf。分枝菌酸—聚阿拉伯糖聚半乳糖—肽聚糖(mycolic acid-arabinogalactan-peptidoglycan,mAGP)构成了分枝杆菌细胞壁的骨架;而LAM则通过磷酸肌醇锚定物非共价连接于细胞膜上,其中聚阿拉伯糖连接于聚甘露糖并延伸至细胞壁骨架之外,结核分枝杆菌中的聚阿拉伯糖非还原末端具有甘露糖残基构成的帽子结构,是分枝杆菌与宿主细胞相互作用的关键因子。
     抗结核病的一线药物之一乙胺丁醇具有抑制AG和LAM中聚阿拉伯糖合成的作用,其可能的作用靶标为Emb蛋白,包括EmbC,EmbA和EmbB蛋白。Emb蛋白是跨膜蛋白,N端含有12-14个跨膜区,而C端位于细胞膜外,呈球形。在不同的分枝杆菌中,Emb蛋白质具有保守性。在embA或embB基因敲除的耻垢分枝杆菌(Mycobacterium smegmatis)突变株中,AG中阿拉伯糖的含量明显减少,结构分析表明聚阿拉伯糖非还原末端Ara_6中以3,5连接的α-D-Araf残
Mycobacterium tuberculosis, the causative agent of tuberculosis (TB), has infected the human being for thousands years. In recent years, the impressive emergence and wide distribution of multidrug-resistant (MDR) strains of M. tuberculosis has a significant impact for the increased incidence of TB. M. tuberculosis is an extraordinarily successful pathogen with the remarkable ability to persist and replicate within the normally hostile environment of macrophages. An important key to the success of pathogenic M. tuberculosis is likely to be its unusual cell wall structure and its interactions with the immune system.
    D-Arabinans, composed of D-arabinofuranose (D-Araf), dominate the structure of mycobacterial cell walls in two settings, as part of lipoarabinomannan (LAM) and arabinogalactan, each with markedly different structures and functions. The arabinan in AG and LAM has the same reducing α-(1→5) arabinosyl chain, but different terminal motif. The nonreducing end of the arabinan in AG is terminated by branched Ara_6,[β -D-Araf-(1→2)-α-D-Araf-(1→)]_2→(3,5)-α-D-Araf-(1→5)-α-D-Araf, while the nonreducing end of the arabinan in LAM is terminated by both Ara_6, the same as in AG, and linear Ara_4, β -D-Araf-(1→2)-α-D-Araf-(1→5)-α-D-Araf-(1→5)-α-D-Araf. Mycolic acid arabinogalactan - peptidoglycan (mAGP) composed of the backbone of the mycobacterial cell wall. LAM consists of arabinan, mannan and phosphatidyl -myo- inositol anchor, and the arabinan and mannan are non-covalently attached to the plasma membrane through the phosphatidyl-myo-inositol anchor. The arabinan is extend to the exterior of the cell wall backbone, and the non-reducing ends of the arabinan are capped with mannose residues responsible for much of their biological roles relating to host pathogen interaction.
    Little is known about the synthesis of the arabinan in AG and LAM. EmbA,
引文
1. Glickman, M.S., and Jacobs, W.R., Jr. Microbial pathogenesis of Mycobacterium tuberculosis: dawn of a discipline. Cell. 2001.104: 477-485.
    2. Russell, D.G., Mwandumba, H.C., and Rhoades, E.E. Mycobacterium and the coat of many lipids. J Cell Biol. 2002.158: 421-426.
    3. Brennan, P.J. Structure, function, and biogenesis of the cell wall of Mycobacterium tuberculosis. Tuberculosis.2003.83: 91-97.
    4. Flynn, J.L., and Chan, J. Immune evasion by Mycobacterium tuberculosis: living with the enemy. Curr Opin Immunol.2003.15: 450-455.
    5. Crick DC, Mahapatra S, and Brennan PJ. Synthesis of the arabinogalaetan-peptidoglycan complex of Mycobacterium tuberculosis. Glycobiology. 2001.11 (9): 107R-118R.
    6. Brennan PJ, Nikaido H. The envelope of mycobacteria. Annu Rev Biochem. 1995.64: 29-63.
    7. Besra GS and Brennan PJ. The mycobacterial cell wall: synthesis of arabinogalactan and lipoarabinomannan. Biochem Soc Trans. 1997.25 (3): 845-50.
    8. McNeil M, Daffe M, and Brennan PJ. Evidence for the nature of the link between the arabinogalactan and peptidoglycan of mycobacterial cell walls. J Biol Chem. 1990. 265 (30): 18200-6
    9. Turnbull WB, Shimizu KH, Chatterjee D, Homans SW, and Treumann A. Identification of the 5-methylthiopentosyl substituent in Mycobacterium tuberculosis lipoarabinomannan. Angew Chem Int Ed Engl. 2004. 43 (30): 3918-22.
    10. Torrelles JB, Khoo KH, Sieling PA, Modlin RL, Zhang N, Marques AM, Treumann A, Rithner CD, Brennan PJ, and Chatterjee D. Truncated structural variants of lipoarabinomannan in Mycobacterium leprae and an ethambutol-resistant strain of Mycobacterium tuberculosis. J Biol Chem. 2004. 279 (39): 41227-39
    11. Daffe M, Brennan PJ, and McNeil M. Predominant structural features of the cell wall arabinogalactan of Mycobacterium tuberculosis as revealed through characterization of oligoglycosyl alditol fragments by gas chromatography/mass spectrometry and by 1H and 13C NMR analyses. J Biol Chem. 1990. 265(12): 6734-43.
    12. Chatterjee D, Bozic CM, McNeil M, and Brennan PJ. Structural features of the arabinan component of the lipoarabinomannan of Mycobacterium tuberculosis. J Biol Chem. 1991. 266 (15): 9652-60.
    13. Chatterjee D, Khoo KH, McNeil MR, Dell A, Morris HR, and Brennan PJ. Structural definition of the non-reducing termini of mannose-capped LAM from Mycobacterium tuberculosis through selective enzymatic degradation and fast atom bombardment-mass??spectrometry. Glycobiology. 1993. 5: 497-506.
    
    14. Khoo KH, Douglas E, Azadi P, Inamine JM, Besra GS, Mikusova K, Brennan PJ, and Chatterjee D. Truncated structural variants of lipoarabinomannan in ethambutol drug-resistant strains of Mycobacterium smegmatis. Inhibition of arabinan synthesis by ethambutol. J Biol Chem. 1996. 271 (45): 28682-90.
    
    15. Khoo KH, Dell A, Morris HR, Brennan PJ, and Chatterjee D. Inositol phosphate capping of the nonreducing termini of lipoarabinomannan from rapidly growing strains of Mycobacterium.J Biol Chem. 1995.270(21): 12380-9.
    
    16. Khoo KH, Douglas E, Azadi P, Inamine JM, Besra GS, Mikusova K, Brennan PJ, and Chatterjee D. Truncated structural variants of lipoarabinomannan in ethambutol drug-resistant strains of Mycobacterium smegmatis. Inhibition of arabinan synthesis by ethambutol. J Biol Chem. 1996. 271(45): 28682-90.
    
    17. Besra GS, Khoo KH, McNeil MR, Dell A, Morris HR, and Brennan PJ. A new interpretation of the structure of the mycolyl-arabinogalactan complex of Mycobacterium tuberculosis as revealed through characterization of oligoglycosylalditol fragments by fast-atom bombardment mass spectrometry and 1H nuclear magnetic resonance spectroscopy. Biochemistry. 1995. 4; 34 (13): 4257-66.
    
    18. McNeil M, Daffe M., and Brennan PJ. Location of the mycolyl ester substituents in the cell walls of mycobacteria. J Biol Chem. 1991.266(20): 13217-23.
    
    19. Mikusova K, Slayden RA, Besra GS, and Brennan PJ. Biogenesis of the mycobacterial cell wall and the site of action of ethambutol. Antimicrob Agents Chemother. 1995. 39 (11): 2484-9
    
    20. Belanger, A.E., Besra, GS., Ford, M.E., Mikusova, K., Belisle, J.T., Brennan, P.J., and Inamine, J.M. The embAB genes of Mycobacterium avium encode an arabinosyl transferase involved in cell wall arabinan synthesis that is the target for the antimycobacterial drug ethambutol. Proc Natl Acad Sci USA. 1996.93: 11919-11924.
    
    21. Telenti, A., Philipp, W.J., Sreevatsan, S., Bernasconi, C, Stockbauer, K.E., Wieles, B., et al. The emb operon, a gene cluster of Mycobacterium tuberculosis involved in resistance to ethambutol. Nature Med. 1997. 3: 567-570.
    
    22. Escuyer, V.E., Lety, M.A., Torrelles, J.B., Khoo, K.H., Tang, J.53, Rithner, CD., et al. The role of the embA and embB gene products in the synthesis of the terminal hexaarabinofuranosyl motif of Mycobacterium smegmatis arabinogalactan. J Biol Chem. 2001. 276: 48854-48862.
    
    23. Cole, S.T., Brosch, R., Parkhill, J., Garnier, T., Churcher, C, Harris, D., et al. Deciphering the biology of Mycobacterium tuberculosis from the complete genome sequence. Nature. 1998.393: 537-544.
    
    24. Zhang, N., Torrelles, J.B., McNeil, M.R., Escuyer, V.E., Khoo, K.H., Brennan, P.J., and
    Chatterjee, D. The Emb proteins of mycobacteria direct arabinosylation of lipoarabinomannan and arabinogalactan via an N-terminal recognition region and a C-terminal synthetic region. Mol Microbiol. 2003.50: 69-76.
    
    
    
    25. McNeil M, Chatterjee D, Hunter SW, and Brennan PJ. Mycobacterial glycolipids: isolation, structures, antigenicity, and synthesis of neoantigens. Methods Enzymol. 1989.179:215-42.
    
    26. Dell A, Reason AJ, Khoo KH, Panico M, McDowell RA, and Morris HR. Mass spectrometry of carbohydrate-containing biopolymers. Methods Enzymol. 1994.230:108-32.
    
    27. McNeil MR, Robuck KG, Harter M, and Brennan PJ. Enzymatic evidence for the presence of a critical terminal hexa-arabinoside in the cell walls of Mycobacterium tuberculosis. Glycobiology. 1994.4(2): 165-73.
    
    
    28. Xin Y, Huang Y, and McNeil MR. The presence of an endogenous endo-D-arabinase in Mycobacterium smegmatis and characterization of its oligoarabinoside product. Biochim Biophys Acta.1999. 1473 (2-3): 267-71.
    
    29. Rojas, M., Barrera, L.F., Puzo, G, and Garcia, L.F. Differential induction of apoptosis by virulent Mycobacterium tuberculosis in resistant and susceptible murine macrophages: role of nitric oxide and mycobacterial products. J Immunol. 1997.159: 1352-1361.
    
    30. Rojas, M., Garcia, L.F., Nigou, J., Puzo, G, and Olivier, M. Mannosylated lipoarabinomannan antagonizes Mycobacterium tuberculosis-induced macrophage apoptosis by altering Ca~(2+) -dependent cell signaling. J Infect Dis. 2000.182: 240-251.
    
    31. Nigou, J., Zelle-Rieser, C, Gilleron, M., Thurnher, M., and Puzo, G. Mannosylated lipoarabinomannans inhibit IL-12 production by human dendritic cells: evidence for a negative signal delivered through the mannose receptor. J Immunol. 2001.166:7477-7485.
    
    32. Knutson, K.L., Hmama, Z., Herrera-Velit, P., Rochford, R., and Reiner, N.E. Lipoarabinomannan of Mycobacterium tuberculosis promotes protein tyrosine dephosphorylation and inhibition of mitogen-activated protein kinase in human mononuclear phagocytes. Role of the Src homology 2 containing tyrosine phosphatase 1.J BiolChem. 1998.273:645-652.
    
    33. Bastin DA, Stevenson G, Brown PK, Haase A, and Reeves PR. Repeat unit polysaccharides of bacteria: a model for polymerization resembling that of ribosomes and fatty acid synthetase, with a novel mechanism for determining chain length. Mol Microbiol. 1993. 7(5): 725-34.
    
    34. Barbeyron T, Michel G Potin P, Henrissat B, and Kloareg B. iota-Carrageenases constitute a novel family of glycoside hydrolases, unrelated to that of kappa-carrageenases. J Biol Chem. 2000. 275 (45): 35499-505.
    
    35. Rafael Oriol, Ivan Martinez-Duncker, Isabelle Chantret, Rosella Mollicone, and Patrice Codogno. Common origin and evolution of glycosyltransferases using Dol-P- monosaccharides as donor substrate. Microbiology. 2000.146:1-4.
    1. Glickman, M.S., and Jacobs, W.R., Jr. Microbial pathogenesis of Mycobacterium tuberculosis: dawn of a discipline. Cell. 2001.104: 477-485.
    
    2. Russell, D.G, Mwandumba, H.C., and Rhoades, E.E. Mycobacterium and the coat of many lipids. JCell Biol. 2002.158: 421-426.
    
    3. Brennan, P.J. Structure, function, and biogenesis of the cell wall of Mycobacterium tuberculosis. Tuberculosis. 2003.83: 91-97.
    
    4. Flynn, J.L., and Chan, J. Immune evasion by Mycobacterium tuberculosis: living with the enemy. Curr Opin Immunol. 2003. 15: 450-455.
    
    5. Besra, G.S., and Brennan, P.J. The mycobacterial cell wall: biosynthesis of arabinogalactan and lipoarabinomannan. Biochem Soc Trans. 1997. 25: 845-850.
    
    6. Belanger, A.E., Besra, G.S., Ford, M.E., Mikusova, K., Belisle, J.T., Brennan, P.J., and Inamine, J.M. The embAB genes of Mycobacterium avium encode an arabinosyl transferase involved in cell wall arabinan synthesis that is the target for the antimycobacterial drug ethambutol. Proc NatlAcad Sci USA. 1996.93: 11919-11924.
    
    7. Nigou, J., Gilleron, M., and Puzo, G. Lipoarabinomannans: from structure to biosynthesis. Biochimie. 2003. 85: 153- 166.
    
    8. Chatterjee, D., and Khoo, K.H. Mycobacterial lipoarabinomannan: an extraordinary lipoheteroglycan with profound physiological effects. Glycobiology. 1998. 8: 113-120.
    
    9. Nigou, J., Gilleron, M., Rojas, M., Garcia, L.F., Thurnher, M., and Puzo, G. Mycobacterial lipoarabinomannans: modulators of dendritic cell function and the apoptotic response. Microbes Infect. 2002. 4: 945-953.
    
    10. Schlesinger, L.S., Hull, S.R., and Kaufman, T.M. Binding of the terminal mannosyl units of lipoarabinomannan from a virulent strain of Mycobacterium tuberculosis to human macrophages. J Immunol. 1994.152: 4070- 4079.
    
    11. Maeda, N., Nigou, J., Herrmann, J.L., Jackson, M., Amara, A., Lagrange, P.H., et al. The cell surface receptor DC - SIGN discriminates between Mycobacterium species through selective recognition of the mannose caps on lipoarabinomannan. J Biol Chem. 2003.278: 5513-5516.
    
    12. Hunter SW, McNeil MR, Brennan PJ. Diglycosyl diacylglycerol of Mycobacterium tuberculosis.J Bacteriol. 1986 Nov; 168(2): 917-22.
    
    13. Venisse A, Berjeaud JM, Chaurand P, Gilleron M, Puzo G. Structural features of lipoarabinomannan from Mycobacterium bovis BCG. Determination of molecular mass by laser desorption mass spectrometry.J Biol Chem. 1993 Jun 15; 268(17):12401-ll.
    
    14. Azuma I, Yamamura Y, Fukushi K. Fractionation of mycobacterial cell wall. Isolation of
    arabinose mycoiate and arabinogalactan from cell wall fraction of Mycobacterium tuberculosis strain Aoyama B.J Bacteriol. 1968 Nov; 96 (5): 1885-7.
    
    15. Misaki A, Azuma I, Yamamura Y. Structural and immunochemical studies on D-arabino- D-mannans and D-mannans of Mycobacterium tuberculosis and other Mycobacterium species.J Biochem (Tokyo). 1977 Dec; 82 (6): 1759-70.
    
    16. Weber PL, Gray GR.Structural and immunochemical characterization of the acidic arabinomannan of Mycobacterium smegmatis. Carbohydr Res. 1979 Sep; 74: 259-78.
    
    17. Hunter, S.W., and Brennan, P.J. Evidence for the presence of a phosphatidylinositol anchor on the lipoarabinomannan and lipomannan of Mycobacterium tuberculosis. J Biol Chem. 1990. 265: 9272-9279.
    
    18. Chatterjee, D., Roberts, A.D., Lowell, K., Brennan, P.J., and Orme, I.M. Structural basis of capacity of lipoarabinomannan to induce secretion of tumor necrosis factor. Infect Immun. 1992.60: 1249-1253.
    
    19. Leopold K, Fischer W Molecular analysis of the lipoglycans of Mycobacterium tuberculosis.Anal Biochem. 1993. Jan; 208(1): 57-64.
    
    20. Khoo, K.H., Douglas, E., Azadi, P., Inamine, J.M., Besra, G.S., Mikusova, K., et al. Truncated structural variants of lipoarabinomannan in ethambutol drug-resistant strains of Mycobacterium smegmatis. Inhibition of arabinan biosynthesis by ethambutol. J Biol Chem. 1996.271:28682-28690.
    
    21. Venisse A, Riviere M, Vercauteren J, Puzo G. Structural analysis of the mannan region of lipoarabinomannan from Mycobacterium bovis BCG Heterogeneity in phosphorylation state J Biol Chem. 1995 Jun 23; 270 (25):15012-21.
    
    22. Lee YC, Ballou A. Structural studies on the myo-inositolmannonsides from the glycolipids of Mycobacterium tuberculosis and Mycobacterium phiei. J Biol Chem. 1964 May; 239: 1316-27.
    
    23. Pangborn MC, McKinney JA. Purification of serologically active phosphoinositides of Mycobacterium tuberculosis.J Lipid Res. 1966. Sep; 7 (5): 627-33.
    
    24. Brennan P, Ballou CE. Biosynthesis of mannophosphoinositides by Mycobacterium phiei. The family of dimannophosphoinositides.J Biol Chem. 1967. Jul 10; 242 (13): 3046-56.
    
    25. Khoo, K.H., Dell, A., Morris, H.R., Brennan, P.J., and Chatterjee, D. Inositol phosphate capping of the nonreducing termini of lipoarabinomannan from rapidly growing strains of Mycobacterium. J Biol Chem. 1995.270: 12380-12389.
    
    26. Chatterjee, D., Bozic, CM., McNeil, M., and Brennan, P.J. Structural features of the arabinan component of the lipoarabinomannan of Mycobacterium tuberculosis. J Biol Chem. 1991.266: 9652-9660.
    
    27. Lemassu A, Daffe M. Structural features of the exocellular polysaccharides of Mycobacterium
    tuberculosis. Biochem J. 1994. Jan 15; 297 (Pt 2): 351-7.
    
    28. Yokoyama K, Ballou C.E. Synthesis of alpha 1→6-mannooligosaccharides in Mycobacterium smegmatis. Function of beta-mannosylphosphoryldecaprenol as the mannosyl donor. J Biol Chem. 1989 Dec 25; 264 (36): 21621-8.
    
    29. Besra, G.S., Morehouse, C.B., Rittner, CM., Waechter, C.J., and Brennan, P.J. Biosynthesis of mycobacterial lipoarabinomannan. J Biol Chem. 1997.272: 18460-18466.
    
    30. Chatterjee, D., Khoo, K.H., McNeil, M.R., Dell, A., Morris, H.R., and Brennan, P.J. Structural definition of the non-reducing termini of mannose-capped LAM from Mycobacterium tuberculosis through selective enzymatic degradation and fast atom bombardment-mass spectrometry. Glycobiology. 1993. 3: 497-506.
    
    31. Gurcha, S.S., Baulard, A.R., Kremer, L., Locht, C, Moody, D.B., Muhlecker, W., et al. Ppm1, a novel polyprenol monophosphomannose synthase from Mycobacterium tuberculosis. Biochem J. 2002. 365: 441-450.
    
    32. McNeil MR, Robuck KG, Harter M, Brennan PJ.Enzymatic evidence for the presence of a critical terminal hexa-arabinoside in the cell walls of Mycobacterium tuberculosis. Glycobiology. 1994 Apr; 4 (2): 165-73
    
    33. Nigou, J., Gilleron, M., Cahuzac, B., Bounery, J.D., Herold, M., Thurnher, M., and Puzo, G The phosphatidylmyo-inositol anchor of the lipoarabinomannans from Mycobacterium bovis bacillus Calmette Guerin. Heterogeneity, structure, and role in the regulation of cytokine secretion. J Biol Chem.1997. 272: 23094-23103.
    
    34. Vercellone A, Nigou J, Puzo G. Relationships between the structure and the roles of lipoarabinomannans and related glycoconjugates in tuberculosis pathogenesis. Front Biosci. 1998 Aug 06; 3e:149-63. Review.
    
    35. Guerardel, Y., Maes, E., Briken, V., Chirat, F., Leroy, Y, Locht, C, et al. Lipomannan and lipoarabinomannan from a clinical isolate of Mycobacterium kansasii: novel structural features and apoptosis-inducing properties. J Biol Chem 2003.278: 36637-36651.
    
    36. Guerardel, Y, Maes, E., Elass, E., Leroy, Y, Timmerman, P., Besra, G.S., et al. Structural study of lipomannan and lipoarabinomannan from Mycobacterium chelonae. Presence of unusual components with alpha 1,3- mannopyranose side chains. J Biol Chem. 2002. 277: 30635- 30648.
    
    37. Kordulakova J, Gilleron M, Mikusova K, Puzo G, Brennan PJ, Gicquel B, Jackson Definition of the first mannosylation step in phosphatidylinositol mannoside synthesis. PimA is essential for growth of mycobacteria. J Biol Chem. 2002.Aug 30; 277 (35): 31335-44.
    
    38. Jackson, M., Crick, D.C., and Brennan, P.J. Phosphatidylinositol is an essential phospholipid of mycobacteria. J Biol Chem. 2000. 275: 30092-30099.
    
    39. Kordulakova, J., Gilleron, M., Puzo, G, Brennan, P.J., Gicquel, B., Mikusova, K., and Jackson, M. Identification of the required acyltransferase step in the biosynthesis of the phosphatidylinositol mannosides of Mycobacterium species. J Biol Chem. 2003. 278: 36285-36295.
    
    40. Schaeffer, M.L., Khoo, K.H., Besra, GS. Chatterjee, D., Brennan, P.J., Belisle, J.T., and Inamine, J.M. The pimB gene of Mycobacterium tuberculosis encodes a mannosyltransferase involved in lipoarabinomannan biosynthesis. J Biol Chem. 1999. 274: 31625-31631.
    
    41. Kremer, L., Gurcha, S.S., Bifani, P., Hitchen, P.G, Baulard, A., Morris, H.R., et al. Characterization of a putative alpha-mannosyltransferase involved in phosphatidylinositol trimannoside biosynthesis in Mycobacterium tuberculosis. Biochem J. 2002. 363: 437-447.
    
    42. Gibson KJ, Eggeling L, Maughan WN, Krumbach K, Gurcha SS, Nigou J, Puzo G, Sahm H, Besra GS.Disruption of Cg-Ppml, a polyprenyl onophosphomannose synthase, and the generation of lipoglycan-less mutants in Corynebacterium glutamicum. J Biol Chem. 2003 Oct 17; 278 (42): 40842-50.
    
    43. Wolucka, B.A., McNeil, M.R., de Hoffmann, E., Chojnacki, T., and Brennan, P.J. Recognition of the lipid intermediate for arabinogalactan/arabinomannan biosynthesis and its relation to the mode of action of ethambutol on mycobacteria. J Biol Chem. 1994.269: 23328-23335.
    
    44. Scherman, M.S., Kalbe-Bournonville, L., Bush, D., Xin, Y., Deng, L., and McNeil, M. Polyprenylphosphatepentoses in mycobacteria are synthesized from 5- phosphoribose pyrophosphate. J Biol Chem. 1996. 271: 29652- 29658.
    
    45. Belanger, A.E., Besra, G.S., Ford, M.E., Mikusova, K., Belisle, J.T., Brennan, P.J., and Inamine, J.M. The embAB genes of Mycobacterium avium encode an arabinosyl transferase involved in cell wall arabinan biosynthesis that is the target for the antimycobacterial drug ethambutol. Proc Natl Acad Sci USA. 1996. 93: 11919-11924.
    
    46. Telenti, A., Philipp, W.J., Sreevatsan, S., Bernasconi, C, Stockbauer, K.E., Wieles, B., et al. The emb operon, a gene cluster of Mycobacterium tuberculosis involved in resistance to ethambutol. Nature Med. 1997. 3: 567-570.
    
    47. Escuyer, V.E., Lety, M.A., Torrelles, J.B., Khoo, K.H., Tang, J.53, Rithner, CD., et al. The role of the embA and embB gene products in the biosynthesis of the terminal hexaarabinofuranosyl motif of Mycobacterium smegmatis arabinogalactan. J Biol Chem. 2001. 276: 48854-48862.
    
    48. Cole, ST., Brosch, R., Parkhill, J., Garnier, T., Churcher, C, Harris, D., et al. Deciphering the biology of Mycobacterium tuberculosis from the complete genome sequence. Nature. 1998. 393: 537-544.
    
    49. Zhang, N., Torrelles, J.B., McNeil, M.R., Escuyer, V.E., Khoo, K.H., Brennan, P.J., and Chatterjee, D. The Emb proteins of mycobacteria direct arabinosylation of lipoarabinomannan
    and arabinogalactan via an N-terminal recognition region and a C-terminal synthetic region. Mol Microbiol. 2003.50: 69-76.
    
    50. Molle, V., Kremer, L., Girard-Blanc, C, Besra, GS., Cozzone, A.J., and Prost, J.F. An FHA phosphoprotein recognition domain mediates protein EmbR phosphorylation by PknH, a Ser/Thr protein kinase from Mycobacterium tuberculosis. Biochemistry. 2003. 42: 15300-15309.
    
    51. Molle V, Kremer L, Girard-Blanc C, Besra GS, Cozzone AJ, Prost JF. An FHA phosphoprotein recognition domain mediates protein EmbR phosphorylation by PknH, a Ser/Thr protein kinase from Mycobacterium tuberculosis. Biochemistry. 2003 Dec 30; 42 (51): 15300-9.
    
    52. Berg S, Starbuck J, Torrelles JB, Vissa VD, Crick DC, Chatterjee D, Brennan PJ.Roles of Conserved Proline and Glycosyltransferase Motifs of EmbC in Biosynthesis of Lipoarabinomannan. J Biol Chem. 2005 Feb 18; 280(7): 5651-63.
    
    
    53. Pathak, A.K., Pathak, V., Riordan, J.M., Gurcha, S.S., Besra, G.S., and Reynolds, R.C. Synthesis of mannopyranose disaccharides as photoaffinity probes for mannosyltransferases in Mycobacterium tuberculosisCarbohydr Res. 2004.339: 683-691.
    
    54. Roach, T.I., Barton, C.H., Chatterjee, D., and Blackwell, J.M. Macrophage activation: lipoarabinomannan from avirulent and virulent strains of Mycobacterium tuberculosis differentially induces the early genes c-fos, KC, JE, and tumor necrosis factor-alpha. J Immunol. 1993.150: 1886-1896.
    
    55. Zhang, Y., Broser, M., Cohen, H., Bodkin, M., Law, K., Reibman, J., and Rom, W.N. Enhanced interleukin-8 release and gene expression in macrophages after exposure to Mycobacterium tuberculosis and its components. J Clin Invest. 1995.95: 586-592.
    
    56. Riedel, D.D., and Kaufmann, S.H. Chemokine secretion by human polymorphonuclear granulocytes after stimulation with Mycobacterium tuberculosis and lipoarabinomannan. Infect Immun. 1997. 65: 4620-4623.
    
    57. Yoshida, A., and Koide, Y. Arabinofuranosylterminated and mannosylated lipoarabinomannans from Mycobacterium tuberculosis induce different levels of nterleukin-12 expression in murine macrophages. Infect Immun. 1997.65: 1953-1955.
    
    58. Ghosh, S., Pal, S., Das, S., Dasgupta, S.K., and Majumdar, S. Lipoarabinomannan induced cytotoxic effects in human mononuclear cells. FEMS Immunol Med Microbiol. 1998. 21: 181-188.
    
    59. Vignal, C, Guerardel, Y., Kremer, L., Masson, M., Legrand, D., Mazurier, J., and Elass, E. Lipomannans, but not lipoarabinomannans, purified from Mycobacterium chelonae and Mycobacterium kansasii induce TNF-alpha and 1L-8 secretion by a CD14-Toll-like receptor 2-dependent mechanism. J Immunol. 2003.171: 2014-2023.
    
    60. Dao, D.N., Kremer, L., Guerardel, Y., Molano, A., Jacobs, W.R., Jr, Porcelli, S.A., and Briken, V. Mycobacterium tuberculosis lipomannan induces apoptosis and IL-12 production in macrophages. Infect Immun. 2004. 72: 2067-2074.
    
    61. Quesniaux, V.J., Nicolle, D.M., Torres, D., Kremer, L., Guerardel, Y., Nigou, J., et al. Toll-like receptor 2 (TLR2) -dependent positive and TLR2-independent negative regulation of proinflammatory cytokines by mycobacterial lipomannans. J Immunol. 2004.172: 4425-4434.
    
    62. Garton, N.J., Gilleron, M., Brando, T., Dan, H.H., Giguere, S., Puzo, G, et al. A novel lipoarabinomannan from the equine pathogen Rhodococcus equi. Structure and effect on macrophage cytokine production. J Biol Chem. 2002. 277: 31722-31733.
    
    
    63. Sutcliffe, I.C. Identification of a lipoarabinomannan like lipoglycan in Corynebacterium matruchotii. Arch Oral Biol. 1995. 40: 1119-1124.
    
    64. Rojas, M., Barrera, L.F., Puzo, G, and Garcia, L.F. Differential induction of apoptosis by virulent Mycobacterium tuberculosis in resistant and susceptible murine macrophages: role of nitric oxide and mycobacterial products. J Immunol. 1997.159: 1352-1361.
    
    65. Rojas, M., Garcia, L.F., Nigou, J., Puzo, G, and Olivier, M. Mannosylated lipoarabinomannan antagonizes Mycobacterium tuberculosis-induced macrophage apoptosis by altering Ca2+-dependent cell signaling. J Infect Dis. 2000.182: 240-251.
    
    66. Nigou, J., Zelle-Rieser, C, Gilleron, M, Thurnher, M., and Puzo, G. Mannosylated lipoarabinomannans inhibit IL-12 production by human dendritic cells: evidence for a negative signal delivered through the mannose receptor. J Immunol. 2001.166: 7477-7485.
    
    67. Knutson, K.L., Hmama, Z., Herrera-Velit, P., Rochford, R., and Reiner, N.E. Lipoarabinomannan of Mycobacterium tuberculosis promotes protein tyrosine dephosphorylation and inhibition of mitogen-activated protein kinase in human mononuclear phagocytes. Role of the Src homology 2 containing tyrosine phosphatase 1. J Biol Chem. 1998. 273:645-652.
    
    68. Keane, J., Remold, H.G., and Kornfeld, H. Virulent Mycobacterium tuberculosis strains evade apoptosis of infected alveolar macrophages. J Immunol. 2000. 164: 2016-2020.
    
    69. Giacomini, E., Iona, E., Ferroni, L., Miettinen, M., Fattorini, L., Orefici, G, et al. Infection of human macrophages and dendritic cells with Mycobacterium tuberculosis induces a differential cytokine gene expression that modulates T cell response. J Immunol. 2001.166: 7033-7041.
    
    70. Hickman, S.P., Chan, J., and Salgame, P. Mycobacterium tuberculosis induces differential cytokine production from dendritic cells and macrophages with divergent effects on naive T cell polarization. J Immunol. 2002.168: 4636- 4642.
    
    71. Li, Y.J., Petrofsky, M, and Bermudez, L.E. Mycobacterium tuberculosis uptake by recipient
    host macrophages is influenced by environmental conditions in the granuloma of the infectious individual and is associated with impaired production of interleukin-12 and tumor necrosis factor alpha. Infect Immun. 2002.70: 6223-6230.
    
    72. Johansson, U., Ivanyi, J., and Londei, M. Inhibition of IL-12 production in human dendritic cells matured in the presence of Bacillus Calmette-Guerin or lipoarabinomannan. Immunol Lett. 2001.77: 63-66.
    
    73. Demangel, C, Bertolino, P., and Britton, W.J. Autocrine IL-10 impairs dendritic cell (DC)-derived immune responses to mycobacterial infection by suppressing DC trafficking to draining lymph nodes and local IL-12 production. Eur J Immunol. 2002. 32: 994-1002.
    
    74. Barnes, P.F., Chatterjee, D., Abrams, J.S., Lu, S., Wang, E., Yamamura, M., et al. Cytokine production induced by Mycobacterium tuberculosis lipoarabinomannan. Relationship to chemical structure. J Immunol. 1992.149: 541-547.
    
    75. Jones, B.W, Means, T.K., Heldwein, K.A., Keen, M.A., Hill, P.J., Belisle, J.T., and Fenton, M.J. Different Tolllike receptor agonists induce distinct macrophage responses. J Leukoc Biol. 2001.69: 1036-1044.
    
    76. Gilleron, M, Quesniaux, V.F., and Puzo, G. Acylation state of the phosphatidylinositol hexamannosides from Mycobacterium bovis Bacillus Calmette Guerin and Mycobacterium tuberculosis H37Rv and its implication in Toll-like receptor response. J Biol Chem. 2003. 278: 29880-29889.
    
    77. Kopp, E., and Medzhitov, R. Recognition of microbial infection by Toll-like receptors. Curr Opin Immunol. 2003.15: 396- 401.
    
    78. Heldwein, K.A., and Fenton, M.J. The role of Toll-like receptors in immunity against mycobacterial infection. Microbes Infect. 2002. 4: 937-944.
    
    79. Geijtenbeek, T.B., Van Vliet, S.J., Koppel, E.A., Sanchez- Hernandez, M., Vandenbroucke-Grauls, CM., Appelmelk, B., and van Kooyk, Y. Mycobacteria target DC-SIGN to suppress dendritic cell function. J Exp Med. 2003.197: 7-17.
    
    80. Tailleux, L., Schwartz, O., Herrmann, J.L., Pivert, E., Jackson, M., Amara, A., et al. DC-SIGN is the major Mycobacterium tuberculosis receptor on human dendritic cells. J Exp Med. 2003.197: 121-127.
    
    81. Malik, Z.A., Thompson, C.R., Hashimi, S., Porter, B., Iyer, S.S., and Kusner, D.J. Mycobacterium tuberculosis blocks Ca2+ signaling and phagosome maturation in human macrophages via specific inhibition of sphingosine kinase. J Immunol. 2003. 170:2811-2815.
    
    82. Armstrong, J.A., and Hart, P.D. Response of cultured macrophages to Mycobacterium tuberculosis, with observations on fusion of lysosomes with phagosomes. J Exp Med. 1971. 134:713-740.
    
    83. Fratti, R.A., Chua, J., Vergne, I., and Deretic, V. Mycobacterium tuberculosis glycosylated phosphatidylinositol causes phagosome maturation arrest. Proc Natl Acad Sci USA. 2003.100: 5437-5442.
    84. Malik, Z.A., Iyer, S.S., and Kusner, D.J. Mycobacterium tuberculosis phagosomes exhibit altered calmodulindependent signal transduction: contribution to inhibition of phagosomelysosome fusion and intracellular survival in human macrophages. J Immunol. 2001. 166 (5): 3392-401.
    85. Fratti, R.A., Backer, J.M., Gruenberg, J., Corvera, S., and Deretic, V. Role of phosphatidylinositol 3-kinase and Rab5 effectors in phagosomal biogenesis and mycobacterial phagosome maturation arrest. J Cell Biol. 2001.154: 631-644.
    86. Vergne, I., Chua, J., and Deretic, V. Tuberculosis toxin blocking phagosome maturation inhibits a novel Ca2~+/calmodulin-PI3K hVPS34 cascade. J Exp Med. 2003b. 198: 653-659.
    87. Anes, E., Kuhnel, M.P., Bos, E., Moniz-Pereira, J., Habermann, A, , and Griffiths, G. Selected lipids activate phagosome actin assembly and maturation resulting in killing of pathogenic mycobacteria. Nature Cell Biol. 2003.5: 793—802.
    88. Mattson, M.P., and Chan, S.L. Calcium orchestrates apoptosis. Nature Cell Biol. 2003. 5: 1041-1043.
    89. Orrenius, S., Zhivotovsky, B., and Nicotera, P. Regulation of cell death: the caicium-apoptosis link. Nature Rev Mol Cell Biol. 2003.4: 552-565.
    90. Sibley, L.D., Hunter, S.W., Brennan, P.J., and Krahenbuhl, J.L. Mycobacterial lipoarabinomannan inhibits gamma interferon-mediated activation of macrophages. Infect Immun. 1988. 56: 1232-1236.
    91. Hmama, Z., Gabathuler, R., Jefferies, W.A., de Jong, G., and Reiner, N.E. Attenuation of HLA-DR expression by mononuclear phagocytes infected with Mycobacterium tuberculosis is related to intracellular sequestration of immature class Ⅱ heterodimers. J Immunol. 1998. 161: 4882-4893.
    92. Hussain, S., Zwilling, B.S., and Lafuse, W.P. Mycobacterium avium infection of mouse macrophages inhibits IFN-gamma Janus kinase-STAT signaling and gene induction by down-regulation of the IFN-gamma receptor. J Immunol. 1999. 163: 2041-2048.
    93. Ting, L.M., Kim, A.C., Cattamanchi, A., and Ernst, J.D. Mycobacterium tuberculosis inhibits IFN-gamma transcriptional responses without inhibiting activation of STAT1. J Immunol. 1999. 163: 3898-3906.
    94. Pai, R.K., Convery, M., Hamilton, T.A., Boom, W.H., and Harding, C.V. Inhibition of IFN-gamma-induced class Ⅱ transactivator expression by a 19-kDa lipoprotein from Mycobacterium tuberculosis: a potential mechanism for immune evasion. J Immunol. 2003.??171: 175-184.
    95. Maiti, D., Bhattacharyya, A., and Basu, J. Lipoarabinomannan from Mycobacterium tuberculosis promotes macrophage survival by phosphorylating Bad through a phosphatidylinositol 3-kinase/Akt pathway. J Biol Chem. 2001. 276: 329-333.
    96. Nair, J.S., DaFonseca, C.J., Tjernberg, A., Sun, W., Darnell, J.E., Jr, Chait, B.T., and Zhang, J.J. Requirement of Ca2+ and CaMKⅡ for Stat1 Ser-727 phosphorylation in response to IFN-gamma. Proc Natl Acad Sci USA. 2002.99: 5971-5976.
    97. Starr, R., and Hilton, D.J. Negative regulation of the JAK/STAT pathway. Bioessays. 1999.21: 47-52.
    98. Rojas, M., Olivier, M., and Garcia, L.E Activation of JAK2/STAT1-alpha-dependent signaling events during Mycobacterium tuberculosis-induced macrophage apoptosis. Cell Immunol. 2002. 217: 58-66

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700